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Abstract

The discovery of quasi-periodic brightness oscillations (QPOs) in the X-ray emission accompanying the giant
flares of the soft gamma-ray repeaters SGR1806–20 and SGR1900+14 has led to intense speculation about their
nature and what they might reveal about the interiors of neutron stars. Here we take a fresh look at the giant flare
data for SGR1806–20, and in particular we analyze short segments of the post-peak emission using a Bayesian
procedure, which has not previously been applied to these data. We find at best weak evidence that any QPO
persists for more than ∼1 s; instead, almost all the data are consistent with a picture in which there are numerous
independently excited modes that decay within a few tenths of a second. This has interesting implications for the
rapidity of decay of the QPO modes, which could occur by the previously suggested mechanism of coupling to
the MHD continuum. The strongest QPOs favor certain rotational phases, which might suggest special regions of
the crust or of the magnetosphere. We also find several previously unreported QPOs in these data, which may help
in tracking down their origin.
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1. Introduction

Quasi-periodic X-ray brightness oscillations in the 2004
December giant flare from SGR 1806−20 were first reported
by Israel et al. (2005). They detected a strong QPO at 92.5 Hz
in Rossi X-Ray Timing Explorer (RXTE) data and found
evidence for lower-frequency QPOs at about 18 and 30 Hz.
They suggested the QPOs could be related to torsional modes
excited during the flare. Motivated by this, Strohmayer & Watts
(2005) investigated the RXTE data obtained during the 1998
August event from SGR 1900+14. They found a sequence of
rotation-phase-dependent QPOs at 28, 54, 84, and 155 Hz, and
suggested an identification with a sequence of low-order
torsional modes with different l values. These authors also re-
examined the RXTE data from the SGR 1806−20 giant flare,
and found evidence for additional oscillations at 150 and
625 Hz (Strohmayer & Watts 2006). They suggested that the
625 Hz QPO could be identified with torsional oscillation
modes with at least one radial node in the crust, and that this
could lead to a probe of the crust thickness.

These observational findings touched off a plethora of
theoretical investigations. Levin (2006) noted that the coupling
of the crust to the core by a strong vertical magnetic field
should lead to damping of the crustal oscillations within a few
tenths of a second. Subsequent investigations explored the
magnetic coupling of the crust to the core in more realistic
scenarios (Glampedakis et al. 2007; Levin 2007; Vietri et al.
2007; Colaiuda et al. 2009; Gabler et al. 2011, 2013; Levin &
van Hoven 2011), and also explored how torsional mode
identifications could be used to constrain the properties of the
neutron star, including its mass and radius (Samuelsson &
Andersson 2007; Sotani et al. 2007, 2016, 2017; Colaiuda &
Kokkotas 2011; Miller & Lamb 2016), as well as its internal
composition (Watts & Reddy 2007). Other authors have
explored emission and X-ray modulation mechanisms for the
QPOs (Timokhin et al. 2008; D’Angelo & Watts 2012), and the
role of superfluidity in modifying the torsional oscillation

spectrum of neutron stars (Passamonti & Lander 2013, 2014).
A focus of current theoretical modeling is the relative
importance of magnetic and shear stresses, and to what extent
the crustal torsional oscillation spectrum is present in the
excitation spectrum, if at all (Gabler et al. 2014, 2016, 2017;
Link & van Eysden 2016a, 2016b; Passamonti & Pons 2016;
Rezzolla & Ahmedov 2016; Tews 2017).
Most of the data analysis and theoretical attention have

focused on the frequencies of the QPOs (for a recent example,
see Pumpe et al. 2018). The attraction of this focus is that,
potentially, particular oscillation modes can be associated with
particular QPO frequencies, and those associations can reveal
aspects of the interiors of the oscillating neutron stars. But the
duration of the signals also contains useful information,
particularly about the expected damping mentioned above.
Indeed, Huppenkothen et al. (2014) found evidence of such
damping of the ∼625 Hz QPO from SGR1806−20. However,
there has not yet been a systematic study of these QPOs over
short intervals.
Here we perform a comprehensive analysis of QPOs from

the SGR1806−20 giant flare. We divide the data into intervals
of one second, which is roughly one-eighth of the rotation
period, to explore whether there are short-lived QPOs, or
whether instead most QPOs are long-lived. This also allows us
to determine whether there are QPOs that are present for many
rotational periods, but only in some range of rotational phases.
Somewhat surprisingly, we find that there is little evidence for
long-lived QPOs; instead, there are many QPOs that come and
go over times that are likely to be a few tenths of a second. This
could provide further support for the idea that coupling of
crustal modes to the core MHD continuum damps the modes
rapidly. In Section 2 we describe the data set that we analyze,
as well as our analysis method (which is a new Bayesian
approach not previously used in this context). In Section 3 we
present our results, and we conclude with a discussion of the
results in Section 4.
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2. Methods

