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ABSTRACT

The discovery of two neutron stars with gravitational masses M2»  has placed a strong lower limit on the
maximum mass of nonrotating neutron stars, and with it a strong constraint on the properties of cold matter beyond
nuclear density. Current upper mass limits are much looser. Here, we note that if most short gamma-ray bursts are
produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass
limit is constrained tightly. If the rotation of the merger remnant is limited only by mass-shedding (which seems
probable based on numerical studies), then the maximum gravitational mass of a nonrotating neutron star is

M2 2.2» -  if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in
Galactic double neutron star systems. These limits would be increased by ∼4% in the probably unrealistic case that
the remnants rotate at ∼30% below mass-shedding, and by ∼15% in the extreme case that the remnants do not
rotate at all. Future coincident detection of short gamma-ray bursts with gravitational waves will strengthen these
arguments because they will produce tight bounds on the masses of the components for individual events. If these
limits are accurate, then a reasonable fraction of double neutron star mergers might not produce gamma-ray bursts.
In that case, or in the case that many short bursts are produced instead by the mergers of neutron stars with black
holes, the implied rate of gravitational wave detections will be increased.
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1. INTRODUCTION

The state of cold matter beyond nuclear density cannot be
resolved strictly with laboratory experiments, and nuclear theories
diverge strongly in their predictions for such matter. Thus
astronomical observations are sought for guidance. Important
constraints were obtained from the discovery of stars with
gravitational masses of M M1.97 0.04=   (PSR J1614-2230;
Demorest et al. 2010) and M M2.01 0.04=   (PSR J0348
+0432; Antoniadis et al. 2013). Radius measurements would be
helpful, but current estimates are dominated by systematic errors
although hope exists for future X-ray and gravitational wave
measurements (see Miller 2013 for an extensive discussion). It
would also be useful to have an upper limit to the maximum
gravitational masses of nonrotating stars, in addition to the
current M M2max   lower limit (note that PSR J0348+0432
has a spin period of 39ms, Antoniadis et al. 2013, which is
long enough compared to the ∼1ms minimum that for our
purposes this star rotates slowly). However, the most rigorous
existing upper limits are not very restrictive: Rhoades & Ruffini
(1974) found M M3.2max  , and Kalogera & Baym (1996)
performed an updated treatment that found M M2.9max  ,
where the differences depend primarily on the density up to
which we believe we know the equation of state (EOS) of cold
matter.

Ongoing observations of short gamma-ray bursts, and recent
theoretical considerations of their mechanism, might provide a
route to tighter upper limits on the maximum mass. Short
gamma-ray bursts have long been thought to be most probably
caused by the merger of either two neutron stars or a neutron
star and a black hole (see Berger 2014 for a recent review).
From the standpoints of energetics and timescales other
candidates exist, such as the accretion-induced collapse of a
white dwarf followed by magnetar-like rapid spindown (e.g.,
Dar et al. 1992; Yi & Blackman 1997; Metzger et al. 2008).
However, in addition to the burst rate being roughly consistent

with the expected compact object merger rate (e.g., Fong
et al. 2012; Wanderman & Piran 2015), and magnetar models
being disfavored by the lack of confirmed radio transients
(Metzger et al. 2015), the merger picture has received recent
support from estimates of the spatial offsets of bursts from their
most likely galactic hosts (Belczynski et al. 2006; Fong
et al. 2010; Church et al. 2011; Fong & Berger 2013; Behroozi
et al. 2014). These offsets are broadly consistent with
expectations based on the supernova recoil that accompanies
the births of neutron stars and black holes, and on the time
needed after formation for the binary to coalesce due to the
emission of gravitational waves.
The compact object coalescence model for short gamma-ray

bursts has been explored numerically and analytically with
progressively greater fidelity over the last several years.
Observations of afterglow spectral changes characteristic of
jet breaks imply that short bursts, like their long counterparts,
have large bulk Lorentz factors 100G > (Krolik & Pier 1991;
Fenimore et al. 1993; Baring & Harding 1997). Thus the jets
that we see from short bursts must avoid being loaded with too
many baryons, because this would slow down the jet (Shemi &
Piran 1990) and would delay and lengthen the burst. If the
compact objects are a black hole and a neutron star, it is
believed that this happens automatically because the orbital
axis will naturally be nearly free of baryons due to the
existence, from the beginning, of an event horizon in the
system.
However, if the compact objects are both neutron stars, then

contamination of the jet by baryons is possible. Murguia-
Berthier et al. (2014) argue that in order to produce the
observed high Lorentz factors, the merger remnant must
collapse within no more than 100 ms after the initial merger,
otherwise baryons driven outwards by interactions with
neutrinos would overload the jet and cause the burst to last
longer than is typical for short gamma-ray bursts (see also
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Rosswog & Ramirez-Ruiz 2002). In this sense, it is similar to
the argument that the duration of a long gamma-ray burst is
comparable to or larger than the time needed for the jet to
escape the envelope of the massive star whose collapse caused
the burst. For an alternate view see the “time-reversal” scenario
of Ciolfi & Siegel (2015), who suggest that delayed collapse of
a uniformly rotating star can explain both the prompt gamma-
ray emission and the occasional 10 102 5- s X-ray emission that
follows; note, however, that Margalit et al. (2015) argue that
the collapse of a uniformly rotating star will not produce a disk
and therefore will not generate a powerful jet. More work is
clearly required.

If this picture is correct and if most short gamma-ray bursts
indeed come from mergers of two neutron stars rather than
from the merger of a neutron star and a black hole, then we can
infer an upper limit to the masses of nonrotating neutron stars.
The essence of the idea, which we elaborate in Section 2, is that
EOSs that predict large maximum masses for nonrotating stars
also predict that the combined mass of two neutron stars can be
supported stably in a uniformly rotating configuration, which
would mean that short gamma-ray bursts are not produced.3

Assuming that the double neutron star systems we see in our
Galaxy are representative of the population that produces short
gamma-ray bursts, we show that this leads to tight constraints
on the maximum mass. We find that if the uniform rotation of
merged remnants is limited only by mass-shedding (which is
consistent with published neutron star merger simulations) then
the maximum gravitational mass for nonrotating stars is

M2 2.2» - , depending on the masses of the double neutron
stars that produce gamma-ray bursts and somewhat on the EOS
class that we consider. Although remnant rotation at the mass-
shedding limit is consistent with all current simulations, we
also consider more slowly rotating remnants, which are
conceivable if a large fraction of the angular momentum is
removed from the system very soon after merger. In the
extreme case that the remnant has no angular momentum our
upper mass limits are increased by ∼15%.

