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ABSTRACT

We describe sophisticated new Bayesian analysis methods that make it possible to estimate quickly the masses and
radii of rapidly rotating, oblate neutron stars by fitting oblate-star waveform models to energy-resolved
observations of the waveforms of X-ray burst oscillations produced by such stars. We find that a 25% variation of
the temperature of the hot spot in the north-south direction does not significantly bias estimates of the mass M and
equatorial radius Req derived by fitting a model that assumes a uniform-temperature spot. Our results show that fits
of oblate-star waveform models to waveform data can simultaneously determine M and Req with 1σ uncertainties
≲7% if (1) the starʼs rotation rate is ≳ 600 Hz; (2) the spot center and observerʼs sightline are both within 30 of
the starʼs rotational equator; and (3) 107~ counts are collected during burst oscillations that have a fractional rms
amplitude ≳10%. A fractional amplitude of ∼10% is realistic, and the accepted NICER and proposed LOFT and
AXTAR space missions could collect 107 counts from a single star by combining data from many X-ray bursts from
the star. Uncertainties ≲7% are small enough to improve substantially our understanding of cold, ultradense matter.
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1. INTRODUCTION

A currently unresolved fundamental question in physics and
astronomy is the nature of cold matter at densities above the
saturation density of nuclear matter. Such matter is inaccessible
in the laboratory, but is present in large quantities in the
interiors of neutron stars. Studies of neutron stars can therefore
help determine the properties of such cold, ultradense matter. In
particular, precise, simultaneous determinations of the gravita-
tional mass M and equatorial circumferential radius Req of
several neutron stars with different masses could provide tight
constraints on the equation of state of this matter (see, e.g.,
Lattimer 2007; Lattimer & Prakash 2007; Özel & Psaltis 2009;
Read et al. 2009; Hebeler et al. 2010).

The recent discovery of two neutron stars with masses of
M2»  (Demorest et al. 2010; Antoniadis et al. 2013) has

placed an important lower bound on the stiffness of cold,
ultradense matter, but still allows a wide range of proposed
equations of state, because the radii of these two stars are
unknown. Several methods have been proposed to estimate M
and Req simultaneously by accurately measuring and interpret-
ing the X-ray spectra of neutron stars. However, the estimates
of M and Req made using these methods are currently
dominated by systematic errors (for recent reviews, see Lo
et al. 2013; Miller 2013).

An alternative approach is to determine M and Req by fitting
waveform models to the X-ray oscillations of accretion-
powered pulsars, the thermal X-ray oscillations produced by
some rotation-powered (non-accreting) pulsars, or the X-ray
oscillations observed during some thermonuclear X-ray bursts
from accreting neutron stars. Estimates of M and Req made by
fitting waveform models to observations of the oscillations
produced by accretion-powered X-ray pulsars (see Poutanen &
Gierliński 2003; Poutanen & Beloborodov 2006; Leahy
et al. 2008, 2011; Morsink & Leahy 2011) may encounter
significant systematic errors, because they depend on correctly

modeling the complex, time-dependent thermal and nonthermal
X-ray spectra and radiation beaming patterns of these pulsars,
which are uncertain. For example, significant pulse profile
variability has been seen in the accretion-powered millisecond
pulsar SAX J1808–3658 (Hartman et al. 2008) and other
accretion-powered X-ray pulsars, which could be due to disk-
magnetospheric interactions (Kajava et al. 2011). Such
interactions may produce complex time-varying emission
patterns on the stellar surface (Romanova et al. 2003, 2004).
Estimates of M and Req can also be made by fitting

waveform models to the X-ray oscillations produced by the
heated polar caps of rotation-powered pulsars (see Braje
et al. 2000; Bogdanov et al. 2007, 2008). Existing models give
statistically acceptable fits to the X-ray oscillations of pulsars
such as PSR J0437–4715 (Bogdanov 2013), although the
constraints on M and Req obtained using current data are not
tight. These estimates are likely to have fewer systematic errors
than estimates obtained by fitting the oscillations of accretion-
powered X-ray pulsars, but the temperature structure and
radiation beaming patterns of the polar caps of these pulsars are
uncertain. For example, current treatments assume that the
energy that powers the X-ray emission comes from magneto-
spheric return currents, is deposited deep in the atmosphere,
and propagates outward through a nonmagnetic, pure hydrogen
atmosphere. However, other light element atmospheric com-
positions are equally consistent with the current data (see
Miller 2013 for a discussion).
One of the most promising current methods for determining

M and Req is to fit energy-dependent waveform models to the
X-ray oscillations observed during some thermonuclear X-ray
bursts from some bursting neutron stars (see Strohmayer
et al. 1997; Miller & Lamb 1998; see also Weinberg
et al. 2001). An advantage of this approach is that there is
strong theoretical and observational evidence that the radiation
from the hot spots that are created by thermonuclear burning is
fully thermalized and that the spectra and radiation beaming
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patterns from these spots are fairly well understood (Miller
et al. 2011, 2013; Suleimanov et al. 2012). Simple hot-spot
waveform models provide statistically acceptable descriptions
of the observations of burst oscillations from neutron stars such
as 4U 1636–536 (Artigue et al. 2013), although the constraints
on M and Req that can be derived using currently available data
are not very tight.

A recent study by Lo et al. (2013) analyzed the constraints
on M and Req that could be obtained by fitting model
waveforms to observations of X-ray burst oscillations carried
out using a next-generation large-area X-ray timing instrument
with an effective area ∼10 m2. Lo et al. found that fitting a
standard waveform model to the oscillation produced by a hot
spot located within 10° of the rotational equator can determine
both M and Req with 1σ uncertainties of about 10% if the
fractional rms amplitude is ∼10% and ∼107 counts are
collected from the star. This is a realistic amplitude, and this
many counts could be obtained from a given star by future
space missions, such as the accepted NICER mission
(Gendreau et al. 2012) and the proposed LOFT (Feroci 2012)
and AXTAR (Ray et al. 2011) missions, by combining data
from multiple bursts. If on the other hand the oscillation is
produced by a spot that is located within 20° of the rotational
pole, waveform fitting provides no useful constraints.

Importantly, Lo et al. (2013) demonstrated that fitting
rotating hot spot models to energy-dependent X-ray waveforms
gives results that are robust against several types of systematic
error. In particular, they found that when their standard
waveform model was fit to synthetic waveform data generated
using spot shapes, energy spectra, or surface beaming patterns
different from those assumed in the model, the fits did not
simultaneously produce a statistically good fit, apparently tight
constraints on the stellar mass and radius, and a significant bias
in their inferred values. Thus, waveform models with these
systematic deviations do not produce tight but misleading
constraints.

In their analysis, Lo et al. (2013) used the Schwarzschild
plus Doppler (S+D) approximation (Miller & Lamb 1998;
Poutanen & Gierliński 2003; Viironen & Poutanen 2004) to
speed the computation of synthetic waveform data and model
waveforms. The S+D approximation treats exactly all special
relativistic effects (such as relativistic Doppler boosts and
aberration) produced by the rotational motion of the emitting
gas, but treats the star as spherical and uses the Schwarzschild
spacetime to compute the general relativistic redshift, trace the
propagation of light from the stellar surface to the observer, and
calculate light travel-time effects. The S+D approximation
therefore does not include the effects of stellar oblateness or
frame dragging. Waveforms computed using the S+D approx-
imation are accurate for stars that do not both rotate rapidly and
have low compactness (Cadeau et al. 2007; Lo et al. 2013) and
are expected to be fairly accurate even for rapidly rotating,
oblate stars if the hotter region that produces the oscillation is
near the rotational equator and the observer is at a high
inclination, the geometry that is required for the waveform to
have substantial harmonic structure (Poutanen & Beloboro-
dov 2006), which is necessary to obtain tight constraints on M
and Req (Lo et al. 2013).

Cadeau et al. (2007) studied the accuracies of various
approximations for computing the waveform produced by a hot
spot on the surface of a rotating neutron star. They did this by
first constructing numerical models of rotating neutron stars

and their exterior spacetimes using the rotating neutron star
code rns (Stergioulas 2003) and then utilizing the results to
compute the waveform produced by a hot spot on the surface of
these model stars. Finally, they compared these accurate
numerical waveforms with waveforms computed using various
approximations, including the S+D approximation and a new
approximation they called the oblate-star Schwarzschild-space-
time (OS) approximation. In the OS approximation, the oblate
surface of the spinning star is taken into account by embedding
a surface with this oblateness in the Schwarzschild spacetime
with a mass equal to the gravitational mass of the star. This
approximation therefore does not include frame dragging or the
effect of the stellar mass quadrupole on the spacetime. To
simplify their assessment of the accuracies of waveforms
computed using various approximations, they considered only
waveforms produced by a hot spot of infinitesimal extent.
Cadeau et al. (2007) found that the most important effects on

the waveform caused by rapid rotation are those produced by
the oblateness of the star, and that as long as the correct shape
of the star is used to formulate the initial conditions for ray-
tracing, the waveforms produced by ray-tracing in the
Schwarzschild spacetime are a very good approximation to
the waveforms produced by ray-tracing using accurate
numerical models of the rotating star and its exterior spacetime.
Consequently, the OS approximation should be adequate for
many purposes.
Cadeau et al. (2007) then carried out a preliminary

investigation of the accuracies of M and Req estimates made
using various approximate waveform models, by fitting these
models to synthetic waveform data generated using their
accurate numerical models. In order to make their fitting
procedure tractable, Cadeau et al. made a number of
simplifying assumptions. In addition to assuming that the
emitting region is infinitesimal in extent, they used only
bolometric waveforms and assumed that counts are produced
only by photons from the hot spot, i.e., that there are no
background counts from other parts of the star, the binary
system, other sources in the field of view, or the detector (see
Section 2.5.2 for a more detailed discussion of their
assumptions and approach).
Based on a preliminary investigation in which they fit their

S+D waveform model to synthetic waveform data generated
using numerical models of rotating neutron stars and their
exterior spacetimes, Cadeau et al. (2007) concluded that using
the S+D waveform model can bias estimates ofM and Req if the
star has a large radius and is rotating rapidly. In this
investigation they did not perform a full statistical analysis,
but instead determined for each of their numerical synthetic
waveforms the best-fit values of M, the circumferential radius
R ( )spotq at the spot colatitude spotq , and M R ( )spotq in their S+D
waveform model, estimating the uncertainty in M R ( )spotq
using a 2cD approach. They found that the best-fit value of
M R ( )spotq was usually close to the true value, with a few
exceptions. Despite this, the best-fit values of M and R ( )spotq
often differed from their true values, especially if the rotational
frequency is 500 Hz, the hot spot is at a medium to low
rotational colatitude, and the observer’s inclination to the
rotational axis is small. However, for these hot-spot and
observer geometries oscillation amplitudes are small and the
effects on model waveforms of changes in the model
parameters are highly degenerate, making estimates of M,
Req, and M Req highly uncertain (see Cadeau et al. 2007, Table
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2; Lo et al. 2013). Cadeau et al. did not estimate the
uncertainties in M and R ( )spotq separately, nor did they
determine the best-fit values or uncertainties of any of the
other parameters in their S+D waveform model. Consequently,
they could not determine whether the differences between the
estimated and input values of M and R ( )spotq are statistically
significant. It is therefore not clear from their work whether,
and if so under what circumstances, fitting an S+D waveform
model to actual waveform data can produce fits that are good
and constraining but yield parameter estimates that differ
significantly from the true values of the parameters.

In this paper, as in Lo et al. (2013), we focus on X-ray burst
oscillations, extending the work of Cadeau et al. (2007) and Lo
et al. (2013) by performing a full Bayesian analysis of the
constraints that can be obtained by fitting S+D and OS
waveform models to the energy-resolved waveforms produced
by rapidly rotating, oblate neutron stars. As we explain in
Section 2.1, when analyzing burst oscillations the angular
radius spotqD of the hot spot and a phase-independent
background with an arbitrary energy spectrum must be
included as part of the fit; to do otherwise is observationally
incorrect and leads to misleadingly tight constraints on the
mass and radius.

Our first step is to generate synthetic waveform data for stars
with a variety of radii and rotational frequencies, using the OS
approximation. We have chosen to use the OS approximation
as the next step beyond the work of Lo et al. (2013), because
the results of Cadeau et al. (2007) and Morsink et al. (2007)
show that waveforms computed using the OS approximation
are extremely close to those calculated using the much more
computationally taxing approach of computing rotating neutron
star models and their exterior spacetimes using a numerical
code and solving for the required photon ray paths in these
numerical spacetimes.

Next, we fit our standard S+D waveform model to the OS
synthetic waveform data, to determine whether fitting this
model to OS synthetic data produces statistically good fits, and
if so, whether the best-fit values of the parameters in the S+D
model are close to their true values or are biased by statistically
significant amounts. If statistically acceptable but biased
estimates are possible, we wish to determine the situations in
which this occurs. Our final step is to fit our standard OS
waveform model to the OS synthetic waveform data, to
determine for the first time the constraints on M and Req that
could be obtained by fitting the OS waveform model to the
waveforms produced by rapidly rotating, oblate neutron stars.