2.1. Observations

The data we analyze are the same that were analyzed by
Israel et al. (2005) and Strohmayer & Watts (2006). The data
were recorded in the Goodxenon_2s mode, which has a time
resolution of ≈1μs and a buffering time of 2 s, thus making it
not saturate as easily as the Goodxenon_16s mode that
happened to be in use during the earlier giant flare from
SGR1900+14. We include all counts without making cuts on
the energy channel; the motivation for this is that the burst
actually came in through the side of the detector, which made
particular energy channel assignments less reliable than
normal.

2.2. Data Analysis

The rotational period of SGR1806−20 is 7.56 s (e.g.,
Hurley et al. 2005). In order to keep rotational phase
information it would be useful to analyze data in segments
with durations that are evenly divisible into the rotational
period; for example, one-eighth of a period has a duration of
0.945 s. However, because the RXTE data in this mode have
time bins of duration 2−20 s, a fast Fourier transform of data
from 0.945 s segments risks aliasing because 0.945 s is not a
power of 2 times 2−20 s. We therefore divide data into
segments that start every 0.945 s, but that are exactly 1 s long
each; thus segments overlap each other by 0.055 segments. We
have verified via spot checks that using 0.945 s segments or
1.0 s segments produces results that are qualitatively and
quantitatively similar to each other. There are 368 such 1 s
segments in the data, lasting a total of ≈348 s. We also
explored whether a sliding window would reveal additional
features, but the results were all qualitatively the same as those
we obtained in the analyses that we report. We use data starting
20 s after the beginning of the burst (that is, our start time is
2004 December 27 at 21:30:51.378 UTC) to avoid saturation of
the RXTE Proportional Counter Array detectors. A stacked light
curve for the eight segments we use, based on the first 10
periods after our starting point, is in Figure 1; compare this
figure with the bottom panel of Figure 1 from Strohmayer &
Watts (2006), and note that the top panel of their same figure
shows the full light curve of the giant flare, including the
obvious rotational modulation.

For each segment, we divide our data into 4096 equal-length
bins in time, which therefore last exactly 2−12 s each, and use
the binned data to construct a power density spectrum from a
fast Fourier transform. The resulting spectrum for each segment
therefore extends to a Nyquist frequency of 2048 Hz in
intervals of 1 Hz. Instead of the commonly used Leahy
normalization of the power density spectrum (Leahy et al.
1983), in which the mean power for pure Poisson noise is 2, we
use a normalization in which the mean for Poisson noise is 1, to
match the assumption of Groth (1975), which we follow in our
analysis of the power density spectrum. Our analysis does not
consider frequencies below 10 Hz, because lower frequencies
have greater red noise contributions from the pulse profile and
the overall decay of the emission. We need to consider
frequencies at least this low given the reports of some QPOs in
the 10–20 Hz range. The contribution of the red noise in the
vicinity of 10 Hz is small, which means that our conclusions
are insensitive to the precise choice of the frequency floor.

Our Bayesian search for QPOs compares two models:

1. Red noise model: there is a red noise component, so that
the non-Poisson power density at frequency f is

= -( ) ( ) ( )P f A f 15 Hz , 1red
2

where we normalize the power to a fiducial frequency of
15 Hz. Thus, the amplitude A is the only parameter in this
model. We chose an f−2 slope for our red noise model
because this would correspond to an exponential decay.
However, we found that the choice of the red noise slope
makes no significant difference. In particular, we
reanalyzed the strongest signals (listed in Table 1 below)
using red noise power laws of f−1, f−1.5, f−2.5, and f−3.0

for both the red noise and Lorentzian models, and all of
the Bayes factors were consistent with the values that we
report here. We have also carried out an exploratory
analysis in which we include the red noise slope as an
extra parameter, and the results are generally consistent
with the f−2 red noise fit.