These tight limits would have important implications for
cold matter beyond nuclear density. Depending on the range of
masses of neutron stars in mergers, this could also imply that a
fair fraction of mergers do not lead to short gamma-ray bursts.
This raises the question of what form their still-large energy
release would take. It also implies that the merger rates inferred
from short gamma-ray bursts need to be increased. This would
increase the likely merger detection rates for ground-based
gravitational wave detectors such as Advanced LIGO,
Advanced Virgo, and KAGRA (Dooley et al. 2015).

If instead short gamma-ray bursts are produced by the
coalescence of a neutron star with a black hole, then our
argument does not apply and we therefore cannot use this
argument to place an upper limit on the maximum mass of a
nonrotating neutron star. This is because, in that case, an event
horizon already exists and the jet funnel will therefore
presumably already be clean. The news would then be even
better for ground-based gravitational wave detectors, because
given that black holes are more massive than neutron stars, the
signal produced will be stronger and thus visible to greater
distances than the signal from a double neutron star merger.
Therefore, for a given rate of short gamma-ray bursts per

volume, the detection rate will be significantly greater than for
double neutron star mergers.
In Section 2 we discuss our assumptions and method of

analysis. In Section 3 we give our results. We motivate the
parametrized forms of our EOSs and the allowed ranges for
those parameters, and then give the mass limits that result. We
finish in Section 4 by discussing how future electromagnetic
observations of gamma-ray bursts that are also detected with
gravitational wave instrumentation can make our results more
rigorous. In particular, we show that even if only the chirp
mass, rather than both masses independently, can be measured,
the uncertainty about the separate masses has only a small
effect on our constraints.

2. METHODS

Our primary tool for analysis is the publicly available
Rotating Neutron Star (rns) code developed by Stergioulas &
Friedman (1995). This is a flexible code that computes the
structure and external spacetime of an axisymmetric, uniformly
rotating star for a given EOS. We have modified the code
slightly so that for a given EOS it can output (1) the maximum
gravitational mass for a nonrotating star, (2) the baryonic rest
mass corresponding to a given gravitational mass for a
nonrotating star, and (3) the maximum baryonic rest mass for
a uniformly rotating configuration, which is limited by either
mass-shedding alone or, in addition, by a limit on the ratio T W
of the rotational kinetic energy to the gravitational binding
energy (note that T W at mass shedding typically ranges from
∼0.1 for very soft EOS to ∼0.15 for very stiff EOS; see, e.g.,
Table 5 of Cook et al. 1994). One way in which a threshold on
T W could be relevant is if the merged remnant develops a
nonaxisymmetric instability, because in principle such non-
axisymmetries could lead to the emission of gravitational
waves that would reduce T W to the threshold value. However,
treatments of relativistic fluids suggest that the threshold value
is T W 0.2> for realistic neutron star compactnesses (Shapiro
& Zane 1998; Gondek-Rosińska & Gourgoulhon 2002), which
is well above the mass-shedding limit. Thus secular instabilities
are not likely to be important, so we consider T W thresholds
only as a way to determine the effect on our limits of, e.g.,
rapid angular momentum loss due to magnetic braking.
We have tested our implementation of the code by comparing

our answers to (1)–(3) above with those given in Cook et al.
(1994) for several tabulated EOSs and in Read et al. (2009) for
several parametrized approximations to other EOSs. We find
agreement to better than about 1% in all cases except for the very
soft EOSs F and G used in Cook et al. (1994); these EOSs are
ruled out by the existence of neutron stars with gravitational
masses M2» . We note that for most of the EOSs listed in Cook
et al. (1994), the sound speed becomes superluminal
(c dP d cs

2 2r= > ) above some energy density that is usually
less than the central energy density for the maximum mass
rotating and nonrotating configurations. If we impose a c cs =
upper limit then the maximum masses often decrease signifi-
cantly: for example, for EOS UU, the maximum gravitational
mass for a nonrotating star drops from M M2.20max =  to

M2.06  and the maximum baryonic rest mass for a uniformly
rotating star drops from M M3.12bary,rot,max =  to M2.94 .
Our limits are conservative in the sense that we assume that

the remnant is cold, and that it rotates uniformly rather than
differentially. A hot remnant can support more mass than a cold
remnant (see, e.g., the recent treatment in Kaplan et al. 2014),

3 As we were performing the work for this paper we learned that a similar
idea for limiting neutron star maximum masses, with somewhat different
methodology, was being prepared by Fryer et al. (2015).
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and differential rotation can support more mass than uniform
rotation (e.g., Baumgarte et al. 2000). However, we expect that
temperatures comparable to the Fermi temperature 1012~ K,
which are required to provide significant extra support, will
exist for at most an extremely short time because neutrino
emission will remove the energy efficiently. We also expect, as
suggested by Shapiro (2000), that internal magnetic fields will
be amplified rapidly enough by differential motion that the
angular momentum will be redistributed into a state of uniform
rotation. If either of these assumptions is incorrect then the
upper limit to neutron star masses will be lowered somewhat.
Our upper limit would also be lowered if some of the baryonic
mass in the two stars ends up in a disk or outflow rather than as
part of the merged remnant, although in current merger
simulations the escaping mass typically amounts to only

Mfew 10 2´ -
 (e.g., Shibata & Uryu 2000; Shibata

et al. 2003; Duez et al. 2004; Liu et al. 2008; Kiuchi
et al. 2009; Rezzolla et al. 2010; Fan & Wei 2011; Giacomazzo
et al. 2013; Bernuzzi et al. 2014; Dietrich et al. 2015; Kastaun
& Galeazzi 2015).

Our assumptions might not be conservative if the dynamics
of neutron star mergers are such that the remnant rotates at a
rate less than the mass-shedding limit for the remnant. Current
simulations (e.g., Bernuzzi et al. 2014; Dietrich et al. 2015;
Kastaun & Galeazzi 2015) suggest that the total angular
momentum of the remnant plus disk and outflows does exceed
the mass-shedding limit, so we consider this our standard case.
However, if the rotation limit is tighter, less mass can be
supported by the spinning remnant than in our assumptions, so
a larger range of EOSs would satisfy our criterion for short
gamma-ray bursts, and hence the maximum allowed gravita-
tional mass for a nonrotating star would be larger than the mass
we derive in our standard analysis. Our mass limit would also
be increased if the remnant has a strong enough poloidal
magnetic field (either initially, or developed via, e.g., a dynamo
induced by differential rotation) that it spins down significantly
during the ∼0.1 s allowed by the argument of Murguia-Berthier
et al. (2014). This would require a poloidal field with an
extremely large characteristic surface strength of at least
B few 1016~ ´ G. To take these possibilities into account
we also explore the mass limits that come from the assumption
that (as an arbitrary, round number) T W 0.1= limits the
rotation, and the mass limits that would apply in the extreme
case that the remnant is nonrotating.