The code that we utilize to generate synthetic waveform data
using the OS approximation is based on the waveform code
validated and used to compute accretion-powered millisecond
X-ray pulsar waveforms by Lamb et al. (2009a, 2009b) and to
compute X-ray burst oscillation waveforms by Lo et al. (2013,
see their Appendix A), modified to implement the OS
approximation using the approach developed by Morsink
et al. (2007).

We find that if the neutron star has a large radius and is
rotating rapidly and the hot spot that produces the oscillation is
at a moderate to low rotational colatitude, fitting our standard
S+D model to OS synthetic waveform data can produce fits that
are statistically good but yield estimates of M and Req that have
significant biases. However, this spot geometry generally does
not produce tight constraints on M and Req (see, e.g., Cadeau
et al. 2007, Table 2; Lo et al. 2013, Table 2), because it

produces waveforms in which the oscillation amplitude is low
and overtones of the rotational frequency are very weak. If
instead the hot spot is at a high rotational colatitude, fitting
S+D models to OS waveform data can yield usefully tight
constraints on M and Req with much smaller biases, even for
rapidly rotating, oblate stars.
We have developed a sophisticated new Bayesian analysis

procedure that makes it possible to fit OS waveform models to
waveform data almost as quickly as S+D waveform models.
Given the speed of our new procedure for fitting OS waveform
models to waveform data and the risk that results obtained
using the S+D approximation may be biased, OS waveform
models should be used in preference to S+D waveform models
in all future waveform analyses.
Using our new analysis procedure, we find that fitting our

standard OS waveform model to OS synthetic waveform data
produces tight constraints on M and Req if the star has a
moderate to high rotation rate, the hot spot is at a moderate to
high rotational colatitude, and the observer is at a moderate to
high inclination to the rotational axis. As an example, our
results show that if the star’s rotation rate is 600 Hz, the spot
center and the observer’s sightline are both within 30° of the
equatorial plane, the fractional rms amplitude of the oscillation
is 10%, and 107 total counts are collected from the star,
then M and Req can both be determined with 1σ uncertainties
7%, comparable to the uncertainties we obtained when fitting
S+D waveform models to S+D synthetic waveform data
generated for these same situations (Lo et al. 2013). As noted
earlier, this is a realistic fractional amplitude, and this many
counts could be obtained from a single star by the accepted
NICER and proposed LOFT and AXTAR space missions by
combining data from many X-ray bursts. Simultaneous
measurements of M and Req with these precisions would
improve substantially our understanding of cold, ultradense
matter.
We also find that no significant biases are introduced in the

estimates of M and Req when we fit our standard OS model
waveform, which assumes a uniform-temperature hot spot, to
OS synthetic waveform data generated assuming a 25% north–
south (latitudinal) variation in the surface temperature of the
hot spot. This extends the important findings of Lo et al. (2013)
that the waveform-fitting method provides unbiased estimates
of M and Req for a broad range of systematic deviations of the
actual properties of the hot spot from the properties assumed in
computing the model waveform.
The remainder of this paper is organized as follows. In

Section 2, we describe in more detail our assumptions and the
ray-tracing and statistical methods we use and compare our
approach to the approaches used by Lo et al. (2013) and
Cadeau et al. (2007). In Section 3, we describe the synthetic
waveforms we analyze, our standard S+D and OS waveform
models, the fitting procedure we use, and the results obtained
by fitting our standard S+D and OS waveform models to the
OS synthetic waveform data. We also discuss the precisions of
M and Req estimates obtained by fitting waveform models to
waveform data. We summarize our conclusions in Section 4.
Although we focus here on analyzing X-ray burst waveforms,
our method can, with small changes, be used to analyze the
X-ray waveforms produced by thermal emission from the polar
caps of rotation-powered pulsars, a goal of the NICER mission.
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2. METHODS

In this section, we first discuss burst oscillation phenomen-
ology and the assumptions we make when generating synthetic
waveform data and model waveforms. We then describe the
analytical implementation of the OS approximation that we use,
which was developed by Morsink et al. (2007), and explain the
table-lookup method for light rays that we have introduced,
which speeds up the waveform-fitting process by a factor of
hundreds. Next, we discuss some of the fundamentals of
Bayesian inference, which underlies our approach to estimating
M and Req. We then describe the waveform data processing
procedure we use to obtain the results we present in Section 3.
We have found this procedure to be a reliable method for
exploring the space of waveform model parameters and
marginalizing the parameters that are not of interest to us here.
We conclude this section by comparing our approach in this
work to the approaches used by Lo et al. (2013) and Cadeau
et al. (2007). The new, more sophisticated, and much faster
Bayesian analysis procedures we introduce here allow us to
determine the best-fit parameters of waveform models by a
blind search of M–Req space, i.e., by sampling these parameters
without using any knowledge of the values of M and Req that
were used to generate the synthetic observed waveform data
(compare Lo et al. 2013), despite the additional complexity of
the OS approximation.

2.1. Burst Oscillation Phenomenology and Modeling

2.1.1. Hot Spot

Burst oscillations are thought to be produced by X-ray
emission from a region on the surface of the star that is hotter
than the rest of the stellar surface and is rotating at or near the
rotation frequency of the star. Such a hotter region could be
produced either by heating of part of the stellar surface by
thermonuclear burning or because a disturbance in the outer
layers of the star, such as a global surface mode, has made a
localized region hotter (see Watts 2012).

Oscillations with the relatively high amplitudes (5%–10%)
required to derive significant constraints on M and Req are
probably produced predominantly by a single hotter region (see
Lamb et al. 2009a). The dominant role of a single, localized
hotter region is also indicated by the absence in the waveform
of substantial second or higher harmonics of the fundamental
oscillation frequency. Hence, regardless of whether the
localized hotter region is produced by heating of the stellar
surface by nuclear burning or by a global surface mode, the
waveform it produces can be modeled using a single hot spot.
Lo et al. (2013) have shown that the waveform produced by a
hot spot is relatively insensitive to elongation of the spot in the
east–west or north–south directions, so modeling the spot as a
circular area is expected to be adequate.

An important question is whether oscillations observed
during the rise of bursts or during burst peaks and tails are
likely to be more useful in deriving constraints on M and Req.
The nuclear-powered emission from the surface of the star is
expected to be highly localized during the first fraction of a
second of an X-ray burst. If adequate constraints could be
obtained using data collected only when the emission comes
from a hot spot with an angular radius 10spot qD ,
waveforms could be modeled assuming the hot spot is a point,
and it would be unnecessary to include spotqD as a parameter in
fitting waveform models to waveform data. If, on the other

hand, data collected when the emission is larger must be used,
spotqD must be included as a parameter.
Lo et al. (2013) carried out a comprehensive analysis of the

likely usefulness of data taken during burst rises versus burst
peaks and tails (see their Section 2.2). They found that analyses
of oscillations observed during burst tails may provide
estimates of M and Req with uncertainties comparable to or
possibly even smaller than the uncertainties provided by
analyses of oscillations observed during burst rises. Our
approach in this paper is based on their findings, which we
therefore summarize here.
The precisions of M and Req estimates are most sensitive to

the star’s rotation rate and the inclinations of the hot spot and
the observer, because these quantities strongly affect the special
relativistic Doppler boost and aberration caused by the line-of-
sight component of the surface rotational velocity, and
therefore affect the harmonic content of the observed wave-
form. The uncertainties of M and Req estimates also depend on
the amplitude of the oscillation and the total number of counts,
because these determine the size of the statistical fluctuations in
measurements of the waveform variation.
Using the results of their extensive parameter estimation

study, Lo et al. (2013) showed that, other things being equal,
the uncertainties in M and Req estimates obtained by fitting
waveform models to waveform data scale approximately as

1- (see their Equation (1), Section 4.2.1, and Table 3), where

N N f N1.4 . (1)osc tot rms tot º =

Here N f N1.4osc rms tot= is the number of counts collected from
the oscillating component of the waveform during the
observation, Ntot is the total number of counts collected, and
frms is the average fractional rms amplitude of the oscillation
during the observation. Nosc, Ntot, and frms are all directly

observable. 1- is the fractional variation in the shape of the
waveform produced by the counting noise and is therefore a
useful figure of merit for evaluating and comparing data sets.

Nosc is approximately equal to the integral of the semi-
amplitude of the first harmonic (fundamental) component of
the burst oscillation waveform over the duration of the data
segment and frms is approximately equal to the rms amplitude
frms1 of this harmonic because the amplitudes of the higher
harmonics in burst oscillation waveforms are much smaller
than the amplitude of the first harmonic (see Watts 2012; Lo
et al. 2013; and Table 3 below). N N Ntot spot back= + , where
Nspot is the total number of counts detected from the hot spot
and Nback is the total number of background counts, which we
define as all counts not produced by photons from the hot spot.
Nspot is not usually equal to Nosc, because for many geometries
the hot spot contributes an unmodulated component to the
waveform, as well as an oscillating component, i.e.,
N N Nspot const osc= + . The value of Nback during bursts cannot
currently be measured or predicted (see Section 2.1.2).
Consequently, although Ntot is directly observable, its compo-
nents Nspot and Nback can only be determined by fitting models
to the observed waveform.
Lo et al. (2013) found that for systems with properties that

allow interesting constraints to be derived on M and Req, i.e.,
systems in which the stellar rotation rate is 300 Hz and the
spot center and the observer’s sightline are both within 30° of
the star’s rotational equator, waveform data with 400  can
provide estimates of M and Req with uncertainties 10%.
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A hot spot small enough to be treated as a point source (i.e.,
with 10spot qD ) spans 1% of the stellar surface and
therefore cannot produce enough counts to obtain interestingly
tight constraints on M and Req, even if data are collected from
many tens of bursts from a single star using a detector with a
collecting area ∼10 m2 and then combined. This is demon-
strated by the existing observations of burst oscillations, which
show that although the oscillations observed during the first
fraction of a second of an X-ray burst typically have high
fractional amplitudes, they are not bright enough and do not
last long enough to provide the number of counts needed to
derive tight constraints on M and Req, for a practical number of
burst observations from a single star.

For example, Lo et al. (2013) showed that observation of a
bright burst from the bright X-ray burst source 4U 1636–536
using a detector with an effective area ∼10 m2 could achieve an
-value ∼33 during the first 1/16 s of the burst, when the
emitting area is small.  scales as the square root of the
number of counts, so achieving an -value ∼400, sufficient to
provide estimates of M and Req with uncertainties 10%,
would require combining data from the early rises of ∼150
such bursts, which is impractical. Although the oscillation
amplitude diminishes as the burst rises, using data from the
entire 1/4 s burst rise would yield a slightly larger -value
∼50, because the longer duration of the observation yields a
much larger number of counts. Achieving an -value ∼400
would therefore require combining data from the entire rises of
∼65 such bursts.

Although the oscillations observed during burst tails usually
have smaller fractional amplitudes, they last much longer than
the first fraction of a second of burst rises. They also have
larger emitting areas. Using data collected during a 2 s
oscillation train observed in the tail of a burst from any one
of the eight neutron stars that produce such oscillation trains
would yield an -value ∼80 (see Lo et al. 2013, Section
2.2.1). Hence, combining data from ∼25 observations of such
oscillation trains from a single star would yield 400 ~ ,
sufficient to obtain ∼10% constraints on M and Req for systems
that have favorable properties (again see Lo et al. 2013).

These results show that obtaining constraints on M and Req

with uncertainties 10% will probably require using data from
the peaks and/or tails of bursts, when the hot spot is not
infinitesimal in extent.

Given that it will probably be necessary to include data taken
when the hot spot is not infinitesimal, it is important to include
the angular radius spotqD of the spot as a parameter in
waveform fits, because for a given observed waveform, the
most probable value of spotqD and the distance d to the star are
related. Assuming point emission during the full rise, the peak
of the burst or its tail would improperly remove this
degeneracy, artificially reducing the uncertainties in M and
Req estimates and possibly biasing them. As Lo et al. (2013)
showed using a full Bayesian analysis, knowledge of the
distance to the star can improve somewhat the precision of M
and Req estimates by removing this degeneracy.