2. Lorentzian model: there is a red noise component plus a
Lorentzian, so the non-Poisson power density at
frequency f is

= +
D + -

-( ) ( )
( ) ( )

( )P f B f
C

f f f
15 Hz . 2Lorentz

2
2

0
2

Thus, this model has four parameters: B, C, Δf, andf0.
The red noise amplitude B for the Lorentzian model is
determined independently of the parameter A in the red
noise model.

We fit each of these two models to all of the 368 data
segments, independently. That is, we allow the parameters of
the models to vary freely from one data segment to the next.

Figure 1. Light curve for one rotational period, produced by stacking the first
10 periods after the starting point (2004 December 27 at 21:30:51.378 UTC).
The segments labeled 0 through 7 correspond to the segments that we analyze,
i.e., we divide each of the 46 rotational periods in our data into eight parts, and
analyze 1.0 s from the beginning of each segment. Because one-eighth of a
rotational period is 0.945 s, this means that each segment overlaps the next by
0.055 s; we make this choice because unlike for a 0.945 s segment, a fast
Fourier transform of a 1.0 s segment is commensurate with the intrinsic 2−20 s
time binning of the RXTE data.
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We follow standard Bayesian procedure by computing an
unnormalized posterior probability density p at a given
parameter combination by multiplying the prior probability
density q at that combination by the likelihood  of the data
given the model at that combination. Thus, for the Lorentzian
model,



D µ D
D

( ) ( )
( ) ( )

p B C f f q B C f f

B C f f

, , , , , ,

, , , . 3
Lorentz 0 Lorentz 0

Lorentz 0

The priors are normalized so that their integral over the
parameter space is 1, whereas the posteriors would have to be
divided by their integral over all parameter space in order to be
normalized.

We compute the likelihood using the formulae of Groth
(1975), who showed that, for a single frequency bin (n=1 in
his Equation (15)), the likelihood of observing a power P when
a non-Poisson power Ps is expected (and when the power is
normalized such that the mean Poisson-only power is 1) is
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In our analysis we use this formalism, along with the standard
assumption that the amplitudes at different frequencies in the
fast Fourier transform are statistically independent from each
other. Note that in the limit of no non-Poisson power, i.e.,

P 0s , only m=0 contributes in the sum and thus
  -( )P e; 0 P, which is the familiar result for Poisson-only
power with a mean of 1.

The likelihood of the entire power spectrum that we analyze
for a given segment, which has 2038 independent frequencies
(because 10 of the 2048 total frequencies are below 10 Hz), is
the product of the likelihoods of the observed power at each
frequency. For example, for the Lorentzian model,
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Here, Pi is the observed power at the frequency fi of bin i, and
D( ∣ )P f B C f f, , ,iLorentz 0 is the non-Poisson power expected at

frequency fi given model parameter values B, C, Δf, and f0. We
approximate the infinite sum at each frequency by truncating
the series when the term being considered has a magnitude less
than 10−20 of the running sum, which we find gives a fast and
accurate measure of the likelihood.
Our prior for the red noise amplitude, for both models, is

uniform between 0 and 10 at 15 Hz. Thus, the red noise
component is [0–10]( f/15 Hz)−2; recall that we are fitting
power densities, so, for instance, 0 would mean no non-Poisson
noise. For no segment does the best-fit red noise amplitude
approach 10, and by definition the amplitude cannot be
negative. For similar reasons, our prior for the Lorentzian
amplitude C is uniform between 0 and 30.
Our prior for the Lorentzian width Δf is uniform in log

width, from log10(Δf/Hz)=−0.3 (Δf≈0.5 Hz) to
D =( )flog Hz 210 (Δf=100 Hz). We choose a logarithmic

prior so that we are not biased in the scale of the width, and we
choose this minimum width because at our frequency
resolution of ∼1 Hz, narrower peaks could simply represent
single-frequency fluctuations. Our maximum width encom-
passes the possibility that there could be an overall excess of
noise, rather than a sharp peak.
Our prior for the Lorentzian centroid frequency f0 depends

