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ABSTRACT
Quasi-periodic X-ray brightness oscillations (QPOs) with frequencies kHz have now been dis-Z1

covered in more than a dozen neutron stars in low-mass X-ray binary systems using the Rossi X-Ray
T iming Explorer. There is strong evidence that the frequencies of some kilohertz oscillations are the orbital
frequencies of accreting gas in nearly circular orbits around these stars. Some stars that produce kilo-
hertz QPOs may have spin frequencies Hz. For spin rates this high, Ðrst-order analytic treatmentsZ400
of the e†ects of the starÏs rotation on its structure and the spacetime are inaccurate. Here we use the
results of a large number of fully relativistic, self-consistent numerical calculations of the stellar structure
of rapidly rotating neutron stars and their interior and exterior spacetimes to investigate the constraints
on the properties of such stars that can be derived if stable circular orbits of various frequencies are
observed. We have computed the equatorial radius of the star, the radius of the innermost stable circular
orbit, and the frequency of the highest frequency stable circular orbit as functions of the stellar spin rate
for spin rates up to the maximum possible and for several illustrative equations of state. Our calcu-
lations show that the upper bounds on the sti†ness of neutron star matter implied by a given orbital
frequency are typically signiÐcantly stricter for stars with spin frequencies Hz than for slowlyZ400
rotating stars.
Subject headings : accretion, accretion disks È dense matter È equation of state È relativity È

stars : neutron È stars : oscillations

1. INTRODUCTION

The successful launch of the Rossi X-Ray T iming
Explorer (RXT E) has made it possible to investigate, for the
Ðrst time, the X-ray variability of neutron stars and black
holes at frequencies Hz. One of the most importantZ300
discoveries made with RXT E is that many neutron stars in
low-mass X-ray binaries produce high-frequency brightness
oscillations with frequencies in the range D300È1200 Hz
(see der Klis High-frequency oscillations arevan 1998).
observed both during type I (thermonuclear) X-ray bursts
and in the persistent X-ray emission. The discovery of these
oscillations has made possible derivation of interesting
upper bounds on the masses and radii of these neutron stars
and signiÐcant new constraints on the equation of state of
neutron star matter (Miller, Lamb, & Psaltis 1998a, 1998b ;

Miller, & Psaltis & LambLamb, 1998 ; Miller 1998 ;
et al.Strohmayer 1998).

Only a single oscillation has been observed from each
source during a type I X-ray burst, and the oscillations in
the tails of bursts appear to be highly coherent (see, e.g.,

Morgan, & Bradt with frequencies that areSmith, 1997),
always the same in a given source (see, e.g., Strohmayer

The burst oscillations are thought to be caused by the1997).
existence of one or two brighter regions on the stellar
surface that produce oscillations at the stellar spin fre-
quency or its Ðrst overtone as the star spins (see

Zhang, & Swank for compelling evi-Strohmayer, 1997b
dence in favor of this interpretation). The frequency of the

burst oscillations ranges from D330 Hz in 4U 1702[42
to 589 Hz in an unidentiÐed source in the(Swank 1997)

direction of the Galactic center et al.(Strohmayer 1997a).
The kilohertz quasi-periodic oscillations (QPOs)

observed in the persistent emission have high amplitudes
and relatively high coherences. The frequencies of the two
QPOs often observed simultaneously in a given source have
a frequency separation that is almost constant in many
sources (see & van der Klis Psaltis et al.Wijnands 1997 ;

although the frequencies of the QPOs them-1998a, 1998b),
selves vary by hundreds of hertz. The separation frequencies
of the two kilohertz QPOs seen in 4U 1728[34
(Strohmayer et al. and 4U 1702[421996, 1997b) (Swank

are consistent with the frequencies of their burst oscil-1997)
lations. The separation frequencies in 4U 1636[536

et al. et al. and KS 1731[260(Wijnands 1997 ; Zhang 1997)
et al. & van der Klis are(Smith 1997 ; Wijnands 1997)

approximately one-half the frequencies of their burst oscil-
lations.

The presence of only two simultaneous kilohertz QPOs
in a given source, the approximately constant frequency
separation *l between them, and the consistency of *l with
the stellar spin frequency inferred from burst oscillations
are strong evidence that the stellar spin is generating the
frequency di†erence, that only one sideband of the primary
QPO frequency is being generated, and that one of the two
QPOs is therefore caused by the beat of the spin frequency
with the other frequency (see et al. et al.Lamb 1998 ; Miller
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This implies that in addition to the spin frequency1998a).
there is only one other primary frequency and that this
frequency is a rotational frequency such as an orbital fre-
quency. This excludes neutron star surface and photon
bubble oscillations as explanations for the primary kilohertz
QPO frequency and makes disk oscillations an improb-
able explanation (see der Klis et al.van 1998 ; Lamb 1998).