Our method is as follows.

1. Start with an assumed EOS and two neutron stars,
which we assume to be nonrotating (because the fastest-
spinning neutron star in a double neutron star system
has a frequency of only 44 Hz Burgay et al. 2003 and
tidal torques will not spin the stars up significantly even
near merger Bildsten & Cutler 1992; Kochanek 1992).
Let the gravitational masses be M1 and M2, and let their
corresponding baryonic rest masses for the chosen EOS
be Mbary,1 and Mbary,2. We investigate three pairs of
masses: M M1.251 =  and M M1.352 =  (comparable
to PSR J0737-3039A, B, which is the the lightest
double neutron star pair yet discovered Burgay
et al. 2003; Lyne et al. 2004); M M M1.351 2= = 
(comparable to the average gravitational mass of
double neutron stars discovered in our Galaxy, and
similar to the systems PSR B1534+12 Stairs et al. 2002

and PSR B2127+11C Jacoby et al. 2006); and
M M1.351 =  and M M1.452 =  (comparable to PSR
B1913+16, which is the heaviest double neutron star
pair yet discovered Taylor 1992; Weisberg et al. 2010).
See Kiziltan et al. (2013) for a recent summary of the
masses in double neutron star systems.

2. If, when they merge, the stars produce a gamma-ray
burst, then by the logic of Murguia-Berthier et al. (2014)
the remnant must collapse quickly to form a black hole.
Thus the baryonic rest mass Mrem,bary of the remnant must
exceed the stable limit of a uniformly rotating neu-
tron star.

3. We assume that M M Mrem,bary bary,1 bary,2= + , which is
the maximum possible. Any matter that goes into an
outflow or a disk that lasts for more than 0.1 s will reduce
the remnant mass and strengthen our argument.

4. We compare Mrem,bary with the maximum baryonic rest
mass Mbary,rot,max that can be sustained by a uniformly
rotating star for the assumed EOS. The rotation is limited
by either (a) mass-shedding, or (b) a limit on T W ,
whichever is more restrictive. Our primary results are
based on (a), which we believe to be the most realistic
case, but we also explore T W 0.1= and T W 0=
(nonrotating).

5. If M Mbary,rot,max rem,bary< , then the remnant collapses and
the EOS is viable. For this EOS we can also compute the
maximum gravitational mass Mmax for a nonrotating star.

6. We therefore search the parameter space in our EOSs to
find the largest Mmax that is viable by our short gamma-
ray burst criterion. This is the number we report.

3. RESULTS

3.1. Parametrized EOSs

The neutron Fermi momentum in pure neutron matter at
densities below twice the nuclear saturation density (n n2 s< ,
where n 1.6 10 cms

38 3= ´ - ; the corresponding mass density
is m n 2.7 10 g cms n s

14 3r = = ´ - ) is less than ∼420MeV/c.
At n n2 s= , two neutrons with opposite momenta on the top of
the Fermi sphere have a total energy of about 320MeV (in the
lab frame) or 160MeV (in the center of mass frame). This is
barely above the pion production threshold of 140 MeV» and
indicates that a treatment of dense neutron matter based on
neutron degrees of freedom interacting through a potential
should be adequate. The character of interactions between the
nucleons can be inferred from elastic nucleon–nucleon
scattering data and the spectroscopy of light nuclei (A 20⩽ ).
Modern many-body methods, whether computational or
analytical, can then be used to infer the zero temperature
EOS. This program has been carried out in the last few years
and represents an important step toward an understanding of
dense matter from first principles, at least at the low end of
densities relevant to neutron stars.
There are two versions in the literature of the program

sketched above. The first one (Hebeler & Schwenk 2010;
Hebeler et al. 2010) attempts to describe the nucleon–nucleon
interaction using effective field theory ideas (Weinberg 1991;
Beane et al. 2000; Bedaque & van Kolck 2002; Phillips 2002;
Epelbaum & Hammer 2009) to extract the nucleon–nucleon
potential from quantum chromodynamics. In this approach
there is a systematic expansion of the interaction in powers of
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the momentum and pion masses and uncertainties can be
quantified a priori. Three-body forces appear as a small but
important effect. Unfortunately, this approach describes the
nucleon–nucleon phase shifts up to relatively small momentum
and is adequate only for densities below nuclear saturation.

A second approach is more useful for our purposes (Gandolfi
et al. 2012, 2014), and it forms the basis for our primary
parametrized EOS, which we call EOS1. In this approach,
phenomenological nucleon–nucleon potentials are fit to
nucleon–nucleon elastic scattering data. These potentials
describe the phase shifts well up to energies around 600MeV
(in the lab frame). Two-nucleon potentials are, however, not
enough to describe matter even below nuclear saturation
density. Effective theory arguments as well as studies of light
nuclei demonstrate that three-body forces are required. The
importance of the three-body forces increases with density and
is substantial at n n2 s= . Some components of the three-body
force can be extracted by fitting light nucleus energy levels.
However, in neutron matter, unlike in nearly symmetric matter,
only the isospin-3/2 channel is relevant, so the three-body
components that are derived from light nuclei are not the
dominant ones in neutron matter. Instead, Gandolfi et al.
(2012, 2014) used a variety of three-body forces with differing
functional forms and ranges varying over a factor two around
the pion Compton wavelength, where the strength of each force
was fixed so that the symmetry energy lies within the
empirically observed range (Tsang et al. 2012). These
interactions were used to obtain the EOS using the auxiliary
field Green’s function Monte Carlo method (Schmidt &
Fantoni 1999). The errors arising from the Monte Carlo and
infinite volume extrapolation are negligible for our purposes.
The three-body force is, then, the largest source of uncertainty
about the neutron matter EOS at densities below n2 s.