on the search. We select this approach because it is possible
that there are several QPOs present in a given data segment; if
we had instead searched for a single Lorentzian over all
frequencies, it is probable that only the strongest QPO would
have been detected. In a given search, we assign a prior
probability to f0 that is uniform in log frequency within the
bounds of that search. We base our frequency searches on
previously reported QPOs, and thus our frequency bounds are
10–20 Hz; 20–40 Hz; 40–80 Hz; 80–120 Hz; 120–200 Hz;
200–550 Hz; 550–700 Hz; 700–1000 Hz; 1000–1400 Hz; and
1400–2000 Hz. We find that there are a few data segments that
contain multiple strong QPOs, but that this is rare. We therefore
also performed an exploratory analysis of the data segments in
which we used the full frequency range 10–2000 Hz, which led
to the same conclusions that we present in this paper.
In order to provide a framework for our later calculation of

the significance of possible QPO signals, we also produce a
synthetic data set with no red noise and no QPOs. We do this
by generating each power density in the spectrum by random
draws from the e−P distribution expected for pure Poisson
noise; we found that other methods (for example, generating
and Fourier-analyzing a count rate curve that is similar to the
real data but that has no periodic signals) produce comparable
results. We then analyze our synthetic set in the same way that
we analyze the real data.

Table 1
QPOs with Bayes Factors Larger than 1000 and Δf<10 Hz

Start Time (s)a Frequency (Hz)b Freq Width (Hz) Bayes Factor

301.455 31.499–32.724 1.324–2.640 1.80×107

102.060 91.239–92.036 0.748–1.593 2.47×106

210.735 92.967–93.465 0.566–1.066 9.77×105

138.915 21.148–21.605 0.610–1.097 5.09×105

177.660 87.870–91.119 2.787–7.296 2.30×105

165.375 92.109–92.792 0.631–1.324 2.09×105

223.020 23.302–25.214 1.957–4.915 1.97×105

192.780 27.574–28.662 0.913–1.956 1.68×105

164.430c 94.731–100.485 2.380–7.281 1.60×105

132.300 16.621–17.052 0.556–0.893 6.28×104

113.400 156.103–157.109 0.781–1.916 2.21×104

89.775 25.857–27.221 1.273–2.820 1.10×104

102.060 22.908–23.506 0.557–0.961 9.76×103

238.140 28.831–32.546 3.148–9.308 5.63×103

83.160 148.988–149.803 0.621–1.172 4.57×103

286.335 20.202–21.262 1.702–4.525 4.30×103

218.295 27.267–28.475 0.775–1.643 3.09×103

172.935 92.024–93.510 0.702–2.698 2.49×103

218.295 94.308–97.290 2.000–6.738 1.83×103

156.870 91.605–92.506 0.604–1.159 1.48×103

132.300 88.422–89.257 0.615–1.380 1.36×103

203.175 30.329–31.999 1.077–3.396 1.32×103

123.795 50.962–51.984 0.641–3.249 1.02×103

Notes.
a t=0 corresponds to 2004 December 27 at 21:30:51.378 UTC.
b The numbers for the frequency and frequency width show the 16%–84%
credibility range.
c Boldface indicates a frequency not previously reported.
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We explore the parameter spaces of both models using an
affine-invariant Markov chain Monte Carlo (MCMC) code that
we wrote based on the approach of Goodman & Weare (2010).
For both the red noise and the Lorentzian search, for every data
segment, we perform 20 independent runs with 32 walkers
each, and 100 candidate updates of each walker after
convergence was established. We find this to be sufficient in
all analyses.

After the parameter spaces of both models are explored for a
given data segment, we estimate the significance of any
possible QPOs by computing Bayes factors. In general, the
Bayes factor in favor of some model A (with parameters a)
over some model B (with parameters b) is the ratio






ò
ò

a a a

b b b
=

( ) ( )

( ) ( )
( )

q d

q d
. 6AB

A A

B B

The integral in the numerator, which is over all possible values
of the parametersa, is sometimes called the evidence for model
A, and likewise the integral in the denominator is the evidence
for model B. The odds ratioAB of model A in favor of model
B is simply AB multiplied by the prior probability ratio
between model A and model B. We set that prior probability

ratio to unity between the Lorentzian and the red noise model,
so =Lorentz,rednoise Lorentz,rednoise in our case.
Note that the Bayes factor depends on the priors as well as

on the likelihood. For example, if we were to choose a very
narrow prior on log10 f0 that happened to be near a strong
signal, the Bayes factor would be much larger than if we chose
a broad prior. This is why we perform the same analysis, using
the same 10 frequency ranges, on the synthetic data (which has
no signal) as we do on the real data.

