1. The Coupled Escape Probability Method in Spherical Symmetry

1.1. Absorption Probability Along a Specific Line-of-Sight

We consider a line with a Doppler profile, so that the (normalized) line profile function for absorption is

\[\phi(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} \quad \text{where} \quad x = \frac{\nu - \nu_0}{\Delta \nu_D} \]

(1)

where \(\Delta \nu_D \) is the Doppler width of the line. Then, with the assumption of complete redistribution, the distribution in frequency of the radiation emitted – by scattering or by thermal processes – is given by the same profile \(\phi(x) \). The optical depth at frequency \(x \) is given by \(\tau \phi(x) \), where \(\tau \) is called the mean optical depth in the line. (Note that the line center optical depth \(\tau(x = 0) = \frac{\tau}{\sqrt{\pi}} \).) Thus the probability that radiation will be emitted at frequency \(x \) and travel optical depth \(\tau \) without absorption is just \(\phi(x) e^{-\tau \phi(x)} \). So we define the function

\[\eta(\tau) = \int_{-\infty}^{\infty} \phi(x) e^{-\tau \phi(x)} \, dx \]

(2)

Then, along a particular line-of-sight, the fraction of radiation intercepted between optical depth \(\tau_1 \) and optical depth \(\tau_2 \) will be \(\eta(\tau_1) - \eta(\tau_2) \). This \(\eta(\tau) \) is in some sense analogous to the \(\alpha(\tau) \) of Elitzur and Ramos (2005) (ER05). Note that \(\eta(\tau) \) is a smooth function which can be tabulated and easily interpolated for any \(\tau \). For small values of \(\tau \), a power-series expansion is useful.

1.2. The Line Coupling Matrix for Spherical Shells

Consider a series of spheres of radius \(R_i \) for \(i = 1, 2, ..., (N + 1) \), which bound \(N \) nested spherical shells. Consider a point at radius \(R_i < r_i < R_{i+1} \) in the \(i \)th shell. Let a ray from this point \(r_i \) which makes an angle \(\theta \) with the radial direction (and define \(\mu = \cos \theta \)) ultimately cross the boundaries of shell \(j \) at points \(\tau(\mu, R_j) \) and \(\tau(\mu, R_{j+1}) \). (For some \(\mu \) the line may miss shells \(j < i \). For other \(\mu \)s the line may cut the same shell twice. A line may also cut \(R_{j+1} \) twice, but not \(R_j \). The \(\tau \)’s must be calculated by summing up the segments \(\kappa_k \Delta r(\mu, R_k, R_{k+1}) \) through all the intervening shells. Here, \(\Delta r(\mu, R_k, R_{k+1}) \) represents the distance through shell \(k \) from \(r_i \) along the direction \(\mu \). Then the quantity \(m_{ij}(\mu) = \eta[\tau(\mu, R_j)] - \eta[\tau(\mu, R_{j+1})] \) is the chance that radiation traveling in direction \(\mu \) will be intercepted in shell \(j \). If we then integrate over all angles, we obtain

\[m_{ij}(r_i) = \frac{1}{2} \int_{-1}^{1} \left[\eta(\tau(\mu, R_j)) - \eta(\tau(\mu, R_{j+1})) \right] \, d\mu \]

(3)

the probability that radiation leaving point \(r_i \) in shell \(i \) will be intercepted by shell \(j \). The
value of m_{ij} will vary with the position of r_i within the shell. Thus we must also integrate r_i over the volume of the shell, $dV_i = 4\pi r_i^2 dr_i$, for $R_i < r_i < R_{i+1}$, to obtain

$$M_{ij} = \frac{3}{R_{i+1}^3 - R_i^3} \int_{R_i}^{R_{i+1}} m_{ij}(r_i) r_i^2 dr_i$$

(4)
and we call the array of M_{ij} the coupling matrix. Note that the value M_{ii} is the probability that the radiation is re-absorbed in the same shell from which it was emitted. We have written J code to compute this matrix given a set of shell radii $R_1, ..., R_{N+1}$ and shell opacities $\kappa_1, ..., \kappa_N$.