In all sources the frequencies of the kilohertz QPOs fall
within the expected range of orbital frequencies near a
neutron star and can vary by several hundred hertz in
a few hundred seconds (see et al. andWijnands 1998

der Klis while remaining highly coherent (l/*lvan 1995)
D 100). This is strong further evidence against disk oscil-
lations and in favor of orbital motion of inhomogeneities in
the accretion disk as the cause of the primary kilohertz
QPO (see et al. The accreting gas exerts aLamb 1998).
strong torque on the neutron star and hence the star is
expected to be spinning in the same sense as the orbital
motion of the accreting gas. The beat frequency must there-
fore be the lower of the two kilohertz QPO frequencies,
whereas the orbital frequency is the higher.

There are two candidates for the orbital frequency : the
frequency at the radius where the accreting gas Ðrst couples
strongly to the magnetic Ðeld of the neutron star and the
frequency at the sonic radius where radiation forces or
general relativistic e†ects cause the radial motion of the gas
to increase sharply and become supersonic. The general
properties of the kilohertz QPO sources and the speciÐc
properties of the kilohertz QPOs themselves strongly indi-
cate that the relevant frequency is the orbital frequency at
the sonic point et al. see also et al.(Miller 1998a ; Lamb

In either case, the frequency of the higher fre-1998). lQPO2quency kilohertz QPO is the orbital frequency of gas in a
nearly circular orbit around the neutron star, whereas the
frequency of the lower frequency QPO is the beat oflQPO1the neutron star spin frequency with an orbital frequency
near lQPO2.In the following discussion we shall describe a circular
orbit as stable or unstable according to its properties as
determined by solving the geodesic equation for a test parti-
cle moving in that orbit in the spacetime of interest.
However, it is important to bear in mind that there are no
closed, circular orbits in the vicinity of an accreting neutron
star, because the motion of gas near such a star is a†ected
not only by the curvature of spacetime but also by radi-
ation, magnetic, and viscous forces, which cause the gas to
spiral inward even at radii where, in their absence, closed,
stable orbits would be possible (Miller & Lamb 1993, 1996).
However, the distinction between stable circular orbits
(SCOs) and unstable circular orbits is still relevant. In par-
ticular, the innermost stable circular orbit (ISCO) is still
physically signiÐcant when the e†ects of radial gas pressure
forces on the ISCO can be neglected (which should be valid
when the luminosity of the source is much less than the
Eddington critical luminosity), because under these condi-
tions gas inside the ISCO spirals inward so quickly that it
cannot produce a wavetrain with the coherence observed
for the kilohertz QPOs, regardless of whether it is acted on
by radiation, magnetic, and viscous forces et al.(Miller
1998a).

IdentiÐcation of the higher frequency kilohertz QPO
with the frequency of an SCO has made it possible to derive
upper bounds on the masses and radii of the neutron stars
in the kilohertz QPO systems (Miller et al. 1998a, 1998b).

These bounds follow from the requirement that the radius
of the orbit be larger than the radius of the ISCORorb Rmsas well as larger than the equatorial radius of the star (ifReqorbits with the required frequency existReq\ Rorb\ Rms,but are unstable).

For nonrotating stars, observation of a given orbital fre-
quency can be used to derive upper bounds on the mass and
radius that are independent of the equation of state
assumed et al. For rotating stars, the situ-(Miller 1998a).
ation is more complicated. In general, both the structure of
the star and the spacetime are a†ected by the starÏs rotation,
and there are no general analytical expressions for the rele-
vant quantities. However, the exterior spacetime of a slowly
and uniformly rotating Ñuid star is unique to Ðrst order in
the dimensionless angular momentum j4 cJ/GM2, where J
and M are the starÏs angular momentum and gravitational
mass and can be expressed analytically to this order (Hartle
& Thorne The leading corrections to the expressions1968).
for the orbital frequency and the radius of the ISCO are Ðrst
order in j. Using these expressions, one can demonstrate
that observation of a given orbital frequency also implies
upper bounds on the mass and radius of a slowly rotating
star et al. For a given stellar spin frequency,(Miller 1998a).
these upper bounds depend on the moment of inertia and
hence on the equation of state assumed.

Many of the kilohertz QPO sources appear to have spin
frequencies D250È350 Hz (see et al. Exam-Miller 1998a).
ples of such sources include 4U 0614]091, 4U 1608[52,
4U 1820[30, Cyg X-2, Sco X-1, GX 5[1, and GX 17]2,
all of which have kilohertz QPO separation frequencies in
this range, as well as 4U 1728[34 and 4U 1702[42, which
not only have kilohertz QPO separation frequencies in this
range but also have burst oscillation frequencies that are
consistent with these separation frequencies. The D520 and
D580 Hz frequencies of the burst oscillations seen in KS
1731[260 and 4U 1636[536 are thought to be twice their
spin frequencies, although this is not certain. For spin fre-
quencies in this range, j is D0.1È0.3, depending on the
assumed equation of state and the mass of the star, and
hence an analysis that is Ðrst order in j is quite accurate for
such stars. Such an analysis shows that spin rates D300 Hz
can increase the upper bound on the stellar mass by as
much as D10%È20% but typically increase the upper
bound on the radius by only D2%È5% (Miller et al. 1998a,
1998b).