3. Results

3.1. General Characteristics of the Signals

Figure 2 shows the Bayes factors in favor of the Lorentzian
model as computed for both the real data (solid red squares and
lines) and the synthetic data. There are several points to note:

1. Consistent with previous analyses, there are far more
large Bayes factors in the real data than in the synthetic
(no signal) data. The highest Bayes factor in the synthetic
data is  » 450. In contrast, there are a large number of
segments and frequency ranges in the real data with
 > 103, with the highest Bayes factor exceeding 107.

Figure 2. Bayes factors, as a function of segment, for the real data (solid red squares) and for the synthetic data (solid black triangles). Recall that the segments start 1/
8 of a period apart, or 0.945 s, but last 1.0 s each. The different panels are for centroid frequencies in various ranges, which are given in Hertz in the top left of each
panel. Note that the power floors for the real and the synthetic data are comparable, which suggests that there is no overall bias in the Bayes factors. Note also that
there are far more segments in the real data than in the synthetic data that have Bayes factors greater than unity, or 10, or 100, or other thresholds. Most of these likely
contain real signals, but at small Bayes factors individual claims to reality are highly uncertain.
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2. Virtually all of the signals last for only one of the 1 s
segments. This suggests that almost all the signals damp
rapidly. See Section 3.2 for an exploration of whether
some signals last for multiple periods.

3. In addition to many signals that have been reported
previously, there are other frequencies with strong to
nearly conclusive significance. In Table 1 we list the
signals found in our analysis with Bayes factors greater
than 1000, i.e., larger than the highest Bayes factor found
in the synthetic data, which have best-fit frequency
widths less than 10 Hz at 84% credibility (so that these
are likely to be QPOs rather than excess noise over a
broad band). Many of these signals do not appear to have
been reported earlier, e.g., the QPOs at 51, 97, and
157 Hz.

In Figure 3 we show a summary of the  > 1000 segments
with frequency width less than 10 Hz. The error bars are
centered on the best-fit centroid frequencies and their widths
represent the 16%–84% credibility range. The color indicates
the magnitude of the Bayes factor: the thin blue error bars are
for < <10 103 5, and the thick red error bars are
for  > 105.

In Figure 4 we plot the rotational phases (as defined in
Figure 1) at which QPOs with  > 1000 were detected. The
concentration at phases 4 and 7 is clear. This suggests that
something about those phases makes it particularly easy to see
QPOs. For example, it could be that the crust at those phases
has properties that make modes especially easy to generate, or
perhaps the magnetosphere at those phases facilitates the
production of photons from modes. The favored phases are not
quite offset by half of the period, which makes it tempting to
think that a slightly off-center dipole magnetic field could
produce the favoritism in phase.

3.2. Are There Persistent Signals?

So far we have focused on short segments of data: 1.0 s,
which is close to 1/8 of the rotational period. Based just on the
strengths of these signals as a function of segment number,
there is no indication that the signals persist for more than one
segment. For example, our strongest signal has a Bayes factor
of  = ´1.8 107 at a frequency f=32 Hz. In the 20–40 Hz
range, the previous segment has  = 0.018 and the following
segment has  = 0.432. Thus, the duration of the signal is
likely to be at most a few tenths of a second. More generally, in
the entire data set there is only one pair of consecutive 1 s
segments with strong signals, and those signals have
frequencies that do not overlap at the 2σ level. The QPOs in
this pair may therefore result from two completely independent
excitations of modes.
There are, however, two additional possibilities to explore.