2.1.2. Backgrounds

An important factor that affects M and Req estimates made
using burst oscillation waveforms is the difficulty of determin-
ing the background independently of the waveform-fitting
process. Background counts could come from the non-spot
portion of the star, the accretion disk, unassociated sources in

the field, instrumental backgrounds, or any combination of
these.
Independent knowledge of the background would improve

the constraints on M and Req derived by waveform-fitting (see
Lo et al. 2013), but both observational evidence (Yu
et al. 1999; Kuulkers et al. 2003; Chen et al. 2011; in’t Zand
et al. 2011; Serino et al. 2012; Degenaar et al. 2013; Worpel
et al. 2013; Peille et al. 2014) and theoretical arguments
(Walker 1992; Miller & Lamb 1996; Ballantyne & Stroh-
mayer 2004; Ballantyne & Everett 2005) indicate that the
accretion-powered emission from neutron star systems is
substantially different during a burst than before or after.
In principle, the accretion-powered emission could, at some

times during a burst, be more luminous than before or after the
burst, if the radiation from the burst significantly increases the
radiation drag on the gas orbiting in the disk, causing the
accretion rate to the stellar surface to increase, or it could be
less luminous, when the increased radiation drag has depleted
the inner disk. Unfortunately, the observed variations in the
background are not understood theoretically and do not appear
to be correlated with other properties of the bursts in any
obvious way (see Peille et al. 2014 and references therein).
Consequently, whether the background varies during a
particular burst, and if so, by how much and in which
direction, cannot currently be predicted. Hence, in order to
obtain reliable estimates of M and Req, one must include in the
fitted waveform model an oscillation-phase-independent back-
ground component with an arbitrary magnitude and energy
spectrum.4

2.1.3. Other Aspects of the Waveform Models

In constructing synthetic waveform data and model wave-
forms, we assume that the hot spot has a constant size and
shape, is located at a fixed stellar rotational latitude, and rotates
at a constant frequency that is known a priori.
Our S+D and OS waveforms have seven primary parameters:

the star’s gravitational mass M; its equatorial circumferential
radius Req; the colatitude spotq of the hot spot center; the angular
radius spotqD of the hot spot, which is assumed to be circular
and uniform; the surface comoving temperature Tspot of the
emission from the hot spot, which is assumed to have a
blackbody spectrum and normalization; the inclination (cola-
titude) obsq of the observer relative to the hot spot rotational
axis, which in this work we assume is also the stellar rotational
axis; and the distance d to the star. In computing the shape of
the star for our OS waveforms, we assume that the rotational
frequency of the star is the same as the rotational frequency rotn
of the hot spot.
In generating synthetic waveform data and computing model

waveforms, we use the beaming function that describes
radiation emerging from the surface of an electron-scattering
atmosphere (see Equation (9)). As Suleimanov et al. (2012)
have shown, for the 1–30 keV energy range and high surface
fluxes, the beaming function for an electron-scattering atmo-
sphere accurately describes not only the beaming pattern of
radiation from such an atmosphere but also that from a pure
hydrogen atmosphere, and deviates by at most 6% from the

4 Even if the pre-burst background persisted unchanged throughout the burst,
subtracting it from the count rate during the burst, rather than including the
background as a component of the model, incorrectly neglects the fluctuation in
the number of counts produced by the background and the uncertainties in the
model parameters these fluctuations induce.
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beaming function of radiation from an atmosphere with solar
composition. This beaming function therefore provides an
excellent description of the beaming of radiation from burst
atmospheres. When analyzing the X-ray waveforms produced
by much cooler hot spots (such as the polar caps of rotation-
powered pulsars), it will be necessary to use different beaming
functions.

When generating synthetic waveform data, we include a
constant background component. This component is a catch-all
for all the counts not produced by the emission from the hot
spot. As noted above, these counts could come from the non-
spot portion of the star, the accretion disk, unassociated sources
in the field, instrumental backgrounds, or any combination of
these. For simplicity, we follow Lo et al. (2013), modeling this
background by adding emission from the entire stellar surface
with the beaming pattern expected for an electron-scattering
atmosphere and a spectrum having the shape of a Planck
spectrum with a temperature that is usually lower than the
temperature of the hot spot. This is a reasonable approach,
because the number of counts contributed by this emission is
important, but not its detailed properties. We normalize the
background spectrum to achieve the desired expected number
of background counts.

In generating the synthetic waveform data we analyze here,
we assume that ∼106 counts have been collected from the hot
spot and that the background is 9 106~ ´ counts. This
corresponds to a realistic modulation fraction and is a sufficient
number of counts to determine M and Req with uncertainties
7% if the star’s rotation rate is 600 Hz and the spot center
and observer’s sightline are both within 30° of the star’s
rotational equator. As noted earlier, a future space mission,
such as the accepted NICER mission and the proposed LOFT
and AXTAR missions, could obtain this number of counts by
combining data from many bursts from a given star (see Lo
et al. 2013).

2.2. The Oblate Schwarzschild Approximation and Ray-tracing

In the OS approximation (Cadeau et al. 2007; Morsink
et al. 2007), the spacetime exterior to the star is Schwarzschild
but the stellar surface is oblate. Thus, in effect, the star is
treated as an oblate shell of infinitesimal mass surrounding a
concentrated sphere of gravitational mass M. In Schwarzschild
coordinates, the line element anywhere outside the star is
therefore

( )
ds M r dt dr M r

r d d

(1 2 ) (1 2 )

sin , (2)

2 2 2

2 2 2 2q q f

=- - + -

+ +

where t is the time as measured at infinity, r is the
circumferential radius, and θ and ϕ are the standard polar
and azimuthal angles. Here and henceforth we usually use
geometrized units in which G c 1= º . As in the S+D
approximation discussed in Section 1, all special relativistic
effects are treated exactly.

We assume that the rotating neutron star of interest is
symmetric around its rotational axis. Morsink et al. (2007)
found that for the families of stars they considered, if a star has
an equatorial radius Req and an angular frequency Ω as seen at
infinity, its radius as a function of colatitude θ is well described

by (see their Equations (8)–(10) and their Table 1)
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The area of an infinitesimal surface element at colatitude θ on
the surface of an oblate star is (see Morsink et al. 2007,
Equations (2) and (3))

dS R f d d( ) ( )sin 1 ( ) , (6)2 2 1 2
q q q q q f= é

ëê + ù
ûú

where

f
M R

R

dR

d
( )

(1 2 )
. (7)

1 2

q
q

º
- -

The advantage of using the Schwarzschild spacetime rather
than spacetimes that include the effect of the mass quadrupole
of the star and frame dragging is that the spherical symmetry of
the Schwarzschild spacetime guarantees that the path of any
light ray in vacuum will lie in a plane. Thus, ray paths can be
pre-computed and used in a lookup table, speeding up the
computations enormously. We describe our table-lookup
procedure later in this section.
When constructing OS synthetic waveforms and waveform

models, we use the same ray-tracing codes described in Lo
et al. (2013). Many of the equations and algorithms used in
these codes were originally derived by Poutanen & Gier-
liński (2003).
We assume that the emission from the hot spot is

azimuthally symmetric around the local surface normal, as
seen in the surface comoving frame. The variation of the star’s
circumferential radius with colatitude creates an angle γ
between this normal and the local outward radial vector given
by (see Section 2.2 of Morsink et al. 2007)

fcos 1 ( ) . (8)2 1 2
g q= é

ëê + ù
ûú
-

We assume further that the emission as seen in the surface
comoving frame extends from the surface normal to the tangent
to the surface, with a beaming function that is usually given by
that expected for radiation from a uniform, semi-infinite,
Thomson scattering atmosphere, which we approximate by (Lo
et al. 2013)

( )g 0.42822 0.92236 cos 0.085751 cos ,

(9)

2a a a¢ ¢ = + ¢ - ¢

where a¢ is the angle between the emitted ray and the surface
normal, as seen in the surface comoving frame.
In addition to the minor modification to the element of

surface area given by Equation (6), there are two more
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important differences between the OS approximation and the S
+D approximation. The first is that the stellar radius varies with
colatitude. As a result, if the equatorial circumferential radius is
fixed, the maximum angular deflection of a photon leaving the
star from a surface element not on the rotational equator is
greater in the OS approximation than in the S+D approxima-
tion. The second difference is that in the S+D approximation,
the maximum angle between the direction of an emitted photon
and the local outward radial vector is 2p , assuming that the
star is not more compact than the photon orbit R M3= (for
more compact stars, the maximum angle for an escaping
photon is less than 2p ; however, we do not consider such
compact stars). In contrast, for an oblate star the tilt of the
normal vector from the radial vector means that in the direction
toward the closer rotational pole, the maximum angle is greater
than 2p , whereas in the direction away from that pole, the
maximum angle is less than 2p . More generally, if ψ is an
azimuthal angle in the stellar surface that is 0 for the direction
toward the closer pole and π for the direction away from it, then
the angle χ between the local outward radial vector and the
photon ray in direction ψ in the plane tangent to the stellar
surface is given by cos cos sinc y g= - .

The two effects just described both tend to increase the
minimum flux in the OS waveform relative to the S+D
waveform for the same spot location and size, equatorial radius,
gravitational mass, and observer colatitude, for observers in the
same rotational hemisphere as the hot spot. To see why,
consider a point on the surface somewhere between the pole
and equator. The minimum in the waveform at a given energy
will occur when the observer is on the opposite side of the star
(modulo some effects related to relativistic aberration). In the
OS approximation, the surface emission comes from a smaller
radius and a ray can start in a direction with a smaller impact
parameter to the center of the star than in the S+D
approximation. Consequently, the gravitational light deflection
is greater and causes the minimum flux to be greater than in the
S+D approximation (see, e.g., Figures 3 and 4 of Cadeau
et al. 2007 and Figures 3 and 4 of Morsink et al. 2007). In
contrast, for observers in the opposite rotational hemisphere
from the hot spot these two effects tend to decrease the
minimum flux in the OS waveform relative to the S+D
waveform (see, e.g., Figures 6 and 8 of Cadeau et al. 2007; but
see their Figure 5 for a counterexample). The OS and S+D
waveforms are very nearly the same if the hot spot is in the
rotational equator (see, e.g., Figure 7 of Cadeau et al. 2007),
because dR dq vanishes there.

Our algorithm computes the required ray paths in advance
and stores them in a table that is then read by our code prior to
calculating the required waveforms. In the Schwarzschild
spacetime, the angular deflection of a ray to infinity depends on
R M , and not on R and M independently. We find that a table
of ray paths for 440 evenly spaced values of R M , from 3.6 to
8.0, and 1000 evenly spaced values of the angle between the
ray and the outward radial direction, from 0 radians to 1.82
radians (recall that for oblate stars, the maximum angle from
the outward radial direction can exceed 2 1.57p » ) provides
adequate accuracy: with this gridding, waveforms constructed
using the ray table give a flux at any energy or phase that
differs by no more than a few parts in 105 from the
corresponding directly traced waveform.

For a given initial radius and angle from the outward radial
vector, we compute (1) the deflection angle to infinity (see

Poutanen & Gierliński 2003 and Section A.1.1 of Lo
et al. 2013), (2) the time delay of the ray relative to a radial
ray (see Braje et al. 2000; Viironen & Poutanen 2004; and
Section A.1.2 of Lo et al. 2013), and (3) the gravitational
lensing factor for a cluster of rays near the fiducial ray.
Figure 1 compares an energy-integrated photon number flux

waveform computed using our OS waveform code with the
energy-integrated waveform for the same model parameters
kindly computed by S. Morsink (2013, private communica-
tion), using the stellar shape given by the Stergioulas rotating
neutron star code rns (Stergioulas 2003). In this figure only,
the beaming pattern of the radiation from the hot spot (i.e., the
angular distribution of the intensity from any point on the hot
spot) was assumed to be isotropic in the surface comoving
frame. The agreement between the two waveforms is excellent.
Comparison of the two codes revealed that the difference
between the two waveforms is due to the slight difference
between the stellar shape computed using the rns code and the
shape computed using the analytical method introduced by
Morsink et al. (2007).

2.3. Bayesian Inference and Marginalization

Our statistical approach to estimating M and Req is based on
Bayesian inference techniques, and follows closely the

Figure 1. Absolute comparison of waveforms computed using two versions of
the OS approximation, for a star with a gravitational mass of 1.4 M and an
equatorial circumferential radius of 16.4 km, a rotational frequency of 600 Hz
as seen at infinity, and a hot spot with an angular radius of 0. 1◦ centered at a
colatitude of 41° and seen by an observer at an inclination of 20°. Top: energy-
integrated photon number flux in ph cm s2 1- - as a function of rotational phase
kindly computed by S. Morsink (2013, private communication; solid curve),
using the stellar shape given by the rns code, and computed using our OS
waveform code (dotted curve), which uses the analytical method for
determining the stellar shape introduced by Morsink et al. (2007). In this
figure only, the beaming pattern of the radiation from the hot spot was assumed
to be isotropic in the surface comoving frame. Bottom: fractional difference
between the solid and dotted curves in the top panel. The agreement between
the two waveforms is excellent. Comparison of the two codes revealed that the
difference between the two waveforms is due to the slight difference between
the stellar shapes computed using the rns code and using the analytical
method introduced by Morsink et al. (2007).
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approach used in Lo et al. (2013). If we have a model with
parameters y, and if the prior probability distribution over those
parameters is yq I( )∣ (where I represents prior information),
then Bayes’ theorem states that the posterior probability
distribution after analyzing data D is

y y yP D I p D I q I( , ) ( , ) ( ). (10)µ

If Poisson noise is the only source of fluctuations in the data,
the likelihood of the “observed” data, given a particular set y of
values for the model parameters, is

y
y

p D I
m

d
e( , )

( )

!
, (11)y

i

i
d

i

m ( )
i

i º = -

where the product is over all the oscillation phase and energy
bins, di is the measured number of counts in the ith bin, and

ym ( )i is the number of counts in the ith bin predicted by the
model for the trial set y of parameter values. If the number of
counts in a given bin exceeds a few tens, then the Poisson
likelihood may be replaced by a Gaussian.