On the other hand, some neutron stars that show kilo-
hertz QPOs may turn out to have spin frequencies Z400
Hz. For example, oscillations with frequencies D550 and
D590 Hz have been seen during X-ray bursts from, respec-
tively, Aql X-1 and the unknown source in the direction of
the galactic center, possibly indicating that these neutron
stars have spin frequencies this high et al.(Miller 1998a).
The recent discovery using RXT E that the source SAX
J1808.4[3658 has a coherent 401 Hz oscillation indicates
that this accreting neutron star is spinning rapidly
(Wijnands & van der Klis For stars spinning1998a, 1998b).
this fast, the e†ect of the starÏs spin on its equilibrium struc-
ture (which is second order) and on the spacetime can be
substantial. In order to obtain accurate results for such high
spin rates, the equilibrium stellar structure and the interior
and exterior spacetime must be computed self-consistently,
which can be done only numerically.

Here we use the results of a large number of fully rela-
tivistic, self-consistent numerical calculations of the struc-
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ture of rapidly rotating neutron stars and the interior and
exterior spacetime to investigate the constraints on the
properties of such stars that can be derived if SCOs of
various frequencies are observed. We have computed the
equatorial radius of the star, the radius of the ISCO, and the
frequency of the highest frequency SCO as functions of the
stellar spin rate and gravitational mass, for spin rates up to
the maximum possible and for several illustrative equations
of state. Comparison of these results with the highest
observed kilohertz QPO frequency in a given source can be
used to derive bounds on the mass and radius of the
neutron star in that source, for a given equation of state. We
also report the frequency of the highest frequency SCO as a
function of the stellar spin rate, for stars of any mass con-
structed using a given equation of state. These curves can be
used to check whether a particular equation of state is con-
sistent with the frequency of a given kilohertz QPO.

Our calculations show that the upper bounds on the
sti†ness of neutron star matter implied by a given orbital
frequency are typically signiÐcantly stricter for stars with
spin frequencies Hz than for slowly rotating stars.Z400

In we describe our assumptions and calculational° 2
method. In we present our results and discuss the impli-° 3
cations for constraining the properties of neutron star
matter. Our conclusions are summarized in ° 4.

2. ASSUMPTIONS AND METHOD

In deriving bounds on the masses and radii of the
neutron stars with kilohertz QPOs, we assume that the
higher frequency of the two simultaneous kilohertz QPOs is
the frequency of a stable circular orbit around the neutron
star, for the reasons discussed in Hence the orbital° 1.
radius that corresponds to the QPO frequency must beRorblarger than both the equatorial radius of the neutronReqstar and the radius of the ISCO et al.Rms (Miller 1998a).

We compute the equilibrium stellar structure and the
interior and exterior spacetime using the numerical code
described in Cook, Shapiro, & Teukolsky (1992, 1994a,

This code solves the full general relativistic equation1994b).
of hydrostatic equilibrium for a star with a given spin rate
using a variation of the metric potential method of
Komatsu, Eriguchi, & Hachisu It gives(1989a, 1989b).
accurate solutions even for stars that are spinning very
rapidly.

In any stationary, axisymmetric spacetime, the orbital
frequency at a given coordinate radius, as measured at
inÐnity, is )\ d//dt, where / and t are, respectively, the
global azimuthal and time coordinates based on the space-
like and timelike Killing vector Ðelds of the spacetime. The
time interval required for one orbit of an element of gas is
the same everywhere, as measured in the global time coordi-
nate. Given the metric of the exterior spacetime, the orbital
frequency at a given radius is the solution of the geodesic
equation for circular orbits (see et al.Lightman 1973,
p. 469) :

gÕÕ,r )2] 2g
tÕ,r )] g

tt,r\ 0 , (1)

where and are the metric components indicatedgÕÕ, g
tÕ, g

ttand commas denote partial derivatives.

2.1. Masses and Equations of State
We have explored the constraints implied by observation

of an SCO of given frequency for a variety of neutron star

equations of state. These restrictions are most signiÐcant if
the equation of state is hard rather than soft. Hence, in this
report we present results for four relatively hard equations
of state. For completeness, we consider both baryonic
masses that are stable for nonrotating stars (the so-called
““ normal ÏÏ sequences of et al. and the higherCook 1994b)
baryonic masses that are stable only for rotating stars (the
““ supramassive ÏÏ sequences of et al. WhetherCook 1994b).
the supramassive sequences are accessible depends on how
the speciÐc angular momentum of the accreting gas varies
with time.