The results of Gandolfi et al. (2012, 2014) are well fit with
the convenient parametrization

n n m a n n b n n( ) ( ) ( ) (1)n s s= é
ëê + + ù

ûú
a b

for the mass–energy density ϵ as a function of the number density
n. The parameters a and α depend primarily on the two-body
force and are well constrained by scattering data to lie in the
ranges a12.6 MeV 13.0 MeV< < and 0.47 0.50a< < . The
parameters b and β are more sensitive to the three-body force; in
the analysis of Gandolfi et al. (2012, 2014) they vary over the
ranges b3.2 MeV 5.2 MeV< < and 2.1 2.5b< < .4 How-
ever, in order to be conservative, we will present results obtained
by doubling the uncertainty in these parameters. Thus the ranges
we search are a12.4 MeV 13.2 MeV< < , 0.45 0.52a< < ,

b2.2 MeV 6.2 MeV< < , and 1.9 2.7b< < .
For EOS1 we adopt the EOS given above to a threshold rest

mass density thresh,1r , where we explore the range
1.7 2s sthresh,1r r r< < . Between thresh,1r and thresh,2r (which
we do not constrain except to require that it exceed thresh,1r ) we
assume a constant sound speed cs that we allow to be anywhere
between c c 2s = and c cs = (the low-density EOS in
Equation (1) is itself never acausal). We assume that c cs =
above thresh,2r because the central mass–energy density of a
maximum mass nonrotating star is greater than that of a

maximum mass uniformly rotating star (compare, e.g., the
central densities of the nonrotating stars in Table 4 of Cook
et al. 1994 with the central densities of the rotating stars in
Table 5 of Cook et al. 1994). Therefore a transition above some
density to the hardest possible EOS can increase the maximum
mass of a nonrotating star without affecting the maximum mass
of a uniformly rotating star.
The class of EOSs included in EOS1 is very large and was

designed with the objective of maximizing the maximum non-
rotating mass while allowing for short gamma-ray bursts to
follow mergers. Still, it does not include some possibilities that,
while not favored, are not excluded by hard evidence. The
calculations leading to the low density part of the EOS1 assume
that nucleons (and electrons and muons) are the only relevant
degrees of freedom at densities below n1.7 s. This expectation
can be frustrated if a pion condensate (Migdal 1978), or
hyperons, become important at these low densities. EOSs with
any extra degrees of freedom besides nucleons tend to be too
soft to support a maximum non-rotating mass of M2  but the
possibility remains that the correct EOS is softer than EOS1 at
n ns< but stiffens quickly at higher densities. A similar
situation would also be obtained in the even more unlikely
possibility that a transition to quark matter occurs at densities
below n1.7 s (Madsen 1999; Alford et al. 2008). Finally, a very
different scenario arises if strange quark matter is the true
ground state of matter at arbitrarily low densities. In this case,
the low-density EOS would have a very different form from
EOS1 (Bodmer 1971; Witten 1984) and our results would not
apply at all.
Our secondary parametrized EOS, which we call EOS2, is a

slight modification of the piecewise polytrope introduced by
Read et al. (2009). EOS2 represents the pressure as a function
of density with four parameters 0r , 1G , 2G , and 3G :

P 2.44034 10 g cm

2.44034 10 g cm

3.78358 10 g cm

3.78358 10 g cm

2.6278 10 g cm

3.594 10 dyn cm 2.6278 10 g cm

10 g cm

10 g cm

10 g cm

10 g cm .

(2)

1.58425 7 3

1.28733 7 3

11 3

0.62223 11 3

12 3

13 2 12 3

1.35692
0

0
14.7 3

14.7 3

15 3

15 3

1

2

3

r r

r r

r r

r r r

r r r

r

r

r r

µ < ´

µ ´ <

< ´

µ ´ <

< ´

= ´ ´

´ < <

µ < <

µ

< <

µ <

-

-

-

-

-

- -

G -

G -

-

G -

The normalization in the 2.6278 10 g cm12 3
0r r´ < <-

range is taken from Table II of Read et al. (2009); note that
their table lists the normalization divided by c2.
We impose the additional limitation that if there is any density

causr at which these expressions would predict that the EOS
becomes acausal above some density causr , we set c cs = at

causr r> (see Ellis et al. 2007 for a discussion of the causality
limit). That is, we do not constrain the parameter space
( , , , )0 1 2 3r G G G based on the requirement of causality; instead,
if a given combination predicts c cs > above some density, we
set the sound speed to be equal to c above that density. This

4 There is a strong correlation between the parameters b and β that further
constrains the set of EOSs. In the spirit of being as conservative as possible we
will neglect this correlation in our work.
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approach generalizes somewhat the EOS of Read et al. (2009),
and is consistent with our philosophy of considering as broad
a set of EOSs as possible. The prefactors for the pressure in
each density range are set by pressure continuity at each of
the density boundaries, which are anchored by the pressure
in the 2.6278 10 g cm12 3

0r r´ < <- range, and all the
densities are measured in g cm−3. The ranges that we search in
the parameters are M GM c(1 8) 10 ( )0

4 2 3r = - ´ =-
 

(1 8) 6.173 10 g cm13 3- ´ ´ - ; 1.5 51G = - ; 1 52G = - ; and
1 53G = - .

3.2. Mass Limits

We use Powell’s direction set method (Powell 1964) to
maximize the maximum gravitational mass of a nonrotating
star over the parameters in each of our EOS models. For both
EOSs, the maximum mass is nearly unimodal over the
parameter space, which makes searches relatively smooth and
reproducible.

We display our results in Figure 1. For each of the three
combinations of gravitational mass M M(1.25 , 1.35 )  ,

M M(1.35 , 1.35 )  , and M M(1.35 , 1.45 )  we show the
mass limits we obtain for EOS1 and EOS2 and for different
rotation limits: mass shedding only (no T W limit); the more
restrictive of mass shedding and T W 0.1< ; and a nonrotat-
ing remnant. This figure shows that if short gamma-ray bursts
are produced by mergers of double neutron stars similar to
those we have discovered in the Galaxy and if the remnant is
unstable in a uniformly rotating state, then the limits on the
maximum mass of a nonrotating neutron star are extremely
tight, particularly if mass shedding alone sets the limit on
uniformly rotating merged remnants. We see that the limits
from EOS1 are tighter than the limits from EOS2, because
EOS2 allows greater freedom for the EOS at high densities.
We also see that if low-mass double neutron star mergers
produce short GRBs then the maximum gravitational mass of
a nonrotating neutron star is already known with high
precision.