Unlike frequentist statistics such as 2c , the value of  itself
has no implication for whether the fit is good in an absolute
sense. Instead, comparisons are made between different sets of
parameter values and depend only on the ratio between
different posterior probabilities, which means that they depend
on the product of the ratio of the prior probabilities and the
ratio of the likelihoods. The common factor d(1 !)i i
therefore cancels out. In our analysis we adopt flat priors for
all of our main parameters, within the range of values that we
search for each parameter. In real situations, it is possible to
have additional information about some of the parameters, and
if so, that information should be included in the analysis via the
prior. For example, Lo et al. (2013) found that knowledge of
M Req via an identified atomic line in the spectrum from the
stellar surface, or of the observer’s inclination angle, can
tighten the constraints on M and Req considerably, whereas
knowledge of the distance improves the constraints only
modestly.

We adopt the common procedure of working with the log
likelihood, which after removal of the dlog(1 !)iå term is

y yd m mlog log ( ) ( ). (12)
i

i i
i

i å å= -

It is the ratio of the likelihoods and thus the difference between
the log likelihoods that matters. When we quote uncertainties at
a certain level of confidence, we use Wilks’ theorem
(Wilks 1938), which states that 2 log2 cD » - D for a
reasonably large total number of counts, and 2c tables.

In our problem, we are primarily interested in M and Req. If
we designate the other parameters (called nuisance parameters
in this context) by z, then the correct way to find the final
posterior probability distribution for only M and Req is to
marginalize over the other parameters, i.e.,

( ) ( ) ( )z z zP M R d p D M R I q M R I, , , , , , . (13)eq eq eqòµ

However, our waveform model has a large number of nuisance
parameters. As explained in Section 2.1.1 and Lo et al. (2013),
one must include in the waveform model an oscillation-phase-
independent background component with an arbitrary magni-
tude and energy spectrum, which is specified by the number of
phase-independent counts in each energy channel. The number

of parameters in the background model is therefore equal to the
number of energy channels. In addition, for a given set of
candidate parameters one must consider an arbitrary shift in the
phase of the model waveform relative to the waveform data,
adding another parameter. It is not practical to marginalize fully
over so many parameters. Consequently, we instead maximize
the likelihood over the parameters in the background model
and the start time of the model waveform, using a bisection
method.
We have tested whether maximizing the likelihood of these

nuisance parameters gives results comparable to marginalizing
them, by fitting a Gaussian to the likelihood distributions found
during the bisection procedure, analytically integrating over the
Gaussian, and comparing the results with those obtained by
simply using the maximum likelihood values of these
parameters. We compared the log likelihood differences
between these methods for combinations of
M R( , , , , )eq obs spot spotq q qD ranging from the combination that
maximized log  to combinations that gave log  values 20
less than the maximum. For five parameters, Wilks’ theorem
(Wilks 1938) suggests that log 2.94D = is approximately
equivalent to 1σ. We found that for the background model, the
standard deviation in the difference of log  between the
maximization and marginalization procedures was only 0.007.
That is, even though the value of log  for a given parameter
combination in the marginalization procedure has an offset
from the value of log  for the same parameter combination in
the maximization procedure, the offset is almost exactly
constant from one parameter combination to the next. Thus,
the differences between log likelihoods are preserved and
hence maximization of the likelihood over the background
parameters is functionally equivalent to marginalization. When
we performed a similar comparison of maximization to
marginalization for the shift in the start time of the waveform,
we found that the standard deviation of the difference in log 
between the two methods is 0.3. This is therefore a 0.1s shift,
which is too small to affect any of our results.

2.4. Data Processing Pipeline

A challenge faced in Lo et al. (2013) was that if the
waveform data are informative, i.e., if they tightly constrain M
and Req, a grid search over the values of the parameters in the
waveform model requires a grid so fine that a truly blind search
would require a prohibitive number of waveform computations,
even if large computational resources are available.
In this section, we describe a new waveform data processing

procedure that is based on the approach used by Lo et al.
(2013) but performs blind searches far more efficiently. In this
new procedure we first determine the volume of the waveform
parameter space of interest by performing a Markov chain
Monte Carlo (MCMC) search using ray-tracing. We then
construct and interpolate in a table of waveforms to further
localize the volume of interest and compute bounding
ellipsoids that encompass the points in this reduced volume
that have interestingly high likelihoods, finally sampling the
volumes within these ellipsoids by performing a Monte Carlo
integration using direct ray-tracing. The details are as follows:

1. We explore (M R, , , ,eq obs spot spotq q qD ) space using an
MCMC search with ray-tracing (see Section 3.2 of Lo
et al. 2013 for our MCMC approach and, e.g., von
Toussaint 2011 for a discussion of the Metropolis
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algorithm for MCMC sampling). In general, one would
also need to explore a range of values of the surface
comoving temperature T and the distance d to the star, but
in the approach we use here we either assume that the
redshifted temperature T M R(1 2 )eq

1 2- is known and
maximize the likelihood over d, or assume that d is
known and maximize the likelihood over T (see Section
3.3.3 of Lo et al. 2013 for an explanation and justification
of this approach).

2. We determine the maximum log likelihood (log max ) of
the data given the waveform model, in the volume of the
waveform parameter space explored in the previous step.
We then select the M R( , , , , )eq obs spot spotq q qD combina-
tions in this volume that have log likelihoods within 30 of
the maximum and determine the range of each of these
five parameters that spans the selected combinations.
Finally, we generate a table of 105 template waveforms,
one for each point on the five-dimensional grid of 10
evenly spaced values that span the previously determined
range of each parameter.

3. We perform a second MCMC calculation using wave-
forms computed by interpolating in the table of template
waveforms generated in the previous step. In this
calculation, we pick an M R( , )eq pair and marginalize
by performing a Monte Carlo integration with 1000
points spanning ( , , )obs spot spotq q qD . To do this, we first
compute for the selected M R( , )eq the log likelihood on
an evenly spaced 10 10 10´ ´ grid in the three angular
variables, over the full range of each variable determined
in step 1. Using the points on this grid with log
likelihoods within 40 of the maximum found in the
previous step, we determine, for each value of obsq on our
grid, the minimum ellipse that contains all ( , )spot spotq qD
pairs with log log 40max > - (see the Appendix for
a description of the algorithm we used to find a minimum
bounding ellipse). If, for our chosen M R( , )eq pair, any of
these ellipses are nonvanishing, we perform a 1000-point
Monte Carlo integration over the ( , , )obs spot spotq q qD
volume identified by the nonvanishing bounding ellipses.
The use of bounding ellipses typically reduces the
volume over which the integral must be performed by a
factor ∼30, which allows us to sample the relevant
volume much more densely, reducing the fractional error
in the integral by a factor 30 51 2~ ~ for a given number
of evaluations.

4. We take all the M R( , )eq pairs from the previous step that
yielded nonvanishing marginalized posterior probabilities
and use ray-tracing rather than waveform interpolation to
compute the log likelihood in a full, uniformly spaced
10 10 10´ ´ grid over ( , , )obs spot spotq q qD . Then, as in
the previous step, we construct bounding ellipses in
( , )spot spotq qD at each grid value of obsq for each M R( , )eq
pair and perform a Monte Carlo integration with 1000
points per M R( , )eq combination, using direct ray-tracing
rather than waveform interpolation. This yields the
marginalized posterior probability at points in the
R M( , )eq plane that, because of the MCMC sampling
procedure, are concentrated around the maximum poster-
ior probability.

5. We normalize the marginalized posterior probability to its
maximum and then determine and output the 1σ, 2σ, and
3σ contours in the M R( , )eq plane.

2.5. Comparison with Previous Work

2.5.1. Lo et al. (2013)

In addition to using waveforms computed using the OS
approximation, in this work we use a data processing procedure
that is much more efficient than the one used in Lo et al.
(2013). In that work, our marginalization over obsq , spotq , and

spotqD for each M R( , )eq pair used Monte Carlo integration over
a volume in the angular variables that was determined by
MCMC sampling to contain all points in the angular space with
log likelihoods within 20 of the maximum log likelihood, for
the given values of M and Req. This volume was rectangular,
which meant that many ( , , )obs spot spotq q qD triplets within the
volume gave very poor fits to the data. As a consequence, Lo
et al. had to take 104 samples for a given M R( , )eq pair in order
to obtain a sufficiently precise result from the Monte Carlo
integration. In contrast, the procedure we use here—finding
minimum bounding ellipses in ( , )spot spotq qD for each
M R( , , )eq obsq combination—reduces the integration volume
by a factor ∼30, which means that we are able to obtain better
precision using 103 samples than we were previously able to
obtain using 104 samples.
Lo et al. (2013) used a uniform grid of points in M and Req.

The informative synthetic data sets that they considered
produce small high-probability regions in the M–Req plane.
In order to sample these regions adequately, the number of
points that would have been required in this grid was so great
that full, blind searches in the M–Req plane were computation-
ally infeasible. They therefore created fine grids around the
“true” values of M and Req (i.e., the values that were used to
generate the synthetic waveform data), and argued that when
real data become available from future larger-area X-ray
detectors, the available computational power will have
increased enough to permit blind searches. In contrast to the
procedure used in Lo et al., the MCMC exploration of the M–

Req plane used here automatically finds the regions of highest
posterior probability and concentrates the sampling there. Thus,
even for data that are highly informative, our blind search does
a good job of exploring the high-probability regions.
The net result of these new procedures is that whereas the

analysis procedure used in Lo et al. (2013) took 50–100 clock
hours on a 150 core cluster and did not actually search the
entire M R( , )eq domain that we wished to consider, our current
analysis procedure takes 50–100 clock hours on a 5 core
desktop to do a blind search of the entire region of interest. This
huge gain in efficiency allows us to produce significantly more
precise and reliable uncertainty estimates than was possible
previously.

2.5.2. Cadeau et al. (2007)

As we discussed in Section 1, Cadeau et al. (2007)
performed a pioneering preliminary exploration of whether
fitting S+D waveform models to the waveforms generated by a
hot spot on a rotating neutron star produces estimates ofM, Req,
and GM Req that are biased. They found that substantial
differences between the actual and best-fit values of M and
R ( )spotq are possible, especially if the neutron star has a large
radius and is rotating rapidly. Here we extend and improve on
this analysis in several ways.
Cadeau et al. (2007) considered only bolometric waveforms,

whereas we consider energy-resolved waveforms, as did Lo
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et al. (2013). In generating their synthetic waveforms, Cadeau
et al. (1) assumed that the hotter region is infinitesimal in
extent, whereas we assume a circular hot spot with an angular
radius of 25°, which is more realistic (see Section 2.1); and (2)
assumed that the beaming of radiation from the stellar surface
is isotropic, whereas we use the Hopf beaming function (see
Equation (9)), which is correct for burst atmospheres in which
the opacity is dominated by electron scattering, is highly
accurate for pure hydrogen atmospheres, and is fairly accurate
even for atmospheres with solar composition (see Section 2.1).
Cadeau et al. also (3) assumed that counts come only from the
hot spot, i.e., that there are no backgrounds, whereas we
include an appropriate background in our synthetic waveforms
(see Section 2.1); and (4) did not Poisson-sample their
waveforms, but instead assumed a fixed statistical error
independent of the X-ray flux, whereas we Poisson-sample
our waveforms, which gives appropriately greater statistical
weight to the peaks of the waveforms.

In fitting the S+D waveform model to their synthetic
waveform data, Cadeau et al. (2007) assumed (5) that the
hot spot is known to be infinitesimal in extent, whereas we
determine the best-fit angular radius of the spot; (6) that the
beaming of radiation from the surface of the hot spot is known
to be isotropic, whereas we use the Hopf beaming function; (7)
that there are no background counts, whereas we include the
magnitude and spectrum of the background in our model
waveform and determine the background in the fitting process;
(8) that the distance is known, whereas we determine the best-
fit distance in the fitting process; and (9) that the phase of the
model waveform relative to the phase of the synthetic observed
waveform is known a priori, whereas we determine the relative
phases of the model and synthetic waveforms as part of the
fitting process, as would be necessary when fitting real data.
Finally, Cadeau et al. (10) focused on the inferred value of
GM Req by minimizing 2c over all the other parameters in their
waveform model, for each value of GM Req they considered,
whereas we perform an approximate Bayesian marginalization
over the posterior probability space of all the parameters in our
waveform model except the two parameters M and Req of
interest to us here.

Our analysis therefore improves substantially on the already
valuable results of Cadeau et al. (2007).

3. RESULTS

In this section, we first explain how we use the OS
approximation to generate energy-resolved synthetic waveform
data like the data that would be obtained by a next-generation,
large-area X-ray detector when observing the X-ray oscillations
produced by rotating, oblate neutron stars and hot spots with a
variety of properties. Next we describe how we compute the
joint posterior probability distribution of all the parameters in
the waveform model being considered, given the waveform
data, using standard Bayesian techniques. We then explain how
we use these posterior distributions to compute confidence
regions in the M–Req plane for each synthetic waveform we
consider.