First, as suggested by Strohmayer & Watts (2006), it could be
that some modes persist for many rotational periods but are
only visible during certain phases of the period. Second,
perhaps in addition to the quickly damped oscillations that we
detect with our 1.0 s analyses, there are weaker but longer-
lasting oscillations at other frequencies.
To explore the first possibility we look at strong signals

separated by eight segments, i.e., one full rotational period.
Because we want to look for signals that are also related to each
other, we apply the following cuts: (1)the signals must appear
in consecutive periods rather than simply being separated by an
integer number of periods, (2)the ±1σ centroid frequencies of
the two periods must overlap, (3)the frequency widths must be
less than 10 Hz, and (4)at least one of the segments must have
a Bayes factor greater than 1000. With these cuts, there are

Figure 4. Rotational phases and log Bayes factors for all 1.0 s segments with
Bayes factors greater than 1000 and frequency widths less than 10 Hz. Each
solid red triangle represents a separate signal. Here, the rotational phase refers
to the eight segments of the period; see Figure 1. The concentration in phases 4
and 7 is obvious; 26 of the 33 segments with a QPO that has a Bayes factor
greater than 1000 are in those phases, and the remaining 7 are all in adjacent
phases. This suggests that either the crust or the magnetosphere at those phases
is particularly prone to the generation of the QPOs that we see.

Figure 3. Plot of the best-fit centroid frequencies plus their 1σ uncertainties, for
signals with Bayes factors  > 1000 and frequency widths less than 10 Hz.
The colors correspond to the magnitude of the Bayes factor: the thin blue bars
are for < <10 103 5, and the thick red bars are for  > 105. The horizontal
dotted lines show the boundaries between the frequency ranges that we search.
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only two possible pairs: the segment starting at 203.175 s and
the subsequent segment, where the frequency is ≈31 Hz; and
the segment starting at 165.375 s and the following segment,
where the frequency is ≈92 Hz. In the second case, the
following segment also has  > 1000.

Thus, in those two cases it is possible that there is an
oscillation that persists for a full period. However, given that
the associated frequency ranges (20–40 Hz and 80–120 Hz) are
the sources of the most common, and the strongest, QPOs (see
Figures 2 and 3), it also seems plausible that in both of these
cases there were independent excitations, by happenstance,
which were separated by one rotational period. Some
supporting evidence for this comes from the best-fit frequency
widths, which are ≈2 Hz for the 31 Hz signal and ≈0.7 Hz for
the 92 Hz signal. There are many possible origins of the
frequency widths, but if they are related to decay rates, then
over the 7.56 s rotational period we would expect the signals to
drop to undetectability.

To explore the second possibility, of weaker persistent
signals, we repeated our analysis for 8.0 s (roughly one period)
segments that start every 7.56 s, and for 32.0 s (roughly four
periods) segments that start every 4×7.56=30.24 s (again,
we choose to analyze data segments with durations that are an
integer power of two larger than the 2−20 s time resolution in
the RXTE data). We are again looking for strong signals that
have widths consistent with a damping time that is not much
less than the duration of the segment.

From our 8.0 s analysis, our three best candidates are:

1. The segment starting 309.96 s from our zero-point has a
best-fit frequency of 20.307 Hz, a best-fit Lorentzian
width of 0.1884 Hz, and a Bayes factor of 13577.1
relative to the pure red noise model.

2. The segment starting 83.16 s from our zero-point has a
best-fit frequency of 149.85 Hz, a best-fit Lorentzian
width of 0.208 Hz, and a Bayes factor of 9097.86 relative
to the pure red noise model.

3. The segment starting 60.48 s from our zero-point has a
best-fit frequency of 240.547 Hz, a best-fit Lorentzian
width of 0.4529 Hz, and a Bayes factor of 21350.8
relative to the pure red noise model. We note that no QPO
at this frequency has been reported previously for
these data.

From our 32.0 s analysis, we have no good candidates; all
four of the segments that give Bayes factors that are formally
larger than 1000 have best-fit frequency widths that are several
times larger than would be consistent with a persistent signal.

We therefore conclude that almost all of the QPOs are
produced by events that last a few tenths of a second, and that
at most a few QPOs can last as much as a few seconds. Why,
then, has it been possible for searches over much longer
timescales to find signals?