1.3. The Line Source Function for the Two-Level Atom

Consider the line radiation emitted from a spherical shell j with volume V_j. This will be just $4\pi J_j V_j$, where J is the emission coefficient. Now the source function is just $S = J/\kappa$, so the radiation emitted from the shell is $4\pi \kappa_j S_j V_j$. Now the ji element of our coupling matrix M_{ji} is the probability that radiation emitted by shell j will be intercepted by shell i, so the radiation emitted by j and scattered in i is $4\pi \kappa_j S_j V_j M_{ji}$.

On the other hand, in terms of the mean intensity \bar{J}_i, the radiation scattered in shell i must be $4\pi \bar{J}_i \kappa_i V_i$. If we denote by \bar{J}_{ij} the the mean intensity in shell i which originates in shell j, then we can write the radiation emitted in j and scattered in i as $4\pi \bar{J}_{ij} \kappa_i V_i$. Equating this to the expression in the previous paragraph and summing over all emitting shells j we have

$$\kappa_i \bar{J}_i V_i = \sum_{j=1}^{N} \kappa_j V_j M_{ji} S_j$$

(5)
which leads to our expression for the mean intensity in shell i:

$$\bar{J}_i = \sum_{j=1}^{N} \left(\frac{\kappa_j}{\kappa_i} \right) \left(\frac{V_j}{V_i} \right) M_{ji} S_j$$

(6)

Now the line source function for the two-level atom is given by

$$S_i = (1 - \epsilon_i) \bar{J}_i + \epsilon_i B_i$$

(7)
so the equation for the source function S_i becomes

$$S_i = (1 - \epsilon_i) \sum_{j=1}^{N} \left(\frac{\kappa_j}{\kappa_i} \right) \left(\frac{V_j}{V_i} \right) M_{ij} S_j = \epsilon_i B_i$$

(8)
or, with I representing the identity matrix, we have the matrix equation

$$
\left[I_{ij} - (1 - \epsilon_i) \left(\frac{\kappa_j}{\kappa_i} \right) \left(\frac{V_j}{V_i} \right) M_{ij} \right] \times [S_i] = [\epsilon_i B_i]
$$

(9)

1.4. Multi-Level Atoms: The Net Radiative Bracket

The CEP treatment developed by ER05 makes use of the “net radiative bracket” of Athay and Skumanich (ER05, eq. 6):

$$
p(\tau) = 1 - \frac{\bar{J}(\tau)}{S(\tau)}
$$

(10)

From our expression for the mean intensity given above, we thus have

$$
P_i = 1 - \sum_{j=1}^{N} \left(\frac{\kappa_j}{\kappa_i} \right) \left(\frac{V_j}{V_i} \right) M_{ji} \frac{S_j}{S_i}
$$

(11)

This can be inserted into the code we developed for the plane-parallel problems to provide solutions to the corresponding problems in spherical symmetry.

(1) If τ is small, a useful expression for $\eta(\tau)$ can be obtained by expanding the exponential in equation (2):

$$
\eta(\tau) = \int_{-\infty}^{\infty} \phi(x) \left\{ 1 - \tau \phi(x) + \frac{\tau^2}{2} \phi^2(x) - \cdots \right\} dx = \sum_{n=0}^{\infty} \frac{(-\tau)^n}{n!} \int_{-\infty}^{\infty} \phi^{n+1}(x) dx
$$

and since

$$
\phi^k = \pi^{-k/2} e^{-kx^2} \quad \text{and} \quad \int_{-\infty}^{\infty} e^{-kx^2} dx = \sqrt{\frac{\pi}{k}}
$$

we have

$$
\eta(\tau) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\pi^{n/2} n! \sqrt{n+1}} \tau^n
$$

Explicitly, the first few terms are

$$
\eta(\tau) \approx 1 - 0.39894228 \tau + 0.09188815 \tau^2 - 0.01496559 \tau^3 + 0.00188801 \tau^4 - \cdots
$$