We present two categories of results. We first describe
results obtained by fitting our standard waveform model
computed using the S+D approximation to synthetic observed
waveform data generated using the OS approximation,
primarily to explore whether the estimated values of M and
Req are significantly biased when our standard S+D waveform

model is fit to such data. We then present results obtained by
fitting our standard OS waveform model to synthetic data
generated using the OS approximation and compare the
precision of the resulting constraints on M and Req with those
obtained by Lo et al. (2013), who fit our standard S+D
waveform model to waveform data generated using the S+D
approximation.
Table 1 shows the 11 analyses discussed in this paper, listing

in each case the waveform model and the values of the
parameters in the model that were used to generate the
synthetic waveform data, the model that was fit to the
waveform data, the resulting minimum value of the total 2c ,
the number of degrees of freedom (dof), and the figures that
show the 1σ, 2σ, and 3σ contours in the M–Req plane for each
case. Hereafter we use the figure label to identify each case.

3.1. Synthetic Observed Waveforms

All the synthetic observed waveforms we analyze here were
generated using the OS approximation, assuming a stellar
gravitational mass M of M1.6 , a circular hot spot with an
angular radius spotqD of 25°, and a distance d to the neutron star
of 10 kpc. Table 1 lists the rotational frequency rotn of the hot
spot as seen at infinity, the stellar equatorial radius Req, the hot-
spot inclination spotq , and the observer inclination obsq used to
generate each synthetic observed waveform. We assumed rotn
equal to either 300 or 600 Hz, Req equal to either 11.8 or 15 km,
and spotq and obsq both equal to either 60° or 90°. We
independently generate the synthetic waveform for each case
that we analyze in Figures 2 and 3. In case 4 we used the same
spot data as in case 3(a), but we independently generated new
background data. In cases 5(a) and (b), we used the same
waveform realization but two different phase binnings.
All the synthetic observed waveforms except one were

generated assuming a uniform hot spot that emits radiation with
a blackbody spectrum having a temperature of 2 keV as
measured in the surface comoving frame. In case 3(d), we
consider a hot spot with a temperature that varies with latitude
(see below). Our assumption that the emission from the hot
spot has a blackbody spectrum and normalization is formally
inconsistent with our assumption that the beaming pattern of
the radiation from the hot spot is that of an electron-scattering
atmosphere (see Lo et al. 2013); when real data are analyzed,
one should use emission spectra and normalizations computed
using appropriate model atmospheres.
We assume that the background does not vary at frequencies

commensurate with the spot rotational frequency. We include a
placeholder background in the synthetic observed waveform by
assuming uniform emission from the entire surface of a star
with the same mass and radius as the star used in modeling the
hot-spot waveform, with a spectrum having the shape of a
Planck spectrum as seen in a frame comoving with the surface
of the star, which for this purpose is assumed to be rotating
with the same frequency as the hot spot. In all cases except one,
we assume that the background emission has a temperature of
1.5 keV. In case 4, we assume that the temperature of the
background emission is the same as the temperature of the
emission from the hot spot, i.e., 2 keV, in order to explore
whether this weakens the derived constraints on M and Req. We
normalize the background component to produce the desired
number of expected background counts.
In all cases except one, we Poisson-sampled the synthetic

waveforms to generate count data in 16 equally spaced phase
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bins and 30 equally spaced energy channels. Each synthetic
waveform therefore consists of the number of counts in each of
16 30 480´ = phase-energy bins. In case 5(a), we first
Poisson-sampled the synthetic waveform in 32 bins. Thus the
synthetic waveform in case 5(a) consists of the number of
counts in each of 32 × 30 = 960 phase-energy bins. We then
grouped the data in this sampled waveform into 16 bins (case 5
(b)), to test whether using 16 phase bins provides adequate
phase resolution. For all the synthetic waveforms except the
one analyzed in case 3(d), the centroids of the energy channels
are spaced 0.3 keV apart and run from 3.65 to 12.35 keV; for
the waveform analyzed in case 3(d), the centroids are spaced
0.3 keV apart and run from 1.85 to 10.55 keV.

In all the synthetic observed waveforms, the expected
number of counts from the spot is 106, whereas the expected
number of counts from the background is 9 106´ (the actual
numbers vary because of the Poisson sampling). As noted in
Section 2.1, these numbers produce a realistic modulation
amplitude and a total number of counts comparable to the
number that could be obtained by the accepted NICER mission
and the proposed LOFT and AXTAR missions, by combining
data from many bursts from a given star.

3.2. Model Waveforms and Fitting Procedure

The standard S+D and OS waveform models that we fit to
the synthetic observed waveform data both assume that the
temperature of the hot spot is uniform as seen in the surface
comoving frame. In fitting these models to the synthetic
waveform data, we assume that the rotational frequency of the
star is the same as the rotational frequency rotn of the hot spot
and that rotn is known. Both our standard waveform models
have seven primary adjustable parameters (M, Req, spotq , spotqD ,
kTspot, obsq , and d) and 31 ancillary adjustable parameters (the
phase-independent background in each of the 30 energy

channels and the overall time shift). Each waveform model
therefore has 38 adjustable parameters, and hence there are
480 38- = 442 (or, in case 5(a), 960 38- = 922) dof. We
assume uniform priors over the allowed ranges of all the
parameters in our model waveforms. We perform a blind search
over M, from 1.2 to M2.2 ; over R Meq , from 4 to 8; and over

spotq , spotqD , and obsq , from 0.1 to 2p radians. In principle, obsq
could range from 0 to π radians. However, we find that
allowing this larger range does not change the confidence
regions for M and Req. Restricting obsq to 2p⩽ radians allows
us to sample the angular range of interest with a higher density
of points.
In all cases except 3(d), we assume that kT¥ , the radiation

temperature measured at infinity, is kT M R(1 2 )spot eq
1 2- . This

assumption is justified because the energy of the spectral peak
will in practice be very precisely measured. For all cases except
3(d), we maximize the likelihood over the distance d for a
given combination of the other parameters as described in
Section 2.3, rather than marginalizing over d. For a more
detailed explanation and justification of this approach, see
Section 3.3.3 of Lo et al. (2013). In case 3(d), the synthetic
waveform data were generated with a surface comoving
temperature that varies with latitude over the hot spot. Hence,
in analyzing these waveform data we assume that we know
d and maximize the likelihood over kTspot, rather than
marginalizing over kTspot. When real data are analyzed, it will
be necessary to marginalize the likelihood over both kTspot

and d.
In order to save computational time, we determine the

magnitude and spectrum of the background and the time shift
of the model waveform relative to the synthetic waveform by
maximizing the likelihood, as described in Section 2.3, rather
than by marginalizing these parameters.

Table 1
Synthetic Waveforms and Quality of Fit of Waveform Models

Figure Synthetic Waveform Dataa rotn b Req
c

spotq d
obsq e dofmin

2c
(case) and Fitted Waveform Model (Hz) (km) (deg) (deg) from Fitf

2(a) OS data fit by S+D model 300 11.8 60 60 380.5/442
2(b) OS data fit by S+D model 600 11.8 60 60 413.3/442
2(c) OS data fit by S+D model 600 15 60 60 411.0/442
2(d) OS data fit by S+D model 600 11.8 90 90 435.9/442
3(a) OS data fit by OS model 600 11.8 90 90 440.1/442
3(b) OS data fit by OS model 300 11.8 90 90 447.6/442
3(c) OS data fit by OS model 600 15 60 60 475.7/442
3(d) OS data with variation 600 11.8 60 60 433.4/442

in Tspot fit by OS model

4 OS data with T Tback spot= 600 11.8 90 90 436.2/442

fit by OS model
5(a) OS data grouped in 32 600 11.8 90 90 886.1/922

phase bins fit by OS model
5(b) OS data grouped in 16 600 11.8 90 90 416.6/442

phase bins fit by OS model

Notes.
a All synthetic waveform data were generated assuming M M1.6= .
b Rotational frequency of the hot spot as seen at infinity.
c Equatorial circumferential radius of the star.
d Inclination (colatitude) of the hot spot center.
e Inclination of the observer.
f Minimized over all the parameters of the indicated model, given the data.

11

The Astrophysical Journal, 808:31 (20pp), 2015 July 20 Miller & Lamb



3.3. Fits of the Schwarzschild+Doppler Model to
Oblate Schwarzschild Data

Figure 2 shows the constraints on M and Req obtained by
fitting our standard S+D waveform model to synthetic observed
waveform data generated using the OS approximation.
Figures 2(a)–(c) show the results obtained for two values of

rotn and Req when the colatitude of the hot spot and the
inclination of the observer are both 60°, whereas Figure 2(d)
shows a typical example of the results obtained when the
colatitude of the hot spot and the inclination of the observer are
both 90°. In all these cases, fitting the data using our standard S
+D model does not significantly bias the estimates of M but
does significantly bias the estimates of Req in cases 2(b)–(d).
The 2c values for these fits (see the last column of Table 1)
indicate that they are all statistically good. We now discuss
each of these cases in turn.

Figure 2(a) shows the constraints on M and Req obtained by
fitting our standard S+D waveform model to the synthetic
waveform produced by a hot spot at 60spotq = , rotating at

300rotn = Hz, on the surface of a star with a moderate radius

(R 11.8eq = km). As noted above, in fitting our waveform
models to synthetic waveform data we assume that the
rotational frequency of the star is the same as the rotational
frequency of the hot spot; consequently, in this case we assume
that the stellar rotational frequency is 300 Hz. The oblateness of
the stellar surface, and hence the deviation of the synthetic
observed waveform from the waveform in the S+D model,
scales as the square of the stellar rotational frequency. We
therefore expect, and find, that for the moderate rotational
frequency of this case, the bias in the estimated value of Req is
not significant: the edge of the 1σ confidence region touches
the values of M and Req that were used in generating the
synthetic observed waveform, which are indicated by the black
square. For the moderate spot colatitude, spot rotational
frequency, and stellar radius of this case, the amplitudes of
the overtones of rotn in the synthetic observed waveform are
very low, and the constraints on M and Req are therefore
expected to be weak (see, e.g., Lo et al. 2013). This
expectation is confirmed by Figure 2(a): the 1σ contour is
large, and the 2σ and 3σ contours are even larger, extending
toward high M and Req and intersecting the lower boundary of
our search domain at M R 8eq= .
Figure 2(b) displays the constraints on M and Req obtained

by fitting our standard S+D waveform model to the synthetic
waveform produced by a hot spot that is again at 60spotq =  on
a star with R 11.8eq = km, but now rotating at 600rotn = Hz.
Even though the rotational frequency is twice that in the case
featured in Figure 2(a), M and Req are still poorly constrained,
because the hot spot is not near the rotational equator. The
oblateness of the R 11.8eq = km star in Figure 2(b) should be

4» times larger than the oblateness of the 11.8 km star featured
in Figure 2(a) (if the star featured in Figure 2(a) were spun up
to 600 Hz, the increase in its rotational distention would cause
its equatorial radius to be slightly larger than the 11.8 km radius
assumed in Figure 2(b)). Figure 2(b) shows that the 4» times
larger oblateness of this star is sufficient to introduce a
significant bias in the values of M and Req estimated by fitting
our standard S+D waveform model, which assumes the star is
spherical. The values of M and Req that were used to generate
the synthetic observed waveform are well outside the 3σ
contour, partly because the contours in this case are modestly
smaller than in the case featured in Figure 2(a), due to the star’s
higher rotational frequency.
Figure 2(c) shows the constraints on M and Req obtained by

fitting our standard S+D waveform model to the synthetic
waveform produced by a hot spot that is again at 60spotq = 
and rotating at 600rotn = Hz, but now on the surface of a star
with R 15eq = km. The contours are smaller than those in
Figure 2(b) because Req, and hence the surface rotational
velocity, is larger, but still extend to large M and Req, again
intersecting the lower boundary of our search domain at
M R 8eq= . The estimated values of M and Req are again
significantly biased.
Figure 2(d) illustrates the constraints on M and Req typically

obtained by fitting our standard S+D waveform model to OS
synthetic waveforms produced by a hot spot near the rotational
equator, when it is viewed by an observer at a high inclination
relative to the rotational axis. The confidence regions shown in
this figure were obtained by fitting the synthetic OS waveform
data produced by a hot spot with 600rotn = Hz, centered on the
rotational equator of a star with R 11.8eq = km, and viewed by
an observer who is in the plane defined by the star’s rotational

Figure 2. Constraints on M and Req obtained by fitting our standard S+D
waveform model to synthetic observed waveform data generated using the OS
approximation and assuming M M1.6= . Table 1 lists the values of the other
waveform parameters used to generate the data analyzed in each panel. The
long-dashed lines show the R M 4eq = and R M 8eq = boundaries of the
domain within which the posterior probability distribution was computed; the
dotted, short-dashed, and solid curves show, respectively, the 1σ, 2σ, and 3σ
confidence contours within this domain; and the black square indicates the
values of M and Req used to generate the waveform data. In the cases shown,
using the S+D model to analyze the data does not significantly bias the estimate
of M. Panel (a) shows that when the center of the hot spot and the observer are
at an intermediate latitude (here 60°) and Req and vrot have intermediate values
(here 11.8 km and 300Hz), the inferred constraints on M and Req are weak and
the estimate of Req is not statistically different from its true value. Panels (b)
and (c) show that, in contrast, when the center of the hot spot and the observer
are at an intermediate latitude and the star is rotating rapidly (here, at 600Hz),
the estimate of Req is significantly larger than its true value. Panel (d) shows
that when the hot spot and the observer are on the rotational equator, the
fractional bias in Req caused by using the S+D model is modest even if the star
is rotating rapidly, but is nevertheless statistically significant because Req is
tightly constrained.
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equator. The constraints are much tighter than in the previous
figures because of the high surface rotational velocity and the
large projection of the velocity along the line-of-sight to the
observer. The fractional biases in the estimates of M and Req
are smaller than in the cases discussed previously but are still
statistically significant, because the constraints on M and Req
are much tighter. If the spot were infinitesimal in extent, the
biases would be zero, because the stellar oblateness has no
effect on the waveform produced by a point source if
dR d 0q = at the source, and dR dq is zero on the rotational
equator where this spot is located. However, the synthetic
observed waveform used in this case was generated using a hot
spot with an angular radius of 25°, leading to a small but
significant bias. Because this fit, like those discussed
previously, is formally statistically acceptable, the quality of
the fit does not by itself provide an indication that the M and
Req estimates are biased.
These results show that fitting our standard S+D waveform

model to OS synthetic waveform data tends to produce
estimates of the star’s equatorial radius that are significantly
larger than its true radius, but produces estimates of the star’s
mass that do not differ from the true mass by a statistically
significant amount. The oscillations produced by a hot spot
near the star’s rotational equator have the relatively strong
overtones needed to provide tight constraints on M and Req. As
Figure 2(d) shows, the estimates of M and Req derived from
such waveforms are also less susceptible to bias caused by the
oblateness of the star.