We can provide some insight using a toy model. Suppose
that in a given data set there are m independently excited flares
that take the form of exponentially decaying periodic functions
of angular frequency ω0; for flare j, which starts at time tj, we
represent the signal by a count rate

= g w f- -( ) ( )( )c t a e e e , 7j j
t t i t ij j j0

where fj is the phase. The power density of the total signal,
which we assume has a duration T?1/γj, is

ò åw µ w
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If we assume for simplicity that γj=γ and aj=a for all j, then
the power density becomes
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If all of the flares are in phase (fj=f for all j), then the
squared factor is m2; if the flares occur at random phases then
the expectation value of the squared factor is m.
This indicates that even if T?1/γ, the characteristic width of

the peak in the power density spectrum will be∼γ. This provides
a possible explanation for a puzzle noted by Strohmayer & Watts
(2006): that if the frequency widths are caused by exponential
decay then the implied decay time would be far shorter than the
lengths of the data segments being analyzed.
We also note that there are circumstances in which the signal

could appear to be extremely significant over a relatively long
interval of data. If, for example, there are several flares whose
phases happen to line up, then the power density will be
increased significantly compared to the power density when the
flares have phases that are more evenly distributed between 0
and 2π. Moreover, because power density spectra have greater
frequency resolution when the interval is longer, even a weak
signal with a significant frequency breadth could be detected
with high significance because for long-duration data sets there
will be many independent frequency bins with powers in excess
of the Poisson average. Thus, it seems possible that most of
the apparently persistent QPOs in the giant flare of SGR1806
−20 are actually composed of multiple independent flares.

3.3. Can the Frequencies Be Identified?

We now compare our results for the strongest signals given
in Table 1 with physical models that could explain the process
by which they were generated. If a QPO results from damped
oscillations of the generic form

y w d= +w-( ) ( ) ( )t Ae tsin , 10t
RI

then its power density is given by

w w

w d w d w d
w w w w w

= Y
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We stress that this is not the same as the Lorentzian power
density given in the second term of our Lorentzian model
(Equation (2)). In particular, the power density also depends on
the phase δ. From Figure 3 we see that there are several signals
with close but distinct frequencies. Could it be that they
actually represent the same modes, only differing in phase?
It is possible to identify the parameters f0 and Δf of the

phenomenological Lorentzian model with the oscillation
frequency ωR and damping time τ≡1/ωI of the damped
oscillation. Choosing as limiting cases δ=0 and δ=π/2 we
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have, to leading order,
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Consequently, for the strongest narrow QPOs reported in
Table 1, where we find a largest value of Δf/f0=0.17, the
maximum fractional correction is ±0.015 for the frequency and
±0.004 for the damping time. Therefore, we can safely assume
ωR/2π≈f0 and τ−1≈Δf. This indicates that a possible
difference in phase is not enough to explain the variation in the
values of the frequencies.

Another possibility for the variation in the frequencies is a
time evolution of the magnetic field strength or geometry after
the giant flare. However, this should cause a clearer trend in the
frequency behavior than we see. Moreover, a variation of a few
Hz in the frequency of the mode would require a change of
several times 1015 G in the magnetic field (Duncan 1998),
which seems unreasonable.

Using a simple model to describe the QPOs as torsional
oscillations of the crust, it can be found that the frequencies of
modes with different harmonic number ℓ should scale
approximately as = +( )f f ℓ ℓ 1ℓ 0 (Hansen & Cioffi 1980).
In Figure 5 we choose two limiting values of f0: one
corresponding to a 2.4Me star with the MS1 equation of state,
and the other corresponding to a 1.4Me star with the SLy
equation of state. The expected frequencies in these two
models, as a function of the harmonic number ℓ, are shown by
the two solid lines. We use the resulting expressions to find the

corresponding nearest integer value of ℓ for our frequencies,
which are shown with points. As the plot shows, the
frequencies we found with our analysis of the data are
compatible with torsional oscillations of the crust, but the
mode identification would depend on the largely unknown
features of the star. Although the mode identification is
uncertain, our results are compatible with previous findings
that show that not every ℓ seems to be strongly excited. This
could be a consequence of the initial perturbation, i.e., the exact
manner in which the crust was originally broken.