In order to facilitate comparisons with previous studies of
neutron star properties (see, e.g., & RavenhallPethick

we consider the Friedman-Pandharipande-Skyrme1995),
(FPS) equation of state & Pandharipande(Friedman 1981 ;

Ravenhall, & Pethick The FPS equation ofLorenz, 1993).
state is based on the Urbana two-nucleon potential plusv14the density-dependent three-nucleon interaction model of

& Pandharipande and gives a maximumLagaris (1981)
gravitational mass for a nonrotating star of about 1.8 M

_
,

compared with a maximum mass of 2.12 for a rotatingM
_star. The maximum spin frequency for stars in the normal

sequence is 1411 Hz, and the maximum spin frequency for
stars in the supramassive sequence is 1878 Hz.

As an example of later realistic equations of state, we
consider the UU equation of state Fiks, & Fabro-(Wiringa,
cini which is based on the Urbana two-nucleon1988), v14potential plus the Urbana VII three-nucleon potential

Pandharipande, & Wiringa and gives a(Schiavilla, 1986)
maximum mass for a nonrotating star of about 2.2 M

_
.

Although it is based on older scattering data, the UU equa-
tion of state is similar to the recent equa-A18]UIX@] dv

btion of state Pandharipande, & Ravenhall(Akmal, 1998),
which is based on the modern Argonne two-nucleonv18potential and the Urbana IX three-nucleon potential and
takes into account the nonzero momentum of the inter-
acting nucleons (see Akmal, & RavenhallPandharipande,

Like the equation of state, the UU1998). A18]UIX@ ] dv
bequation of state gives a maximum mass of about 2.2 M

_for a nonrotating neutron star. The maximum mass for a
rotating neutron star is 2.61 and the maximum rota-M

_
,

tion frequencies for the normal and supramassive sequences
are, respectively, 1561 Hz and 1989 Hz.

In order to illustrate the generic e†ects of signiÐcant
softening of a hard equation of state at a critical density, we
consider the tensor interaction (TI) equation of state of

& Smith ““M ÏÏ in the &Pandharipande (1975a ; Arnett
Bowers survey). Although the TI equation of state is1977
itself no longer of interest to nuclear physicists, this equa-
tion of state demonstrates the e†ects of a very strong, Ðrst-
order phase transition, such as may occur at the transition
from nucleon matter to quark matter (see Glendenning

Pethick, & Staubo1992 ; Heiselberg, 1993 ; Pandharipande
et al. The maximum mass of a nonrotating star con-1998).
structed using the TI equation of state is 1.8 and theM

_
,

maximum mass of a rotating star is 2.1 The maximumM
_

.
rotation frequency for the normal sequence is 707 Hz, and
for the supramassive sequence it is 1229 Hz.

Finally, as an example of the relatively sti† equations of
state often given by mean Ðeld theories, we consider the
mean-Ðeld equation of state of & SmithPandharipande

““ L ÏÏ in the & Bowers survey). The(1975b; Arnett 1977
maximum mass of a nonrotating star constructed using this
equation of state is 2.7 compared with 3.27 for aM

_
, M

_
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rotating star. The maximum rotation frequency is 1031 Hz
for the normal sequence and 1321 Hz for the supramassive
sequence.

2.2. First-Order Expressions
In it will be instructive to compare the behavior of the° 3

orbital frequencies and radii computed using our numerical
models of rapidly rotating stars with the behavior given by
the analytical expressions valid for slowly rotating stars. As
noted in the spacetime around a rotating Ñuid star is° 1,
unique to Ðrst order in the dimensionless angular momen-
tum j. To this order in j, the frequency of a prograde orbit at
circumferential radius r around a star with gravitational
mass M is (see et al. p. 469 ; et al.Lightman 1973, Miller
1998a)

)\ [1[ j(M/r)3@2](M/r3)1@2 , (2)

and the circumferential radius of the ISCO is

Rms(M, j) B 6M[1[ j(2/3)3@2] , (3)

in units in which G4 c4 1. In the present work we always
quote circumferential radii [deÐned as the proper circum-
ference in the equatorial plane at some radius, divided by
2n, or equivalently in contrast to et al.(gÕÕ)1@2], Miller

in which we quoted Boyer-Lindquist radii. The two(1998a),
radii are identical to Ðrst order in j, but to higher orders in j
the circumferential radius is the physically meaningful
radius, which is the reason we use it here. Combining equa-
tions and one can show that to Ðrst order in j, the(2) (3),
frequency of the innermost stable prograde orbit isl

K,ms(see Michelson, & Wagoner et al.Kluz� niak, 1990 ; Miller
1998a)

l
K,msB 2210(1 ] 0.75j)(M

_
/M) Hz . (4)

Thus, for slowly rotating stars the frequency of the ISCO
increases linearly with the starÏs spin rate.