We conclude that if a neutron star has a large radius or a
rotational frequency 300 Hz, one should fit OS waveform
models, rather than S+D waveform models, to the wave-
form data.

3.4. Fits of the Oblate Schwarzschild Model to
Oblate Schwarzschild Data

Figure 3 shows examples of the constraints on M and Req
obtained by fitting our standard OS waveform model to synthetic
waveform data generated using the OS approximation.
Figures 3(a) and (b) show the results obtained by fitting this
model to the synthetic waveforms produced by a hot spot on the
star’s rotational equator, observed at an inclination of 90°, for
rotation rates of 600 and 300 Hz, whereas Figures 3(c) and (d)
show the results obtained by fitting this model to the waveforms
produced by a hot spot at a colatitude of 60°, observed at an
inclination of 60°, for a rotation rate of 600 Hz (the waveform in
case 3(d) was generated assuming a temperature variation across
the hot spot, as discussed below). The 2c values for these fits
(see the last column of Table 1) indicate that they are all
statistically good. The approximate 1σ uncertainties in M and
Req for each of these fits are listed in Table 2. Comparison of this
table with Table 2 of Lo et al. (2013) shows that the constraints
on M and Req obtained by fitting our standard OS waveform
model to OS waveform data are similar to the constraints
obtained there by fitting our standard S+D waveform model to S
+D waveform data. We now discuss these results in more detail.

Figure 3(a) illustrates the constraints on M and Req typically
obtained when our standard OS waveform model is fit to OS
synthetic waveforms produced by a hot spot near the rotational
equator, viewed by an observer at a high inclination relative to
the rotational axis. The confidence regions shown in this figure
were obtained by analyzing the OS waveform produced by a
hot spot rotating at 600rotn = Hz, centered on the rotational

equator of a star with R 11.8eq = km, when seen by an
observer who is in the plane defined by the star’s rotational
equator. The constraints in Figure 3(a) are tighter than in
Figure 2(d) and the estimates of M and Req are not significantly
biased. The constraints in Figure 3(a) (1σ uncertainties of 2.9%
in Req and 2.8% in M; see Table 2) are much tighter than in
Figure 3(b), which shows results for a much lower rotational
frequency (300 Hz), and much tighter than in Figure 3(c),
which shows results for a hot spot that is not near the rotational
equator ( 60obsq = ).
It is useful to compare Figure 3(a) with Figure 2(e) of Lo

et al. (2013). In both cases, the synthetic waveform
corresponds to a hot spot rotating at 600rotn = Hz, centered
on the rotational equator of a star with R 11.8eq = km, and seen
by an observer in the plane defined by the star’s rotational
equator. The 1σ confidence region in Figure 2(a) is comparable
in size to the 1σ confidence region in Figure 2(e) of Lo et al.
(2013), but the 3σ region in Figure 3(a) is much smaller than
the 3σ region in Figure 2(e) of Lo et al. (2013).5 There are at

Figure 3. Constraints on M and Req obtained by fitting an OS waveform model
to synthetic observed waveform data generated using the OS approximation.
The line types and black square have the same meanings as in Figure 2. Table 2
lists the values of the parameters that were used to generate the waveform data
for each panel. Panel (a) shows that when the center of the hot spot is on the
rotational equator, the observer is in the plane of the star’s rotational equator,
and the star is rotating rapidly (here, at 600 Hz), M and Req are tightly
constrained. The constraints on M and Req here are similar to those in Figure 2
(e) of Lo et al. (2013), which considers the same spot geometry and rotation
rate. The parameter values used to generate the waveform data used in panel
(b) are the same as in panel (a), except for the rotation rate, which is much
lower (300 Hz), causing the constraints on M and Req to be substantially
weaker. Panel (c) shows that when the spot and observer are at an intermediate
colatitude (here 60°), the constraints on M and Req are much weaker, even if
the star has a large radius (here 15 km) and is rapidly rotating (here, at
600 Hz). Panel (d) shows the effect of fitting an OS waveform model that
assumes a uniform hot spot to OS waveform data generated using a spot with a
temperature that varies in the north–south (latitudinal) direction by 25% (see
text for details). This result shows that using a hot spot model that differs from
the actual spot in this way does not significantly bias the estimates of M and
Req.

5 The definitions of the 1σ uncertainties in M and Req used here differ from
those used in Lo et al. (2013) (see footnote j of Table 2).
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least four possible explanations for this difference: (1) a
statistical fluctuation in the synthetic waveform data of Lo et al.
(2013) made that waveform realization less constraining than it
would typically be, (2) a statistical fluctuation in the synthetic
waveform data used here made this waveform realization more
constraining than it would typically be, (3) our new analysis
pipeline does a better job of representing the true constraints, or
(4) something about OS waveforms actually yields better 3σ
(but not 1σ) constraints in this situation. It is not clear without
further exploration which, if any, of these explanations is
responsible for this difference.

Figure 3(b) shows the constraints on M and Req obtained by
analyzing a synthetic waveform produced by the same hot spot
and observer geometry as in Figure 3(a) (the hot spot is on the
rotational equator of a star with R 11.8eq = km and is seen by
an observer who is in the plane defined by the star’s rotational
equator), but for a rotation rate of 300 Hz, half the rotation rate
assumed in Figure 3(a). The slower rotation rate decreases the
harmonic content of the waveform, which increases the sizes of
the confidence regions, but the 1σ uncertainties (5.6% in M and
7.6% in Req; see Table 2) are still interestingly small. This
figure shows that fitting the waveforms of stars that rotate at a
moderate rate can provide interesting constraints on M and Req,
provided that the hot spot is near the rotational equator and the
observer is at a high inclination.

Figure 3(c) displays the constraints on M and Req obtained
by analyzing a synthetic waveform produced by a hot spot on a
star with a larger radius (R 15eq = km) again rotating at
600 Hz, but with the spot at a colatitude of 60° and the observer
at an inclination of 60°. The constraints are much less precise
than for the case shown in Figure 3(a) and less precise overall
than for the case shown in Figure 3(b), even though the star has
a larger radius, because the hot spot is not near the rotational
equator and the observer’s inclination is not close to 90°. Even

so, the 1σ uncertainties (6.5% in M and 6.7% in Req; see
Table 2) are still interestingly small.
Figure 3(d) shows a case in which the properties of the hot

spot assumed in our standard OS waveform model are different
from the properties used to generate the synthetic waveform
data to which the model was fit. In this case, the fitted model
assumes that the surface temperature is uniform across the hot
spot, as seen in the frame comoving with the surface, whereas
the synthetic waveform data were generated assuming that the
temperature varies by 25% with colatitude, from 2 keV at the
center of the spot to 1.5 keV at the top and bottom edges of the
spot. This case tests whether such a variation, which is
physically plausible, produces a significant bias in the
estimated values of M and Req. As Figure 3(d) shows, there
is a slight bias, but it is not statistically significant: the best-fit
values of M and Req differ by only ∼1.5σ from the values used
to generate the synthetic waveform data.
Figure 4 explores the effects on the mass and radius

constraints if there is less contrast between the energy spectrum
of the emission from the hot spot and the spectrum of the
phase-independent background. For this analysis, we took the
counts from the hot spot in each phase-energy bin generated for
the analysis shown in Figure 3(a), but generated a new
background having 9 106» ´ counts and a spectrum identical
to that of the hot spot (i.e., a Planck spectrum with a surface
comoving temperature of 2.0 keV instead of the value of
1.5 keV used in generating our other synthetic waveforms).
Hence, in this case the emission from the spot is simply extra
emission on top of the background, rather than extra emission
with a different spectrum. The constraints obtained are only
marginally worse than in case 3(a). Given the randomness
inherent in the generation of the synthetic data and in the
MCMC analysis of the data, this difference may not be
significant. This result shows that even if the phase-

Table 2
Constraints on M and Req Obtained Using Our Standard OS Waveform Modela

Figure rotn b
spotq c

obsq d Req
e ReqD f MD g Req,1d h,j M1d i,j

(case) (Hz) (deg) (deg) (km) (km) M( ) (%) (%)

3(a) 600 90 90 11.8 11.57–12.27 1.57–1.66 2.9 2.8
3(b) 300 90 90 11.8 11.14–12.97 1.44–1.61 7.6 5.6
3(c) 600 60 60 15 13.83–15.83 1.58–1.80 6.7 6.5
3(d) 600 60 60 11.8 9.99–11.49 1.41–1.62 7.0 6.9
4 600 90 90 11.8 11.35–12.19 1.49–1.59 3.6 3.2
5(a) 600 90 90 11.8 11.63–12.03 1.56–1.64 1.7 2.5
5(b) 600 90 90 11.8 11.68–12.24 1.56–1.64 2.3 2.5

Notes.
a The 1σ M and Req uncertainties listed here somewhat understate the actual constraints on M R( )eq , because M Req is usually better constrained than M or Req

considered separately (see, e.g., Figure 3(a)). All the synthetic waveform data were generated assuming M M1.6= . The data analyzed in case 3(d) were generated
assuming a temperature variation across the hot spot (see text).
b Rotational frequency of the hot spot as seen at infinity assumed in generating the synthetic observed waveform data.
c Inclination (colatitude) of the hot-spot center assumed in generating the synthetic observed waveform data.
d Inclination of the observer assumed in generating the synthetic observed waveform data.
e Equatorial radius assumed in generating the synthetic observed waveform data.
f Range of the 1σ contour projected onto the Req axis.
g Range of the 1σ contour projected onto the M axis.
h Approximate 1σ fractional uncertainty in Req computed by dividing one-half the 1σ range of Req by its central value.
i Approximate 1σ fractional uncertainty in M computed by dividing one-half the 1σ range of M by its central value.
j The definitions of the 1σ uncertainties inM and Req used here differ from those used in Lo et al. (2013), where they were estimated by projecting the full extent of the

1σ contour onto the M and Req axes, because in that work some of the 1σ confidence regions were highly asymmetric, with best-fit values of M and Req far from the
center.
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independent background has the same spectrum as the emission
from the hot spot, one can obtain good constraints on M and
Req.
Figure 5 explores whether 16 phase bins are adequate for the

cases considered here. We first generated a synthetic observed
waveform using the OS approximation and 32 phase bins, for a
hot spot centered on the rotational equator of a star rotating at
600 Hz and an observer in the plane of the star’s rotational
equator. We then regrouped these same data into 16 phase bins.
Figure 5 shows that the constraints on M obtained by analyzing
the data binned in these two different ways are essentially
identical, whereas the constraint on Req appears slightly tighter
when 32 phase bins are used. The randomness in the generation
of each synthetic waveform and in the MCMC analysis of a
given synthetic waveform produces variations in the derived
constraints; for example, Table 2 indicates that the 1σ
constraints derived in case 5(b) are slightly tighter than in
case 3(a), even though both used waveform data with 16 phase
bins. Thus, the apparent slight improvement in the constraint
on Req when 32 phase bins are used may not be significant.