4. IMPLICATIONS AND SUMMARY

We have shown that if short gamma-ray bursts are produced
when mergers of two neutron stars lead to a rapid collapse to a
black hole, and if the neutron star masses are similar to what we
see in Galactic double neutron star systems, then the maximum
mass of nonrotating neutron stars is constrained tightly from
above as well as from below. This is because if the maximum
mass exceeds our limit, the merger of two neutron stars of the
specified masses will produce an object that remains stable
even after internal angular momentum transport produces
uniform rotation. Thus prompt collapse would not happen; any
collapse would be delayed by at least as long as it would take to
radiate angular momentum from the system.
Much more certain limits on the maximum mass will be

obtained when ground-based gravitational wave detectors see
the gravitational radiation from double neutron star coales-
cences in coincidence with short gamma-ray bursts. This is
because such coincidences will allow us to limit strongly the
total baryonic rest mass of the merger. The smallest such total
mass associated with a successful burst will place the tightest
upper limit on the maximum mass of a nonrotating neutron star.
To determine how tightly we could constrain the total

baryonic rest mass in a merger, we note that the mass-related
quantity that will be most precisely measured from gravita-
tional wave trains is the chirp mass

M M , (3)ch
3 5

tothº

where M M Mtot 1 2º + is the total gravitational mass and

M M M q q(1 )1 2 tot
2 2h º = + is the symmetric mass ratio,

where q M M 11 2º ⩽ is the standard mass ratio. The chirp
mass is essentially estimated by counting gravitational wave
cycles, so for a double neutron star coalescence it will be
estimated to a precision that is typically better than ∼0.1%
given that 103~ cycles are expected in the band of the detectors
(see Berry et al. 2015 for a recent study). Thus we can assume
that Mch will be determined exactly, but we cannot necessarily
assume that the signal will be strong enough to break the
degeneracy and determine both masses independently. We can
invert the equations to find the individual gravitational masses,

Figure 1. Upper limits on the maximum gravitational mass of a nonrotating
star, based on the criterion that to make gamma-ray bursts, double neutron star
mergers must produce an object that collapses when it becomes uniformly
rotating. Red symbols refer to EOS1 and blue symbols refer to EOS2 (see text
for descriptions of these EOSs). The three types of mergers we consider are of
gravitational masses M1.25  and M1.35 ; of M1.35  and M1.35 ; and of

M1.35  and M1.45 , to represent the range of masses in known double
neutron star binaries. Filled squares show the limits obtained when we assume
that the rotation of the merged remnant is limited only by mass shedding,
which is our standard case and which is consistent with existing simulations.
To explore the probably unrealistic situation in which there is very rapid
angular momentum loss from the system, we also consider cases in which there
are stricter angular momentum limits: crosses show the masses obtained when
we assume that the more restrictive of mass shedding or T W 0.1< limit the
rotation of the remnant, and the open symbols are for nonrotating remnants.
The dotted horizontal line shows the maximum currently known gravitational
mass M2.01  for a neutron star. This figure demonstrates that if short gamma-
ray bursts are produced by the merger of double neutron star systems
comparable to the ones we see in our Galaxy, then the upper mass limit for
nonrotating neutron stars is constrained tightly.
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given the unknown mass ratio q:

M q q M

M q q M

(1 )

(1 ) . (4)

1
2 5 1 5

ch

2
3 5 1 5

ch

= +

= +-

Therefore, if we infer a given chirp mass, there will be some
uncertainty in the individual gravitational masses and thus in
the total baryonic rest mass in the merger.

This uncertainty, however, is only a few hundredths of a
solar mass, at least for masses similar to what we see in double
neutron star systems in our Galaxy. This is fundamentally
because neutron star masses are limited from below; for
precisely measured masses the current lower limit is M1.25 ,
but for the sake of argument let us say that the true limit is

M1.2 . Therefore, for a given chirp mass, there is not much
room to change the total baryonic mass. As a specific example,
suppose we consider a merger between stars with gravitational
masses M M1.351 =  and M M1.452 = , in the context of the
parameter combination for EOS1 that maximizes the gravita-
tional mass of a nonrotating star for successful production of
short gamma-ray bursts with these masses. The chirp mass for
this combination is M M1.218ch = , and the total baryonic
rest mass for the two stars combined and this EOS is
M M3.078bary,tot = . If we take the extreme that one of the
stars actually has a gravitational mass of M M1.21 = , then to
keep the same chirp mass it is necessary that M M1.642 = .
The total baryonic rest mass for this combination is then
M M3.136bary,tot = . Thus even for this extreme case the
difference is less than M0.06 . If the lower limit to the
gravitational mass of a neutron star is M1.25  instead of

M1.2  then the maximum total baryonic mass for this case
drops to M3.107 . If the chirp mass is smaller (as it will be if
the gravitational masses of the neutron stars are lower) then the
correction will be even less. We conclude that gravitational
wave measurement of just the chirp mass from a coalescence
coincident with a gamma-ray burst will place strong constraints
on the total baryonic rest mass for a given EOS.

If the maximum mass of a nonrotating neutron star is toward
the high end of what we infer (say, M2.2 ) then mergers
between lower-mass neutron stars will produce a remnant that
will not collapse quickly unless angular momentum is actually
removed from the system rather than redistributed. As we
discussed, this likely requires the production of a very strong
poloidal magnetic field within tens of milliseconds. If this does
not happen in most cases, then many mergers could fail to
produce short gamma-ray bursts; it would be interesting to
know the observed properties of such an event. It would also
suggest that estimates of the gravitational wave detection rate
of double neutron star mergers based on the short gamma-ray
burst event rate are conservative, because only some fraction of
coalescences lead to bursts.

Another possibility is that many short gamma-ray bursts are
actually produced by the coalescence of neutron stars with
black holes rather than neutron stars with neutron stars. The
larger chirp masses of such events means they will be
detectable to greater distances than double neutron star
mergers. Thus for a given observed gamma-ray burst rate per
volume, the gravitational wave detection rate would be
increased by a factor of several.

It is important to note that, although in the context of our
parametrizations an EOS that predicts a mass in excess of our
maximum would not lead to short gamma-ray bursts, the

converse is not necessarily true: a maximum nonrotating
mass below our limit does not guarantee burst viability. For
example, consider a M M1.35 1.45-  merger, and let us use
EOS1 with a = 13.3 MeV, 0.51a = , b = 4.1 MeV, 2.3b = ,

1.85 sthresh,1r r= , c c0.75s = , and 3 sthresh,2r r= , but (unlike in
our standard parametrization) set c c 2s = above thresh,2r .
Then, the maximum gravitational mass of a nonrotating star
is M M2.06max = . This is well below our threshold for

M M1.35 1.45-  mergers with remnants whose spin is
limited only by mass shedding. However, the total baryonic
rest mass of the stars, M3.075 , is less than the maximum

M3.108  that could be supported by a uniformly rotating
star, and therefore a short burst would not occur with this
combination. Thus individual EOSs should be tested against
the short gamma-ray burst criterion using a code such as rns
(Stergioulas & Friedman 1995).
Finally, we note that we find tighter constraints

