TODAY

- GALILEO
- Planetary Motion
- TYCHO BRAHE'S OBSERVATIONS
- Kepler's LAWS

Galileo

First telescopic astrǫnomical observations

- First use of telescope for astronomy in 1609
- 400 years ago!

Ptolemaic View of Venus

Copernican View of Venus

Galileo's observations of phases of Venus proved that it orbits the Sun and not Earth.

$\alpha=58^{\circ}$

$\alpha=24^{\circ}$
 size of Venus depend on elongation

$$
\alpha=42^{\circ}
$$

$\alpha=15^{\circ}$
$\alpha=10^{\circ}$

Competing Cosmologies

Geocentric

Ptolemaic
Earth at center
The sun is the source of light in both models

Explains

- Motion of Sun
- Motion of Moon
- Solar and Lunar Eclipses
- Phases of Moon

Heliocentric

Copernican
Sun at center

- Motion of Sun
- Motion of Moon
- Solar and Lunar Eclipses
- Phases of Moon

Retrograde Motion
Needs epicycles \quad Consequence of Lapping nicer
Inferiority of Mercury \& Venus
Must tie to sun
Interior to Earth's Orbit nicer
Predicts

- No parallax $\sqrt{ }$
- Venus: crescent phase only X
- Parallax X
- Venus: all phases \checkmark

Heliocentric Cosmology

- Provides better explanation for
- Retrograde motion
- proximity of Mercury and Venus to the Sun
- Provides only explanation for
- Phases of Venus
- Angular size variation of Venus
- What about parallax?

How did Galileo solidify the Copernican revolution?

Galileo (1564-1642) overcame major objections to the Copernican view. Three key objections rooted in the Aristotelian view were:

1. Earth could not be moving because objects in air would be left behind.
2. Noncircular orbits are not "perfect" as heavens should be.
3. If Earth were really orbiting Sun, we'd detect stellar parallax.

Overcoming the first objection (nature of motion):

Galileo's experiments showed that objects in air would stay with a moving Earth.

- Aristotle thought that all objects naturally come to rest.
- Galileo showed that objects will stay in motion unless a force acts to slow them down (law of inertia).

Galileo's telescopic discoveries

- Stars in the Milky Way
- Mountains on the Moon
- Sun spots (celestial spheres NOT perfect)
- Rings of Saturn (barely resolved)
- Moons of Jupiter ("Medicean stars")
- Earth NOT center of all revolution
- Phases of Venus
- Good test of geocentric hypothesis

Jupiter and moons

Galilean moons

(from Galileo spacecraft!)

NASA

Letter from Galileo to Prince of Venice reporting the discovery of Jupiter's moons...

Fig. 4.17
Obieruationy Irwitare
$O * *$

| 90. moner $* *$ |
| :--- | :--- | :--- |
| $2 \cdot x 6 n: \quad O * * *$ |

3.mont $O * *$
$3 \cdot 40.5 . * O *$
4 mane? $* O * *$

"Medician stars"

Overcoming the second objection (heavenly perfection):

- Tycho's observations of comet and supernova already challenged this idea.
- Using his telescope, Galileo saw:
- Sunspots on Sun ("imperfections")
- Mountains and valleys on the Moon (proving it is not a perfect sphere)

Heavenly spheres NOT perfect

Even the sun has spots!

Overcoming the third objection (parallax):

- Tycho thought he had measured stellar distances, so lack of parallax seemed to rule out an orbiting Earth.
- Galileo showed stars must be much farther than Tycho thought - in part by using his telescope to see that the Milky Way is countless individual stars.
\checkmark If stars were much farther away, then lack of detectable parallax was no longer so troubling.

Galileo Galilei

In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun.

His book on the subject was removed from the Church's index of banned books in 1824.

Galileo was formally vindicated by the Church in 1992.

Tycho Brahe

the last great naked-eye observer

1546-1601

Tycho Brahe

© 2005 Pearson Education, Inc., publishing as Addison Wesley

- Brahe compiled the most accurate (one arcminute) naked eye measurements ever made of planetary positions.
- He still could not detect stellar parallax, and thus still thought Earth must be at the center of the solar system (but recognized that other planets go around Sun).