3.5. Origins and Sizes of the Uncertainties in
M and Req Estimates

Understanding the uncertainties Md and Reqd in M and Req
estimates requires understanding how the properties of the
observed waveforms constrain M and Req. This is explained in
detail by Lo et al. (2013; see also Psaltis et al. 2014). The
asymmetry and harmonic content of the waveform constrain
the component of the velocity of the emitting region in the

observer’s direction, primarily via special relativistic Doppler
boosts and aberration. Because the rotational frequency of the
emitting region is accurately known from the oscillation
frequency, knowing the line-of-sight velocity of the emitting
region constrains the stellar radius. The amplitude of the
waveform constrains the colatitude of the hot spot, the
observer’s inclination, and the compactness (M R) of the star,
the last primarily via general relativistic light-bending effects.
Although the harmonic content of the waveform encodes

information about the rotational velocity of the emitting
element—and hence the cylindrical radius of the element (see
Lo et al. 2013, Section 2.2.2)—other unrelated aspects of the
system also affect the harmonic structure of the waveform. In
particular, the semi-amplitude C2 of the second harmonic in the
waveform is not uniquely related to the rotational velocity of
the emitting element. Consequently, there is in general no
simple way to extract information about Req from the harmonic
content of the waveform; model fitting is required.
Effects other than the rotational velocity that contribute to C2

include (1) anisotropic beaming of the radiation from each
emitting element and (2) occultation of part or all of the hot
spot by the star, as it rotates (see Poutanen & Beloboro-
dov 2006, which provides a useful guide to waveform
properties, even though the results reported there assume the
hot spot is infinitesimal in extent and were derived using an
approximate analytic expression for the light deflection). To
lowest order, the line-of-sight linear velocity of the emitting gas
vlos contributes a second harmonic with semi-amplitude
C v c C( )2 los 1µ , where c is the speed of light, C1 is the semi-
amplitude of the first harmonic (the fundamental), and the
coefficient of proportionality depends on the spectrum of the
emission (see Poutanen & Beloborodov 2006, Equation (66)).
The linear velocity produced by the rotation of the emitting gas
therefore contributes a second harmonic with semi-amplitude

( )C R c2 sin sin , (14)2 rot eq obspn q qµ

where θ is the colatitude of the surface element from which the
radiation is emitted. Because this contribution to C2 is

v c C( )los 1 and v c 1los  , it is generally C1 . In contrast,

Figure 4. Constraints on M and Req obtained by fitting our standard OS
waveform model to synthetic observed waveform data generated using the OS
approximation with a background that has the same spectrum as the emission
from the hot spot (a Planck spectrum with a surface comoving temperature of
2 keV). In this case the hot spot appears as extra emission from the surface with
the same spectrum as the background. The synthetic waveform was generated
assuming that the hot spot is centered on the rotational equator of a star rotating
at 600 Hz and that the observer is in the plane of the rotational equator. The line
types and black square have the same meanings as in Figure 2. This result
shows that even if the phase-independent background has the same spectrum as
the emission from the hot spot, one can obtain good constraints on M and Req.

Figure 5. Comparison of the constraints on M and Req obtained by fitting our
standard OS waveform model to a single realization of synthetic observed
waveform data generated using the OS approximation and then grouped into 32
(panel (a)) and 16 (panel (b)) phase bins. The synthetic waveform was
computed assuming that the hot spot is centered on the rotational equator of a
star rotating at 600 Hz and that the observer is in the plane of the star’s
rotational equator. The line types and black square have the same meanings as
in Figure 2. This result shows that increasing the number of phase bins beyond
16 does not appear to improve significantly the precision of the constraints on
M and Req (see also the discussion in the text).
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the beaming of emission from the atmosphere of the hot spot
(see Section 2.1.3) contributes a second harmonic with semi-
amplitude C C2 1» . In particular, emission with the anisotropic
beaming pattern I I h( ) (1 cos )0a a¢ = + ¢ produces a second
harmonic with semi-amplitude C h Csin sin2 obs 1q q» (see
Poutanen & Beloborodov 2006, Equation (50)); for a burst
atmosphere, h 0.92» (see Equation (9)). Because the
component of the second harmonic contributed by the
anisotropy of the radiation from the hot spot is independent
of the star’s rotational frequency, it is ≈C1 even if the star is
rotating slowly. Occultation of part or all of the hot spot by the
star can also contribute a second harmonic component with a
semi-amplitude C C2 1» . Thus, in burst oscillations the second
harmonics generated by other effects can be comparable to or
larger than the second harmonic produced by the rotational
velocity of the star.

In order to obtain useful constraints on M and Req, the
velocity of the hot spot surface must make a significant
contribution to the harmonic content of the waveform.
Equation (14) shows that this contribution is greater if the
spot and the observer’s sightline are closer to the star’s
rotational equator. Then the relativistic Doppler shift and
aberration are greater, the waveform depends more sensitively
on the radius of the star, and the constraints on M and Req are
tighter.

The uncertainties in estimates of M and Req also depend on
the fractional amplitude of the oscillation and the total number
of counts, including the number of background counts, which
we define as all counts not produced by photons from the hot
spot. As explained in Section 2.1.1, if all the other properties of
the system that affect the waveform are kept fixed, the
uncertainties in estimates of M and Req obtained by fitting
waveform models to waveform data scale approximately as

1- , where f N1.4 rms tot = . Here frms is the average
fractional rms amplitude of the oscillation during the observa-
tion and Ntot is the total number of detected counts.

The dependence of the waveform harmonic content on the
rotational frequency of the star, the inclinations of the spot and
the observer, and  are illustrated by the results presented in
Table 3 (compare Table 4 of Lo et al. 2013). The amplitudes of

the higher harmonics are substantially smaller in case 3(b) than
in case 3(a) because the lower rotational frequency in the
former case produces a line-of-sight velocity a factor of two
smaller than in case 3(a). Comparing case 3(c) with case 3(a)
demonstrates the sensitivity of the harmonic content of the
waveform to the inclinations of the spot and the observer. Even
though the line-of-sight velocity in case 3(c) is 95% of that in
case 3(a), because the larger radius of the star in case 3(c)
almost compensates for the higher inclinations of the spot and
observer, the higher inclinations reduce the amplitudes of all
the harmonics in case 3(c) compared to case 3(a). The ∼20%
reduction in the total rms amplitude in case 3(c) reduces  by a
comparable amount. The lower amplitudes of the higher
harmonics in cases 3(b) and (c) increase the uncertainties Md
and Reqd in these cases (see the final columns of Table 3).
The dependence of Md and Reqd on the rotational frequency

of the star and the inclinations of the spot and the observer are
also illustrated by the trends in the confidence regions for M
and Req in Figures 3(a)–(c) (see also Section 4.2.3 of Lo
et al. 2013). As noted above, the lower rotational frequency in
case 3(b) produces a smaller line-of-sight velocity, and hence a
larger confidence region for M and Req than in case 3(a). The
smaller inclinations of the spot and the observer in case 3(c)
produce a larger confidence region for M and Req than in case 3
(a), even though the line-of-sight velocity in case 3(c) is almost
the same as in case 3(a).
These results and those of Lo et al. (2013) show that Md and

Reqd are most sensitive to the colatitude of the hot spot and the
inclination of the observer. They are sensitive, but less so, to
the radius and the rotational frequency of the star. They depend
more weakly on the background.
Three of the cases featured in Table 3 (cases 3(a), 4, and 5

(b)) analyze different realizations of synthetic waveforms
generated using identical values of the OS waveform
parameters. Comparing these cases therefore provides insight
into the sizes of the statistical and sampling errors in our
results. The differences between the amplitudes of the
harmonics in these three waveforms reflect the different shapes
of the waveforms produced by fluctuations in the number of
counts in each energy and phase bin; they indicate that the
variations in the waveforms caused by these fluctuations are
2%. The fractional differences in the 1σ uncertainties in M

Table 3
Waveform Harmonic Content,  Values, and Uncertainties in M and Req

a

Figure rotn spotq obsq frms1
b frms2

c frms3
d frms

e f Req,1d M1d
(case) (Hz) (deg) (deg) (%) (%) (%) (%) (%) (%)

3(a) 600 90 90 10.0 3.9 1.4 11 479 2.9 2.8
3(b) 300 90 90 9.5 2.7 0.6 10 440 7.6 5.6
3(c) 600 60 60 8.1 2.6 0.7 9 377 6.7 6.5
4 600 90 90 10.0 3.8 1.3 11 479 3.6 3.2
5(b) 600 90 90 9.9 3.8 1.3 11 471 2.3 2.5

Notes.
a See the notes to Table 2 for the definitions of rotn , spotq , obsq , Req,1d , and M1d . As noted there, the uncertainties listed here somewhat understate the actual constraints
on M R( )eq , because M Req is usually better constrained than M or Req considered separately. All the synthetic waveform data were generated assuming M M1.6= .
b Fractional rms amplitude of the first harmonic (fundamental) component of the synthetic waveform.
c Fractional rms amplitude of the second harmonic component of the synthetic waveform.
d Fractional rms amplitude of the third harmonic component of the synthetic waveform.
e Fractional rms amplitude of the total variation of the synthetic waveform.
f Synthetic observed waveform figure of merit f N1.4 rms tot º ; see Equation (1).

16

The Astrophysical Journal, 808:31 (20pp), 2015 July 20 Miller & Lamb



and Req are much larger and are probably caused by the
limitations of our sampling of the parameters of the model
waveform during the fitting process; these differences indicate
that the sampling errors are ∼20% in Reqd and ∼10% in Md .

As a specific example, suppose that (1) 600rotn = Hz; (2)
90spotq =  and 90obsq = ; (3) the number of counts from the

hot spot is equal to the number of background counts,
producing a fractional rms amplitude of ∼54%; (4) the total
number of detected counts is 2 106~ ´ ; and (5) the values of
all the parameters in the waveform model except M and Req are
known independently of the waveform-fitting procedure. The
uncertainties in the estimates of M and Req would then be ∼2%
in M and ∼1% in Req (see Section 4.2.1 and Table 2 of Lo
et al. 2013).

Realistically, in addition to M and Req, the values of some or
all of the other parameters in the waveform model will have to
be determined as part of the waveform-fitting procedure.
Determining these additional parameters as part of the wave-
form-fitting process produces larger uncertainties in the
estimates of M and Req. The reason is that the effects on the
waveform of changing different parameters in the waveform
model are often very similar (see Section 4.2.2 of Lo
et al. 2013 for a detailed discussion of these degeneracies).
These degeneracies with respect to changes in the values of
waveform model parameters are an inherent property of any
physical model based on a rotating hot spot and cannot be
removed by improving the model.

The number of background counts in observed burst
oscillation waveforms is expected to be much greater than
the number of counts collected from the hot spot (see Section
2.1.1 above and Section 2.2.1 of Lo et al. 2013). A large
background increases the effects of the parameter degeneracies,
because it increases the statistical fluctuations in the observed
waveform. As a result, a wider range of model waveforms will
adequately fit the waveform data. If the number of background
counts is much greater than the number of oscillating counts,
and the number of oscillating counts and the geometry remain
unchanged, the uncertainties in M and Req increase with the

number of background counts as N1
back µ- (see

Section 2.1.1).
The uncertainties in M and Req are much more sensitive to

the inclinations of the hot spot and observer than to the
background. This can be seen by comparing cases 2(a), (c),
and (e) of Lo et al. (2013), which have the same inclinations
but very different backgrounds. The relatively modest effect of
an unknown background on the uncertainties in M and Req can
be seen by comparing cases 5(a) and (b) of Lo et al. (2013),
which assume the background is known exactly, with their
corresponding cases 2(c) and (d), which assume the back-
ground is unknown and must be determined as part of the
waveform-fitting procedure.

As an example of a realistic situation, suppose that (1)
600rotn = Hz; (2) 90spotq =  and 90obsq = ; (3) the number

of background counts is 9 times the number of counts from the
hot spot, producing a fractional rms amplitude of 11%; (4) the
total number of detected counts is 107; and (5) the values of all
the parameters in the waveform model, including M and Req,
must be determined as part of the waveform-fitting procedure.
Then the uncertainties in the derived estimates of M and Req

would be ∼3% (see Table 2).