M M2 2.2max » -  than are reported in the study of Fryer
et al. (2015), who give limits of M2.3 2.4- . We believe that
the primary reason for the difference is that Fryer et al. (2015)
are concerned with the question of whether any significant
fraction of double neutron star mergers will produce short
gamma-ray bursts. Thus they concentrate on the high end of the
neutron star masses that emerge from their population synthesis
calculations, which means that they find larger upper limits
than we find by focusing on three mass categories that we
know exist in the Galaxy.
Again, we emphasize that when ground-based gravitational

wave detectors see bursts with mergers, the lowest mass
example of a successful burst will set the strongest limits on the
maximum mass of a nonrotating neutron star. To that end it will
be helpful to know whether there are any electromagnetic
signatures of rapid collapse that can be identified clearly and
seen from a broader range of directions than the burst itself,
because this would increase the otherwise small fraction of
mergers detected using gravitational waves that can be
evaluated using our argument. For example, it has been
proposed (Metzger & Fernández 2014; Kasen et al. 2015) that
prompt formation of a black hole will lead to nearly isotropic
red emission from disk winds within several days, whereas
delayed formation of a hole will produce bluer emission within
roughly a day. It is also conceivable that there is a signature in
the gravitational wave emission itself of prompt collapse,
although this is likely to be at frequencies 2> kHz where
ground-based detectors are not especially sensitive.
In summary, we show that current models of short gamma-

ray bursts involving double neutron star mergers imply a strong
upper limit to the maximum mass of nonrotating neutron stars.
If some of these bursts come from stars toward the low mass
end of what we see in our Galaxy, then with the parametrized
EOSs we have explored the limit could be close to
M M2max » . If the bursts only come from neutron star
binaries near the high end of our Galactic sample then the
maximum could be M M2.2max » , but in that case short
bursts are likely to occur only for high-mass neutron star
binaries, which means that gravitational wave detection rates
inferred from burst rates need to be increased. In either case,
direct detection of gravitational waves from neutron star
binaries along with coincident gamma-ray bursts will constrain
strongly the properties of cold matter beyond nuclear density.

6

The Astrophysical Journal, 808:186 (7pp), 2015 August 1 Lawrence et al.



We thank Chris Belczynski, Edo Berger, Fred Lamb, Ilya
Mandel, Brian Metzger, and Enrico Ramirez-Ruiz for helpful
discussions. The numerical computations reported in this paper
were carried out on the Deepthought cluster at the University of
Maryland. P.F.B. acknowledges support from the U.S. Dept. of
Energy through grant number DEFG02-93ER-40762.

REFERENCES

Alford, M. G., Schmitt, A., Rajagopal, K., & Schäfer, T. 2008, RvMP,
80, 1455

Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Sci, 340, 448
Baring, M. G., & Harding, A. K. 1997, ApJ, 491, 663
Baumgarte, T. W., Shapiro, S. L., & Shibata, M. 2000, ApJL, 528, L29
Beane, S. R., Bedaque, P. F., Haxton, W. C., Phillips, D. R., & Savage, M. J.

2000, arXiv:nucl-th/0008064
Bedaque, P. F., & van Kolck, U. 2002, ARNPS, 52, 339
Behroozi, P. S., Ramirez-Ruiz, E., & Fryer, C. L. 2014, ApJ, 792, 123
Belczynski, K., Perna, R., Bulik, T., et al. 2006, ApJ, 648, 1110
Berger, E. 2014, ARA&A, 52, 43
Bernuzzi, S., Dietrich, T., Tichy, W., & Brügmann, B. 2014, PhRvD, 89,

104021
Berry, C. P. L., Mandel, I., Middleton, H., et al. 2015, ApJ, 804, 114
Bildsten, L., & Cutler, C. 1992, ApJ, 400, 175
Bodmer, A. R. 1971, PhRvD, 4, 1601
Burgay, M., D’Amico, N., Possenti, A., et al. 2003, Natur, 426, 531
Church, R. P., Levan, A. J., Davies, M. B., & Tanvir, N. 2011, MNRAS,

413, 2004
Ciolfi, R., & Siegel, D. M. 2015, ApJL, 798, L36
Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. 1994, ApJ, 424, 823
Dar, A., Kozlovsky, B. Z., Nussinov, S., & Ramaty, R. 1992, ApJ, 388, 164
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., &

Hessels, J. W. T. 2010, Natur, 467, 1081
Dietrich, T., Bernuzzi, S., Ujevic, M., & Bruegmann, B. 2015, PhRvD, 91,

124041
Dooley, K. L., Akutsu, T., Dwyer, S., & Puppo, P. 2015, JPhCS, 610, 012012
Duez, M. D., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. 2004, PhRvD, 69,

104030
Ellis, G. F. R., Maartens, R., & MacCallum, M. A. H. 2007, GReGr, 39, 1651
Epelbaum, E., Hammer, H.-W., & Meißner, U.-G. 2009, RvMP, 81, 1773
Fan, Y.-Z., & Wei, D.-M. 2011, ApJ, 739, 47
Fenimore, E. E., Epstein, R. I., & Ho, C. 1993, A&AS, 97, 59
Fong, W., & Berger, E. 2013, ApJ, 776, 18
Fong, W., Berger, E., & Fox, D. B. 2010, ApJ, 708, 9
Fong, W., Berger, E., Margutti, R., et al. 2012, ApJ, 756, 189
Fryer, C. L., Belczynski, K., Ramirez-Ruiz, E., et al. 2015, arXiv:1504.07605
Gandolfi, S., Carlson, J., & Reddy, S. 2012, PhRvC, 85, 032801
Gandolfi, S., Carlson, J., Reddy, S., Steiner, A. W., & Wiringa, R. B. 2014,

EPJA, 50, 10
Giacomazzo, B., Perna, R., Rezzolla, L., Troja, E., & Lazzati, D. 2013, ApJL,

762, L18

Gondek-Rosińska, D., & Gourgoulhon, E. 2002, PhRvD, 66, 044021
Hebeler, K., Lattimer, J. M., Pethick, C. J., & Schwenk, A. 2010, PhRvL, 105,

161102
Hebeler, K., & Schwenk, A. 2010, PhRvC, 82, 014314
Jacoby, B. A., Cameron, P. B., Jenet, F. A., et al. 2006, ApJL, 644, L113
Kalogera, V., & Baym, G. 1996, ApJL, 470, L61
Kaplan, J. D., Ott, C. D., O’Connor, E. P., et al. 2014, ApJ, 790, 19
Kasen, D., Fernández, R., & Metzger, B. D. 2015, MNRAS, 450, 1777
Kastaun, W., & Galeazzi, F. 2015, PhRvD, 91, 064027
Kiuchi, K., Sekiguchi, Y., Shibata, M., & Taniguchi, K. 2009, PhRvD, 80,

064037
Kiziltan, B., Kottas, A., De Yoreo, M., & Thorsett, S. E. 2013, ApJ, 778, 66
Kochanek, C. S. 1992, ApJ, 398, 234
Krolik, J. H., & Pier, E. A. 1991, ApJ, 373, 277
Liu, Y. T., Shapiro, S. L., Etienne, Z. B., & Taniguchi, K. 2008, PhRvD, 78,