Using equations and one can show et(2), (3), (4), (Miller
al. that the mass and radius of a slowly rotating star1998a)
are bounded above by

MmaxB [1] 0.75j(lspin)]Mmax0 (5)

and

Rmax B [1] 0.20j(lspin)]Rmax0 . (6)

Here is the value of j for the observed stellar spin ratej(lspin)at the maximum allowed mass for the equation of state
being considered, and

Mmax0 \ 2.2(1.0 kHz/lQPO2* ) M
_

(7)

and

Rmax0 \ 19.5(1.0 kHz/lQPO2* ) km (8)

are the upper bounds on the mass and radius of a non-
rotating star in terms of the highest observed fre-lQPO2* ,
quency of the higher frequency kilohertz QPO. The precise
upper bounds on the mass and radius depend on the equa-
tion of state and can be determined by searching a grid of
neutron star models for the one that gives the maximum
allowed mass. Equations and show that the bounds(5) (6)
are always greater for a slowly rotating star than for a
nonrotating star, regardless of the equation of state
assumed.

No expressions similar to equations are available(2)È(6)
for rapidly rotating stars.

3. RESULTS AND DISCUSSION

We Ðrst show how the radius of the ISCO and the equa-
torial radius vary with stellar spin rate for stars constructed
using the FPS equation of state. The behavior of these radii
makes clear why the frequency of the highest frequency
SCO around a star of given mass generally Ðrst increases as
the star is spun up and then decreases. Considering this
behavior for stable stars with di†erent masses makes the
behavior of the maximum frequency of an SCO for stars of
any mass and equation of state understandable.

Next, we present mass-radius relations for stars with a
wide range of spin rates, constructed using the FPS and UU
equations of state. We then show how to derive limits on
the mass and radius of a rapidly rotating star from the
frequency of an SCO around it and discuss the constraints
on the equation of state of neutron star matter implied by
such constraints.

3.1. Radii and Orbital Frequencies
Figures and show how the circumferential radius of1a 1b

the ISCO and the circumferential radius of the stellar
equator vary with the stellar spin frequency measuredlspin,at inÐnity, for a star constructed using the FPS equation of
state. These stars have constant baryonic masses equal to
those of nonrotating stars with gravitational masses of 1.4

and 1.6 Because the gravitational mass increasesM
_

M
_

.
only slightly with increasing spin frequency, the curves for
stars of constant gravitational mass are almost identical to
these curves (the largest stable equatorial radii are very
slightly smaller). As expected, the dimensionless angular
momentum j increases linearly with spin rate for slowly
rotating stars but more steeply for rapidly rotating stars : for
the 1.4 model, j \ 0.23 at kHz and 0.52 at 1.0M

_
lspin \ 0.5

kHz; for the 1.6 models, j \ 0.20 at 0.5 kHz and 0.43 atM
_1.0 kHz; for the 1.8 models, j \ 0.16 at 0.5 kHz and 0.36M

_at 1.0 kHz. shows how the frequency of theFigure 1c
highest frequency SCO varies with the spin rates of 1.4 M

_
,

1.6 and 1.8 stars.M
_

, M
_The circumferential radius of the ISCO decreasesRmslinearly with spin rate for slowly rotating stars, in agree-

ment with the Ðrst-order expression but decreases(eq. [3]),
more slowly as the spin rate increases. For the 1.4 star,M

_the deviation from is signiÐcant atequation (3) lspin B 300
Hz (see For the 1.6 star, the deviation is signiÐ-Fig. 1a). M

_cant at 500 Hz and at about 1065 Hz reaches aRmsminimum and then increases with increasing spin rate, until
an ISCO no longer exists (see In contrast, theFig. 1b).
circumferential equatorial radius of the stellar models
increases quadratically with the spin rate from lspin\ 0,
exceeding at about 580 Hz for the 1.4 star and atRms M

_about 1220 Hz for the 1.6 star. For spin rates aboveM
_these critical rates, all circular orbits with radii larger than

the starÏs equatorial radius are stable : there is no ISCO.
The Kerr spacetime can be expressed analytically and is

therefore sometimes used as a convenient approximation to
the exterior spacetime of a spinning neutron star. For this
reason, in Figures and we compare the1a 1b Rms(Kerr),
circumferential radius of the ISCO in a Kerr spacetime with
the same gravitational mass and angular momentum as the
stellar models, with the actual radius of the ISCO.RmsUnlike the actual radius, decreases monotoni-Rms(Kerr)
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FIG. 1.ÈTypical variations of important radii and frequencies with
stellar spin rate. (a) Circumferential radii of the innermost stable circular
orbit (dashed line) and the stellar equator (solid line) as a function of spin
rate, for a 1.4 star. Also shown for comparison is the circumferentialM

_radius of the innermost stable circular orbit in a Kerr spacetime with the
same gravitational mass and angular momentum (dotted line). (b) Same
radii as in (a), but for a 1.6 star. (c) Frequency of the highest frequencyM