4. Discussion

Now we explore the implications our results could have for a
model of the source star, the nature of the oscillations, and the
mechanism responsible for the emission, that is, in what way
the stellar oscillations can be coupled to the radiation emitted
by the star and observed on Earth.
The results presented in Figure 4 show that the emission

happened predominantly in two nearly opposite rotational phases
labeled 4 and 7 in our notation; one full period goes from phases 0
to 7 in our analysis).4 A possible way of obtaining this symmetry
would be by means of a slightly off-center dipolar magnetic
field. The physical mechanism for the emission is not yet
clearly understood (but see the models proposed by Timokhin
et al. 2008; D’Angelo & Watts 2012; Gabler et al. 2014).
Whether it comes from the crust or from the magnetosphere,
the QPOs appear to be strong mostly in those two phases. If the
giant flare indeed comes from a rearrangement of the magnetic
field, the crust at the magnetic poles of the star could be the
regions more likely to break; at the same time, the magneto-
sphere above the poles would have the largest magnetic energy
density. Both conditions could amplify the signal in a way such
that it would be mostly visible at these two phases, making it
seem more beamed, even if it is a broad (thermal) emission.
Perhaps our most striking result is the indication that there are

no obviously persistent oscillations in the tail of the giant flare.
This is expected from theoretical studies of the properties of the
crustal oscillations, which indicate that the crustal modes will
couple to a continuum of MHD modes excited below the crust,
which quickly damp the crustal oscillations. If, as we discussed
in Section 3.3, we estimate the damping time τ of the oscillations
by the inverse of the frequency width Δf, our results in Table 1
imply τ≈0.2–2 s. This is consistent with the findings of
Huppenkothen et al. (2014) for a higher frequency QPO
(τ≈0.5 s), and also roughly consistent with the expectations
of Levin (2006) (τ at most 1 s), which take into account the
damping resulting from the coupling with the continuum
spectrum of MHD modes.
More sophisticated theoretical analyses have introduced the

possibility that there are gaps in the continuous spectrum of MHD
modes, which could allow for longer-lived oscillations, at least for
the lower frequencies detected in the QPOs. Gaps in the
continuum could be a consequence of more complicated magnetic
field geometries (for example, including a toroidal component or a
tangled magnetic field: see Link & van Eysden 2016a, 2016b).
However, our analysis shows no compelling evidence for
persistent oscillations in any part of the spectrum. This therefore
suggests that the QPOs are independent oscillations with distinct

Figure 5. Frequency of the torsional modes of the crust of a neutron star as a
function of the harmonic number ℓ. The exact value of the frequency for each
mode depends on the details of the structure and composition of the star. The
two limiting cases presented here correspond to a 2.4 Me with the MS1
equation of state (red line) and to a 1.4 Me star with the SLy equation of state
(blue line), where we used data obtained by de Souza (2017). The points show
the strongest QPO frequencies found in our analysis and the corresponding
nearest integer value of ℓ according to each model.

4 It is also worth noting that this phase dependence in the appearance of the
QPOs is distinct from the phase dependence observed in the number of counts
(see Figure 1), indicating that it should be a real effect, and not a bias resulting
from the detection of more or less counts.
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but close frequencies (see Figure 3). This could be understood as
evidence of the existence of the continuous spectrum of MHD
modes that was theoretically predicted. If the models for the
continuum gap are correct, then the lack of persistent oscillations
provides further support for a simple magnetic field configuration
close to a pure dipole.

Another consequence of this picture is the need for a continued
re-excitation of the modes after the giant flare. If the initial shock
causes a starquake, then perhaps aftershocks in the crust provide
the energy for the subsequent excitations. This could provide
constraints on the nature of the crust, but other unknown
mechanisms, perhaps including interactions with the perturbed
magnetosphere, could be responsible for the continued input of
energy.

Finally, we have not attempted to perform an identification of
the modes we have obtained in our analysis. Even in the simplest
scenario in which the QPOs are explained as torsional crustal
oscillations, the exact frequencies will depend on the mass,
compactness, equation of state, crust composition and shear
modulus, magnetic field strength and geometry, and so on. This
multitude of parameters makes it extremely challenging to
identify the modes and to solve the inverse problem, particularly
given that there is a lack of relevant analytical expressions or
universal relations for these frequencies (work on these issues is
in preparation by G. de Souza and C. Chirenti). Nonetheless, the
detailed data available for these QPOs means that they can still
serve as a rich source of information that can be used to
constrain many aspects of the interiors of neutron stars.

We thank Fred Lamb, Yuri Levin, and Bennett Link for
valuable discussions and comments on an earlier version of this
manuscript. This work was supported in part by joint research
workshop award 2015/50421-8 from FAPESP and the
University of Maryland, College Park.
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