024012
Lyne, A. G., Burgay, M., Kramer, M., et al. 2004, Sci, 303, 1153
Madsen, J. 1999, in Hadrons in Dense Matter and Hadrosynthesis, Vol. 516,

ed. J. Cleymans, H. B. Geyer & F. G. Scholtz (Berlin: Springer), 162
Margalit, B., Metzger, B. D., & Beloborodov, A. M. 2015, arXiv:1505.01842
Metzger, B. D., & Fernández, R. 2014, MNRAS, 441, 3444
Metzger, B. D., Quataert, E., & Thompson, T. A. 2008, MNRAS,

385, 1455
Metzger, B. D., Williams, P. K. G., & Berger, E. 2015, ApJ, 806, 224
Migdal, A. B. 1978, RvMP, 50, 107
Miller, M. C. 2013, arXiv:1312.0029
Murguia-Berthier, A., Montes, G., Ramirez-Ruiz, E., De Colle, F., &

Lee, W. H. 2014, ApJL, 788, L8
Phillips, D. 2002, CzJPh, 52, B49
Powell, M. J. D. 1964, CompJ, 7, 155
Read, J. S., Lackey, B. D., Owen, B. J., & Friedman, J. L. 2009, PhRvD, 79,

124032
Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D., & Font, J. A. 2010, CQGra,

27, 114105
Rhoades, C. E., & Ruffini, R. 1974, PhRvL, 32, 324
Rosswog, S., & Ramirez-Ruiz, E. 2002, MNRAS, 336, L7
Schmidt, K. E., & Fantoni, S. 1999, PhLB, 446, 99
Shapiro, S. L. 2000, ApJ, 544, 397
Shapiro, S. L., & Zane, S. 1998, ApJS, 117, 531
Shemi, A., & Piran, T. 1990, ApJL, 365, L55
Shibata, M., Taniguchi, K., & Uryū, K. 2003, PhRvD, 68, 084020
Shibata, M., & Uryū, K. ō. 2000, PhRvD, 61, 064001
Stairs, I. H., Thorsett, S. E., Taylor, J. H., & Wolszczan, A. 2002, ApJ,

581, 501
Stergioulas, N., & Friedman, J. L. 1995, ApJ, 444, 306
Taylor, J. H. 1992, RSPTA, 341, 117
Tsang, M. B., Stone, J. R., Camera, F., et al. 2012, PhRvC, 86, 015803
Wanderman, D., & Piran, T. 2015, MNRAS, 448, 3026
Weinberg, S. 1991, NuPhB, 363, 3
Weisberg, J. M., Nice, D. J., & Taylor, J. H. 2010, ApJ, 722, 1030
Witten, E. 1984, PhRvD, 30, 272
Yi, I., & Blackman, E. G. 1997, ApJ, 482, 383

7

The Astrophysical Journal, 808:186 (7pp), 2015 August 1 Lawrence et al.