_stable circular orbit as a function of stellar spin rate, for 1.4 (dottedM
_line), 1.6 (dashed line), and 1.8 (solid line) stars. All stellar modelsM

_
M

_were constructed using the FPS equation of state.

cally and nearly linearly with spin rate even at high spin
frequencies. Indeed, at high spin rates decreasesRms(Kerr)
faster than linearly with increasing spin rate, and hence the
exact Kerr expression for is a worse approximationRmsthan the Ðrst-order approximation (eq. [3]).

is signiÐcantly smaller than at high spinRms(Kerr) Rmsrates. As a result, when is larger than the equatorialRmsradius of the star, the frequency of the highest frequency
SCO is signiÐcantly lower than one would estimate using
the Kerr spacetime, and the constraints on the mass and
radius of the star are correspondingly tighter. For both the
1.4 and 1.6 stars, the critical spin rate at which theM

_
M

_ISCO disappears in the Kerr approximation is about 23%

smaller than in the actual spacetime. Thus, for stellar spin
rates Hz, the exterior spacetime of a spinning blackZ400
hole is generally an inaccurate approximation to the
exterior spacetime of a neutron star.

shows why the constraints on the mass andFigure 1c
radius of a slowly rotating star implied by a given SCO
frequency are generally looser for a slowly rotating star
than for a nonrotating star of the same mass, whereas the
constraints on a rapidly rotating star are usually much
tighter. For slowly rotating stars with gravitational masses
of 1.4, 1.6, and 1.8 constructed using the FPS equationM

_of state, the equatorial radius of the star is smaller than the
radius of the ISCO. Hence, at low spin rates the highest
frequency SCO is the ISCO, which at these spin rates
shrinks linearly as the spin rate increases (see eq. [3]),
causing the frequency of the highest frequency SCO to
increase linearly with the starÏs spin rate. However, at a
certain critical spin rate the equatorial radius of the star
becomes larger than the radius of the ISCO for a star with
the given gravitational mass and angular momentum. For
spin rates above this critical spin rate, the highest frequency
SCO is the orbit that just skims the stellar surface. At high
spin rates, the equatorial radius of the star increases rapidly
with increasing spin rate, causing the frequency of the
highest frequency SCO to decrease rapidly.

For the M \ 1.4 star, the frequency of the highestM
_frequency SCO is maximized at the spin frequency for

which the radius of the ISCO is equal to the radius of the
stellar equator (see However, the highest frequencyFig. 1a).
SCO for a star of given mass but any possible spin rate is
not necessarily the ISCO with radius equal to the equatorial
radius of the star. This is illustrated by the M \ 1.6 M

_star. For this star, the frequency of the highest frequency
SCO has its maximum at the spin frequency at which the
radius of the ISCO is a minimum (see At thisFig. 1b).
frequency the radius of the ISCO is larger than the equato-
rial radius of the star.

3.2. Maximum SCO Frequency
The maximum frequency of the highest frequency SCO

for stable stars of any mass can be determined by construc-
ting curves like those shown in for a denseFigure 1c,
sequence of stellar masses. The curve of maximum fre-
quency as a function of spin rate is then the upper envelope
of these curves. shows curves of maximum SCOFigure 2
frequency as a function of stellar spin rate, for stable stars of
any mass constructed with the four indicated equations of
state. If the measured spin frequency of the star and the
frequency of a nearly circular orbit correspond to a point
that lies above the curve for a given equation of state, that
equation of state is excluded for all neutron stars.

As shows, the maximum frequency of the highestFigure 2
frequency SCO for stars of any mass typically decreases
with increasing spin rate, even though the frequency of the
highest frequency SCO for a Ðxed gravitational mass
increases with increasing spin rate over a wide range of spin
rates. The reason is that, at low spin rates, the mass that
gives the highest frequency SCO is the mass at which the
ISCO coincides with the stellar equator. This mass
increases with increasing spin rate, causing the maximum
frequency to decrease.

Stars constructed with the TI equation of state M are an
exception to this rule. This equation of state is extremely
sti† at the low densities characteristic of the centers of lower
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FIG. 2.ÈMaximum frequency of a stable circular orbit as a function of
spin rate for stable stars of any mass, for the four indicated equations of
state, which are discussed in the text. The curve labeled includes““Mnormal ÏÏonly normal sequences, whereas the other curves include both normal and
supramassive sequences (see for a discussion).° 3.1

mass stars, but becomes very soft at the density reached at
the center of a nonrotating M B 1.75 star, because aM

_pion condensate forms at this density. For this equation of
state, the maximum orbital frequency occurs for a stellar
mass near the maximum mass allowed by the starÏs spin
frequency (e.g., 1.8 for a slowly rotating star).M

_Consider Ðrst the normal sequences. At low spin fre-
quencies, the surface of the 1.8 star is well inside theM