TYCHONIC SYSTEM

Johannes Kepler (1571-1630)

- Kepler analyzed Brahe's data
- Kepler first tried to match Tycho's observations with circular orbits.
- But an 8-arcminute discrepancy led him eventually to ellipses.
"If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy."

Kepler's Laws of planetary motion

Kepler's First Law: The orbit of each planet around the Sun is an ellipse with the Sun at one focus.

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Not very elliptical!

- As in the previous slide, orbits are often shown as very elliptical so that you get the idea
- But in reality, the orbits of the planets are quite close to circular!
- Can you tell that the orbits at the right are not circles?

An ellipse is the shape that is equidistant from two foci. The eccentricity of an ellipse depends on the ratio of the long and short axes. Half of the long axis is the semimajor axis, a.

An ellipse looks like an elongated circle. Indeed, a circle is a special case of an ellipse where the two foci qyerlap.

Objections to Kepler

Which of the following might have been an objection to Kepler's first law?
A. What's at the other focus?
B. The law doesn't fit observations
C. Ptolemy rules, Kepler drools!
D. The law of gravity predicts circles
E. I don't know

Kepler's Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times.

Perihelion: point in orbit
closest to the sun
 point in orbit furthest from the sun

This means that a planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun.

Kepler's Third Law

More distant planets orbit the Sun at slower average speeds, obeying the relationship

$$
\mathrm{P}^{2}=\mathrm{a}^{3}
$$

$P=$ orbital period in years $a=$ distance from Sun in AU (semi-major axis of orbit's ellipse)

Earth: $\mathbf{P}=1$ year, $\mathbf{a}=1 \mathrm{AU}$

Kepler's Third Law

- A simple example: Imagine an asteroid orbiting the Sun with a semimajor axis of 4 AU

$$
\begin{aligned}
& \mathrm{P}^{2}=\mathrm{a}^{3} \\
& \mathrm{P}^{2}=4^{3} \\
& \mathrm{P}^{2}=64 \\
& \mathrm{P}=64^{1 / 2} \\
& \mathrm{P}=8 \mathrm{yr}
\end{aligned}
$$

Kepler's Third Law

- What about the other way around? Suppose that we see an object orbiting the Sun with a period of $1 / 8 \mathrm{yr}$

$$
\begin{aligned}
& \mathrm{P}^{2}=\mathrm{a}^{3} \\
& (1 / 8)^{2}=\mathrm{a}^{3} \\
& 1 / 64=\mathrm{a}^{3} \\
& \mathrm{a}=(1 / 64)^{1 / 3} \\
& \mathrm{a}=(1 / 4) \mathrm{AU}
\end{aligned}
$$

Kepler's Third Law

- Now your turn: Mercury orbits the Sun with a period $\mathrm{P}=0.24$ year. What is its semimajor axis in AU?

Kepler's Third Law

- Mercury: $\mathrm{P}=0.24$ year

$$
\begin{gathered}
P^{2}=a^{3} \\
a=P^{2 / 3} \\
a=(0.24)^{2 / 3} \\
a=0.39 \mathrm{AU}
\end{gathered}
$$

Kepler's Third Law

- Another example: Jupiter orbits the Sun with a semimajor axis $\mathrm{a}=5.2 \mathrm{AU}$. What is its orbital period in years?

Kepler's Third Law

- A worked example: Jupiter: $\mathrm{a}=5.2 \mathrm{AU}$

$$
\begin{gathered}
P^{2}=a^{3} \\
P=a^{3 / 2} \\
P=\sqrt{(5.2)^{3}} \\
P=11.9 \text { years }
\end{gathered}
$$

Graphical version of Kepler's Third Law

\mathbf{a}^{3}

d

- Kepler's Laws:

1. The orbit of each planet is an ellipse with the Sun at one focus.
2. As a planet moves around its orbit it sweeps out equal areas in equal times.
3. More distant planets orbit the Sun at slower average speeds: $p^{2}=a^{3}$.