http://dx.doi.org/10.1103/RevModPhys.80.1455
http://adsabs.harvard.edu/abs/2008RvMP...80.1455A
http://adsabs.harvard.edu/abs/2008RvMP...80.1455A
http://dx.doi.org/10.1126/science.1233232
http://adsabs.harvard.edu/abs/2013Sci...340..448A
http://dx.doi.org/10.1086/304982
http://adsabs.harvard.edu/abs/1997ApJ...491..663B
http://dx.doi.org/10.1086/312425
http://adsabs.harvard.edu/abs/2000ApJ...528L..29B
http://arXiv.org/abs/nucl-th/0008064
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://adsabs.harvard.edu/abs/2002ARNPS..52..339B
http://dx.doi.org/10.1088/0004-637X/792/2/123
http://adsabs.harvard.edu/abs/2014ApJ...792..123B
http://dx.doi.org/10.1086/505169
http://adsabs.harvard.edu/abs/2006ApJ...648.1110B
http://dx.doi.org/10.1146/annurev-astro-081913-035926
http://adsabs.harvard.edu/abs/2014ARA&amp;A..52...43B
http://dx.doi.org/10.1103/PhysRevD.89.104021
http://adsabs.harvard.edu/abs/2014PhRvD..89j4021B
http://adsabs.harvard.edu/abs/2014PhRvD..89j4021B
http://dx.doi.org/10.1088/0004-637X/804/2/114
http://adsabs.harvard.edu/abs/2015ApJ...804..114B
http://dx.doi.org/10.1086/171983
http://adsabs.harvard.edu/abs/1992ApJ...400..175B
http://dx.doi.org/10.1103/PhysRevD.4.1601
http://adsabs.harvard.edu/abs/1971PhRvD...4.1601B
http://dx.doi.org/10.1038/nature02124
http://adsabs.harvard.edu/abs/2003Natur.426..531B
http://dx.doi.org/10.1111/j.1365-2966.2011.18277.x
http://adsabs.harvard.edu/abs/2011MNRAS.413.2004C
http://adsabs.harvard.edu/abs/2011MNRAS.413.2004C
http://dx.doi.org/10.1088/2041-8205/798/2/L36
http://adsabs.harvard.edu/abs/2015ApJ...798L..36C
http://dx.doi.org/10.1086/173934
http://adsabs.harvard.edu/abs/1994ApJ...424..823C
http://dx.doi.org/10.1086/171138
http://adsabs.harvard.edu/abs/1992ApJ...388..164D
http://dx.doi.org/10.1038/nature09466
http://adsabs.harvard.edu/abs/2010Natur.467.1081D
http://dx.doi.org/10.1103/PhysRevD.91.124041
http://adsabs.harvard.edu/abs/2015PhRvD..91l4041D
http://adsabs.harvard.edu/abs/2015PhRvD..91l4041D
http://dx.doi.org/10.1088/1742-6596/610/1/012012
http://adsabs.harvard.edu/abs/2014arXiv1411.6068D
http://dx.doi.org/10.1103/PhysRevD.69.104030
http://adsabs.harvard.edu/abs/2004PhRvD..69j4030D
http://adsabs.harvard.edu/abs/2004PhRvD..69j4030D
http://dx.doi.org/10.1007/s10714-007-0479-2
http://adsabs.harvard.edu/abs/2007GReGr..39.1651E
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://adsabs.harvard.edu/abs/2009RvMP...81.1773E
http://dx.doi.org/10.1088/0004-637X/739/1/47
http://adsabs.harvard.edu/abs/2011ApJ...739...47F
http://adsabs.harvard.edu/abs/1993A&amp;AS...97...59F
http://dx.doi.org/10.1088/0004-637X/776/1/18
http://adsabs.harvard.edu/abs/2013ApJ...776...18F
http://dx.doi.org/10.1088/0004-637X/708/1/9
http://adsabs.harvard.edu/abs/2010ApJ...708....9F
http://dx.doi.org/10.1088/0004-637X/756/2/189
http://adsabs.harvard.edu/abs/2012ApJ...756..189F
http://arXiv.org/abs/1504.07605
http://dx.doi.org/10.1103/PhysRevC.85.032801
http://adsabs.harvard.edu/abs/2012PhRvC..85c2801G
http://dx.doi.org/10.1140/epja/i2014-14010-5
http://adsabs.harvard.edu/abs/2014EPJA...50...10G
http://dx.doi.org/10.1088/2041-8205/762/2/L18
http://adsabs.harvard.edu/abs/2013ApJ...762L..18G
http://adsabs.harvard.edu/abs/2013ApJ...762L..18G
http://dx.doi.org/10.1103/PhysRevD.66.044021
http://adsabs.harvard.edu/abs/2002PhRvD..66d4021G
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://adsabs.harvard.edu/abs/2010PhRvL.105p1102H
http://adsabs.harvard.edu/abs/2010PhRvL.105p1102H
http://dx.doi.org/10.1103/PhysRevC.82.014314
http://adsabs.harvard.edu/abs/2010PhRvC..82a4314H
http://dx.doi.org/10.1086/505742
http://adsabs.harvard.edu/abs/2006ApJ...644L.113J
http://dx.doi.org/10.1086/310296
http://adsabs.harvard.edu/abs/1996ApJ...470L..61K
http://dx.doi.org/10.1088/0004-637X/790/1/19
http://adsabs.harvard.edu/abs/2014ApJ...790...19K
http://dx.doi.org/10.1093/mnras/stv721
http://adsabs.harvard.edu/abs/2015MNRAS.450.1777K
http://dx.doi.org/10.1103/PhysRevD.91.064027
http://adsabs.harvard.edu/abs/2015PhRvD..91f4027K
http://dx.doi.org/10.1103/PhysRevD.80.064037
http://adsabs.harvard.edu/abs/2009PhRvD..80f4037K
http://adsabs.harvard.edu/abs/2009PhRvD..80f4037K
http://dx.doi.org/10.1088/0004-637X/778/1/66
http://adsabs.harvard.edu/abs/2013ApJ...778...66K
http://dx.doi.org/10.1086/171851
http://adsabs.harvard.edu/abs/1992ApJ...398..234K
http://dx.doi.org/10.1086/170048
http://adsabs.harvard.edu/abs/1991ApJ...373..277K
http://dx.doi.org/10.1103/PhysRevD.78.024012
http://adsabs.harvard.edu/abs/2008PhRvD..78b4012L
http://adsabs.harvard.edu/abs/2008PhRvD..78b4012L
http://dx.doi.org/10.1126/science.1094645
http://adsabs.harvard.edu/abs/2004Sci...303.1153L
http://arXiv.org/abs/1505.01842
http://dx.doi.org/10.1093/mnras/stu802
http://adsabs.harvard.edu/abs/2014MNRAS.441.3444M
http://dx.doi.org/10.1111/j.1365-2966.2008.12923.x
http://adsabs.harvard.edu/abs/2008MNRAS.385.1455M
http://adsabs.harvard.edu/abs/2008MNRAS.385.1455M
http://dx.doi.org/10.1088/0004-637X/806/2/224
http://adsabs.harvard.edu/abs/2015ApJ...806..224M
http://dx.doi.org/10.1103/RevModPhys.50.107
http://adsabs.harvard.edu/abs/1978RvMP...50..107M
http://arXiv.org/abs/1312.0029
http://dx.doi.org/10.1088/2041-8205/788/1/L8
http://adsabs.harvard.edu/abs/2014ApJ...788L...8M
http://dx.doi.org/10.1103/PhysRevD.79.124032
http://adsabs.harvard.edu/abs/2009PhRvD..79l4032R
http://adsabs.harvard.edu/abs/2009PhRvD..79l4032R
http://dx.doi.org/10.1088/0264-9381/27/11/114105
http://adsabs.harvard.edu/abs/2010CQGra..27k4105R
http://adsabs.harvard.edu/abs/2010CQGra..27k4105R
http://dx.doi.org/10.1103/PhysRevLett.32.324
http://adsabs.harvard.edu/abs/1974PhRvL..32..324R
http://dx.doi.org/10.1046/j.1365-8711.2002.05898.x
http://adsabs.harvard.edu/abs/2002MNRAS.336L...7R
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://adsabs.harvard.edu/abs/1999PhLB..446...99S
http://dx.doi.org/10.1086/317209
http://adsabs.harvard.edu/abs/2000ApJ...544..397S
http://dx.doi.org/10.1086/313124
http://adsabs.harvard.edu/abs/1998ApJS..117..531S
http://dx.doi.org/10.1086/185887
http://adsabs.harvard.edu/abs/1990ApJ...365L..55S
http://dx.doi.org/10.1103/PhysRevD.68.084020
http://adsabs.harvard.edu/abs/2003PhRvD..68h4020S
http://dx.doi.org/10.1103/PhysRevD.61.064001
http://adsabs.harvard.edu/abs/2000PhRvD..61f4001S
http://dx.doi.org/10.1086/344157
http://adsabs.harvard.edu/abs/2002ApJ...581..501S
http://adsabs.harvard.edu/abs/2002ApJ...581..501S
http://dx.doi.org/10.1086/175605
http://adsabs.harvard.edu/abs/1995ApJ...444..306S
http://dx.doi.org/10.1098/rsta.1992.0088
http://adsabs.harvard.edu/abs/1992RSPTA.341..117T
http://dx.doi.org/10.1103/PhysRevC.86.015803
http://adsabs.harvard.edu/abs/2012PhRvC..86a5803T
http://dx.doi.org/10.1093/mnras/stv123
http://adsabs.harvard.edu/abs/2015MNRAS.448.3026W
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://adsabs.harvard.edu/abs/1991NuPhB.363....3W
http://dx.doi.org/10.1088/0004-637X/722/2/1030
http://adsabs.harvard.edu/abs/2010ApJ...722.1030W
http://dx.doi.org/10.1103/PhysRevD.30.272
http://adsabs.harvard.edu/abs/1984PhRvD..30..272W
http://dx.doi.org/10.1086/304142
http://adsabs.harvard.edu/abs/1997ApJ...482..383Y

	1. INTRODUCTION
	2. METHODS
	3. RESULTS
	3.1. Parametrized EOSs
	3.2. Mass Limits

	4. IMPLICATIONS AND SUMMARY
	REFERENCES