_ISCO, the highest frequency SCO is therefore the ISCO,
and the frequency of the maximum-frequency SCO there-
fore increases with increasing spin rate. However, at about
500 Hz, the maximum frequency stops increasing and then
plummets, as shown by the curve labeled in““Mnormal ÏÏThe reason is a general relativistic e†ect ÐrstFigure 2.
pointed out by et al. as the angular momen-Cook (1994b) :
tum of a star increases, the spin frequency Ðrst increases,
then decreases, and Ðnally increases again, producing a
local maximum in the spin frequency versus angular
momentum relation. For normal sequences using equation
of state M, this local maximum occurs at a spin frequency
slightly greater than 500 Hz. Hence, in order to have an
observed spin frequency higher than this, the star must have
a much higher angular momentum, but a star with this
much angular momentum has a much larger equatorial
radius, larger than the ISCO for a star of its mass and
angular momentum, so the highest frequency SCO is at the
stellar surface and has a smaller frequency.

Consider now the supramassive sequences. For a Ðxed
baryonic mass, there is a local maximum in the spin fre-
quency versus angular momentum relation, just as for the
normal sequences. A curve of versus con-lSCO,max lspinstructed for a supramassive sequence with a Ðxed baryonic
mass would therefore look similar to the curve in““Mnormal ÏÏexcept that it would start at a positive spin fre-Figure 2,

quency and would plummet at a higher spin frequency. The
local maximum of the spin frequency increases with increas-
ing baryonic mass. The envelope of these curves produces
the curve labeled ““M.ÏÏ The rapid downturn of this curve at
a spin frequency of approximately 1100 Hz occurs because
above this frequency there is no ISCO, and consequently
the highest frequency orbit is the one that skims the surface.
For Hz, the equatorial radius increases rapidlylspin[ 1100
with increasing spin frequency, and therefore the maximum
frequency of a circular orbit decreases rapidly.

Comparison of the two curves in for equation ofFigure 2
state M demonstrates the potential importance of the
supramassive sequences. For example, if only normal
sequences are physically accessible (e.g., if the gas accretes
with low speciÐc angular momentum), then observation of a
1100 Hz SCO from a star with a spin frequency in excess of
550 Hz would rule out equation of state M, whereas equa-
tion of state M would still be viable if supramassive
sequences are accessible.

3.3. Mass and Radius Bounds
As explained in observation of a given SCO frequency° 1,

around a nonrotating star allows one to derive upper
bounds on the mass and radius that are independent of the
equation of state, whereas for a rotating star one must con-
sider a speciÐc equation of state in order to derive bounds
on the mass and radius.

Given an equation of state and a stellar spin rate, the
mass of the star must be between the mass-shedding limit
and the radial instability limit, regardless of the values of
any orbital frequencies. The radius of the star is bounded by
the extreme values of the radii given by the mass-radius
relation over this mass interval. Observation of an SCO
with a certain frequency may allow one to restrict further
the allowed mass and radius intervals, depending on the
equation of state and the frequency of the SCO. The pos-
sible further restrictions are of two types : a lower bound on
the mass, imposed by the requirement that the radius of the
orbit be greater than the radius of the star, and an upper
bound on the mass, imposed by the requirement that the
radius of the orbit be equal to or greater than the radius of
the ISCO. If either of these bounds restrict further the
allowed mass range, the radius of the star is bounded by the
extreme values of the radii given by the mass-radius relation
over this reduced mass interval.

shows the constraints on neutron star massesFigure 3
and radii imposed by stellar stability and observation of a
stable circular orbit, for stars constructed using the FPS
and UU equations of state (see The mass-radius rela-° 2.2).
tions (curves of gravitational mass vs. equatorial circum-
ferential radius) shown in this Ðgure were constructed by
generating several sequences of stellar models. Each
sequence consisted of stellar models with the same baryon
number but a range of spin frequencies. The grid of models
constructed in this way was then used to generate the mass-
radius relations shown in These relations areFigure 3.
tabulated in Tables and where for each spin frequency1 2,
the boundary between normal and supramassive stars is
indicated by the dashed lines. The relations shown for
rapidly spinning stars are much Ñatter than the usual mass-
radius relations for nonrotating stars.