Independent knowledge of some of the system parameters
can reduce or eliminate degeneracies, reducing the uncertain-
ties in M and Req. For example, accurate a priori knowledge of
the observer’s inclination can significantly improve the
constraints, if the spot and observer inclinations are high;
a priori knowledge of the distance to the system can also help
(see Lo et al. 2013, Section 4.2.5).
Psaltis et al. (2014) proposed a simple formula for

estimating the fractional uncertainty in estimates of Req
obtained by fitting waveform models to waveform data. This
formula is

R

R

R

c

S B

c S

4
sin sin , (15)
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where S is the number of counts from the hot spot, B is the
number of background counts, and c1 is the fractional rms
amplitude of the fundamental (first harmonic) in the waveform,
defined in terms of S; the other symbols have their previous
meanings. This formula is based on the following assumptions
and approximations: (1) a single-energy or bolometric analysis
is adequate; (2) the hot spot is infinitesimal in extent; (3) the
distortion of the waveform produced by the surface rotational
velocity is the dominant source of a nonzero second harmonic
in the waveform; (4) the surface rotational velocity contributes
a second harmonic with amplitude C v c C2( )2 los 1= ; (5) rotn ,
Req, sin spotq , and sin obsq are all known independently of the
waveform-fitting process.
Several of the assumptions and approximations on which

Equation (15) is based can be questioned for X-ray burst
oscillations: (1) the use of energy-resolved waveforms
provides better results than single-energy or bolometric wave-
forms (see, e.g., Lo et al. 2013; Psaltis et al. 2014); (2) it will
probably be necessary to use data from the peaks and/or tails of
bursts, when the hot spot is not infinitesimal in extent (see
Section 2.1.1); (3) the distortion of the waveform produced by
the surface rotational velocity is not the dominant source of a
nonzero second harmonic for the radiation beaming pattern
expected for X-ray burst oscillations (see above and Section
2.1.3); (4) the assumed coefficient of proportionality between
C2 and C1 is not the one derived by Poutanen & Beloborodov
(2006), which depends on the spectrum of the emission (see
their Equation (66)); (5) in most cases, some or all of the
parameters Req, sin spotq , and sin obsq will not be known a priori,
and will have to be determined by the waveform-fitting
process. Assuming that the values of these parameters are
known a priori completely eliminates the degeneracies among
them, and therefore greatly overestimates the precision with
which Req can realistically be determined using a given data
set. (Although the fractional rms amplitude c1 of the first
harmonic component of the waveform, the number of counts S
from the hot spot, and the number of background counts B are
not directly observable (see Section 2.1.2) and would have to
be determined by waveform fitting, the total number of counts
N S Btot = + and the number of counts c S1 in the first
harmonic component of the waveform are directly observable.)
How much do the simplifying assumptions made in deriving

Equation (15) affect the computed uncertainty in Req? To
investigate this, we assume that the values of all the system
parameters needed to evaluate Equation (15) are somehow
known without doing any waveform fitting and evaluate
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Equation (15) using the values of these parameters that we
used to generate the synthetic waveforms in our cases 3(a)–(c).
We then compare the values of Reqd given by Equation (15)
with the 1σ uncertainties in Req we obtained by fitting our
standard OS waveform model to the corresponding synthetic
waveform data, using our Bayesian approach. In case 3(a),

600rotn = Hz, R 11.8eq = km, 90obs spotq q= = , S 106= ,

B 9 106= ´ , and c1 = 1.077 (recall that the fractional rms
amplitude can exceed unity). Inserting these values into
Equation (15) yields R R 0.0099eq eqd = , whereas our Baye-
sian statistical analysis yields R R 0.029eq eqd = . In case 3(b),

300rotn = Hz, R 11.8eq = km, 90obs spotq q= = , S 106= ,

B 9 106= ´ , and c1 = 0.990. Inserting these values into
Equation (15) yields R R 0.022eq eqd = , whereas our Bayesian
analysis yields R R 0.076eq eqd = . Finally, in case 3(c),

600rotn = Hz, R 15eq = km, 60obs spotq q= = , S 106= ,

B 9 106= ´ , and c1 = 0.856. Inserting these values into
Equation (15) yields R R 0.013eq eqd = , whereas our Bayesian
analysis yields R R 0.067eq eqd = . Thus, in these cases the
uncertainties in Req obtained by fitting our standard OS
waveform model to synthetic waveform data using our
Bayesian statistical approach are ∼3–5 times larger than the
uncertainties given by Equation (15). In reality, the values of
all the system parameters needed to evaluate Equation (15)
usually will not be known.

Equations (14) and (15) suggest that the uncertainty in Req

should be smaller for larger values of rotn , Req, sin spotq , and
sin obsq , other things being equal. Our waveform-fitting results
(see Table 2) are qualitatively consistent with this behavior but,
as discussed above, reveal important quantitative differences
from the scaling implied by these equations. This is not
surprising, because Equations (14) and (15) do not include
some important effects, such as occultation of the hot spot by
the star. This can occur when the spot is near the rotational
equator, and if it does, it will reduce further the uncertainties in
M and Req. Thus, there is no assurance that the actual
uncertainty in Req will scale with rotn , Req, sin spotq , and sin obsq
as simply as suggested by Equations (14) and (15). Conse-
quently, choosing targets for observation and planning
observational campaigns should be done using uncertainties
in M and Req obtained by fitting waveform models to
appropriate synthetic waveform data.

Tables 2 and 3 show the results of our Bayesian analysis of
the uncertainties in M and Req that can be obtained by fitting
our standard OS waveform model to burst oscillation waveform
data, represented here by synthetic waveform data generated
using the OS approximation. Figures 3, 4 and 5 shows the 1σ,
2σ, and 3σ confidence contours in the M–Req plane for these
cases. We find that M and Req can both be estimated with 1σ
uncertainties 7% if (1) the star’s rotation rate is 600 Hz, (2)
the hot spot is located at a colatitude 60°, (3) the star is
observed at a rotational inclination 60°, (4) the oscillations
have a fractional rms modulation 10%, and (5) 107 total
counts are collected from the star.

4. CONCLUSIONS

We have extended the analysis by Lo et al. (2013) of the
constraints on M and Req that can be achieved by fitting
waveform models to burst oscillation waveform data, by fitting

our standard S+D and OS waveform models to synthetic
observed waveform data generated using the OS
approximation.
We find that if the neutron star has a moderately large radius

and is rapidly rotating and the hot spot that produces the
oscillation is at a moderate to low rotational colatitude, fitting
our standard S+D waveform model to synthetic waveform data
generated using the OS approximation can produce fits that are
statistically good but yield estimates of M and Req that have
significant biases. However, this spot geometry generally does
not lead to tight constraints on M and Req (see, e.g., Cadeau
et al. 2007, Table 2; Lo et al. 2013, Table 2), because it
produces waveforms in which the oscillation amplitude is low
and overtones of the rotational frequency are very weak. If
instead the hot spot is at a high rotational colatitude, fitting our
standard S+D waveform model to OS synthetic waveform data
can yield usefully tight constraints on M and Req with much
smaller biases, even for rapidly rotating, oblate stars. However,
our improved analysis procedure makes it possible to fit our
standard OS waveform model to waveform data almost as
quickly as our standard S+D waveform model. Consequently,
even though our standard S+D waveform model is likely to be
adequate when analyzing waveforms produced by the spots
located near the star’s rotational equator that will yield the
tightest constraints on M and Req, there is now no reason not to
use OS waveform models for all waveform analyses.
We find that fitting our standard OS waveform model to OS

waveform data produces tight constraints on M and Req if the
star has a moderate to high rotation rate, the hot spot is at a
moderate to high rotational colatitude, and the observer is at a
moderate to high inclination. Specifically, our results show that
if the star’s rotation rate is 600 Hz, the spot center and the
observer’s sightline are both within 30° of the star’s rotational
equator, the fractional rms amplitude of the oscillations is
10%, and 107 counts can be collected from the star, M and
Req can both be determined with 1σ uncertainties 7%. This is
a realistic fractional amplitude, and this many counts could be
obtained from a single star by the accepted NICER and
proposed LOFT and AXTAR space missions by combining data
from many X-ray bursts. If the spot center and the observerʼs
sightline are both close to the starʼs rotational equator, M and
Req can be determined with 1σ uncertainities 3%. If the star’s
rotation rate is 300 Hz and the spot center and the observer’s
sightline are both close to the star’s rotational equator, M and
Req can be determined with 1σ uncertainties 8%. Independent
knowledge of the observer’s inclination can reduce these
uncertainties. Simultaneous measurements of M and Req with
these precisions would improve substantially our understanding
of cold, ultradense matter.
Comparison of the constraints on M and Req obtained by

fitting our standard OS waveform model to a single realization
of OS synthetic observed waveform data generated using the
OS approximation and then grouped into 32 and 16 phase bins
indicates that increasing the number of phase bins beyond 16
does not improve significantly the precision of the constraints
on M and Req. We also investigated the constraints on M and
Req obtained when the background has the same spectrum as
the emission from the hot spot, by fitting our standard OS
waveform model to synthetic observed waveform data
generated using the OS approximation, assuming the emission
from the hot spot and the background have the same spectrum.
The result shows that one can obtain good constraints onM and
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Req even if the phase-independent background has the same
spectrum as the emission from the hot spot.

A key finding of Lo et al. (2013) was that M and Req

estimates derived by fitting S+D waveform models to S+D
synthetic waveform data were not significantly biased when a
fit was both statistically good and highly constraining, even
when the spectrum, beaming function, or spot shape assumed
in the model differed substantially from those assumed in
generating the waveform data. Here we extended this
investigation by exploring the effect on estimates of M and
Req of a 25% variation of the hot-spot temperature in the north–
south direction. We find that such a temperature variation does
not produce a significant bias in the estimated values of M and
Req. Thus, we still have not found a case in which a difference
between the assumed properties of the hot spot in the fitted
model and those of the hot spot that produced the observed
waveform yields a fit that is both statistically good and highly
constraining but gives M or Req estimates that are significantly
biased. Consequently, we are cautiously optimistic that fitting
model waveforms to burst oscillation data will provide
measurements of neutron star masses and radii that are accurate
as well as precise.

Finally, we comment that although the primary application
of our work is to X-ray burst oscillation waveforms, our
methods can, with small changes, be used to analyze the X-ray
oscillations produced by the heated polar caps of rotation-
powered pulsars, which is the focus of the NICER mission.
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referee for suggestions that helped us improve the paper.

APPENDIX
CONSTRUCTION OF A MINIMUM BOUNDING

ELLIPSOID

As we discussed in Section 2.4, the accuracy of our
marginalization over obsq , cq , and spotqD is improved consider-
ably when, for a given obsq , we construct the minimum ellipse
that bounds the ( , )c spotq qD combinations that give good fits to
the data then sample only this volume in our Monte Carlo
integration. It is, however, not trivial to construct such a
minimum ellipse. We therefore present in this appendix an
algorithm for computing an almost minimum volume ellipsoid
around a given set of points in any number of dimensions. This
algorithm was originally derived by Kachiyan (1996), but we
follow here the discussion of Todd & Yıldırım (2007). More
details may be found in Todd & Yıldırım (2007); here we
present only the essential formulae.

Suppose we have a set of points x in d dimensions. An
ellipsoid that contains all of these points can be defined by its
d-dimensional center c and a d × d symmetric, positive-definite
matrix Q, where for any point x in the set

x c Q x c( ) · · ( ) 1. (16)T- - ⩽

We can write x c( )- in component notation as

x c

x c
x c

x c
( ) , (17)
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where the subscripts d1, 2, ,¼ represent each of the d
dimensions, and x c( )T- is the transpose of x c( )- , i.e.,
x c x c x c( , , , )d d1 1 2 2- - ¼ - . The volume of this ellipsoid is

V Q(det )d
1 2- , where Vd is the volume of the unit ball in d

dimensions (i.e., π in two dimensions, 4 3p in three
dimensions, etc.). The task set by Khachiyan is to find an
ellipsoid whose volume is no more than a factor (1 )+ times
the minimum volume of an ellipsoid that encloses all the
points.
We use the algorithm (see Algorithm 3.1 in Section 3 of

Todd & Yıldırım 2007):

1. Input a set of m d-dimensional points (call these
a a, , m1 ¼ ) and a tolerance 0 > .

2. Let k = 0 and n d 1= + . Let p0 be the m-dimensional
vector m m m(1 , 1 , , 1 )¼ , i.e., the vector with elements
p m p m p m1 , 1 , , 1m1

0
2
0 0= = ¼ = . Define q i to be

the n-dimensional set of vectors q a(( ) , 1)i i T T= for
i m1 to= .

3. Define w p q p q( ) ( ) · ( ) ·i
i T i1º L - for each i = 1,K, m,

where p( )L is the n × n matrix

( )p p q q( ) .
i

m

i
i i T

1
åL º
=

4. If w p n( ) (1 )i
0 +⩽ for all i = 1,K, m, where

( )w p q p q( ) · ( ) · ,i
i T i1º L -

then we are done. If not, iterate the following three steps
until we have a p that satisfies w p n( ) (1 )i +⩽ for all
i = 1,K, m.

5. Let j be the index i that maximizes q p q( ) · ( ) ·i T k i1L - ,
and let q p q( ) · ( ) ·j T k j1k º L - .

6. Let
n

n ( 1)
b

k
k

º
-
-

.

7. Set p p(1 )k k1 b= -+ . Add β to pj
k 1+ . Set k k 1º + .

The output of these steps is a p k that satisfies
w p n( ) (1 )i

k +⩽ for all i.
Once we have the desired p, we define a d × m matrix A

whose ith column (recall that i runs from 1 to m) is a i. Let P be
a m × m diagonal matrix whose (i, i) component is p k

i . Then the
desired approximations to the center and defining matrix of the
bounding ellipsoid are

c Ap (20)kº

and

( )Q
d

A P A A p Ap
1

(1 )
· · · · . (21)T k k T 1
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In the d = 2 dimensional case that is of interest in our study
here, Q and c can be used to define the axes and orientation of
the bounding ellipse. In practice, we find that for some of the
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a i, a c Q a c( ) · · ( )i T i- - can be slightly larger than unity, so
if it is critical for a given application that this product be strictly
less than unity, one can replace the prefactor of Q by something
like d1 [(1 1.1 ) ]+ .
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