The high-mass end of each constant spin-frequency
sequence shown in is the gravitational mass aboveFigure 3
which the star is unstable to a radial instability. This mass
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FIG. 3.ÈConstraints on neutron star masses and radii imposed by stellar stability and observation of a stable circular orbit. (a) Solid lines show the
mass-radius relations for FPS stars with the spin frequencies indicated (in kHz). The high-mass end of each mass-radius relation shown is the radial
instability limit (dashed line) whereas the low-mass end is the mass-shedding limit (dotted line). The dot-dashed line shows the lowest stellar mass (largest
stellar radius) consistent with the requirement that the radius of the star be smaller than the radius of a 1200 Hz orbit. For FPS stars and this orbital
frequency, the requirement that the radius of the orbit also exceed the radius of the ISCO does not constrain the mass or radius of the star. The bold portion
of each mass-radius curve highlights the region allowed by both the physical limits of the equation of state and by the observation of an SCO with the
indicated frequency. (b) Same as in (a) but for UU stars and an orbital frequency of 1400 Hz. Although the dot-dashed line curves strongly to the left at high
stellar spin rates, it always shows the smallest stellar mass (largest stellar radius) consistent with the requirement that the radius of the star be smaller than the
radius of a 1400 Hz orbit. The line of long dashes shows the largest stellar mass (smallest stellar radius) consistent with the requirement that the radius of the
orbit exceed the radius of the ISCO.

TABLE 1

MASS-RADIUS RELATIONS FOR THE FPS EQUATION OF STATE AND DIFFERENT SPIN RATES

0 Hz 300 Hz 600 Hz 900 Hz 1200 Hz 1300 Hz

M R M R M R M R M R M R
(M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1)

0.096 50.79 0.22 19.2 0.486 16.64 0.94 15.6 1.54 15.1 1.69 15.0
0.117 26.38 0.26 15.3 0.51 15.2 0.95 15.2 1.56 14.51 1.74 13.4
0.142 19.54 0.30 13.9 0.56 13.7 0.97 14.8 1.60 13.53 1.79 12.6
0.170 16.30 0.34 13.1 0.64 13.0 1.02 14.2 1.68 12.70 1.82 12.15
0.203 14.50 0.41 12.4 0.72 12.6 1.14 13.1 1.73 12.2 1.835 11.94
0.242 13.39 0.48 12.0 0.80 12.3 1.25 12.6 1.78 11.74 1.842 11.87
0.286 12.68 0.56 11.8 0.87 12.1 1.34 12.2 1.81 11.45 È È È È È È
0.336 12.20 0.64 11.6 1.01 11.9 1.41 12.0 1.825 11.31 1.848 11.80
0.392 11.87 0.72 11.5 1.13 11.7 1.48 11.85 1.832 11.23 1.851 11.67
0.456 11.65 0.80 11.4 1.24 11.5 1.54 11.67 È È È È È È 1.857 11.64
0.527 11.49 0.87 11.4 1.33 11.4 1.58 11.52 1.837 11.16 1.873 11.36
0.607 11.38 1.01 11.3 1.41 11.2 1.66 11.2 1.841 11.07 1.889 11.09
0.693 11.30 1.13 11.2 1.47 11.14 1.71 10.99 1.847 11.05 1.902 10.73
0.882 11.20 1.24 11.1 1.53 11.04 1.76 10.7 1.864 10.81 1.912 9.995
1.078 11.11 1.33 11.0 1.57 10.92 1.79 10.49 1.879 10.52 . . . . . .
1.264 10.98 1.40 10.9 1.65 10.7 1.81 10.36 1.892 9.851 . . . . . .
1.427 10.81 1.47 10.8 1.70 10.51 1.815 10.30 . . . . . . . . . . . .
1.559 10.60 1.52 10.74 1.75 10.25 È È È È È È . . . . . . . . . . . .
1.661 10.34 1.64 10.5 1.78 10.05 1.82 10.21 . . . . . . . . . . . .
1.734 10.05 1.75 10.04 1.805 9.82 1.825 10.15 . . . . . . . . . . . .
1.778 9.746 1.79 9.65 È È È È È È 1.829 10.09 . . . . . . . . . . . .
1.790 9.594 1.80 9.54 1.811 9.71 1.846 9.547 . . . . . . . . . . . .
1.797 9.444 È È È È È È 1.815 9.61 . . . . . . . . . . . . . . . . . .
1.799 9.295 1.814 9.39 1.821 9.39 . . . . . . . . . . . . . . . . . .

NOTE.ÈThe dashed lines indicate the boundary between normal and supramassive stars for each spin frequency.
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TABLE 2

MASS-RADIUS RELATIONS FOR THE UU EQUATION OF STATE AND DIFFERENT SPIN RATES

0 Hz 300 Hz 600 Hz 900 Hz 1200 Hz 1500 Hz

M R M R M R M R M R M R
(M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1) (M

_
) (km s~1)

0.135 21.17 0.220 19.50 0.470 15.90 0.910 15.50 1.610 15.30 2.220 14.70
0.151 18.24 0.231 16.83 0.480 15.08 0.965 14.54 1.664 14.16 2.225 14.01
0.172 16.06 0.265 15.07 0.553 13.32 1.167 13.02 1.777 13.32 2.242 13.40
0.199 14.49 0.299 13.31 0.751 12.27 1.347 12.53 1.873 12.77 2.256 13.10
0.232 13.37 0.377 12.27 0.959 11.88 1.507 12.24 1.955 12.43 2.265 12.89
0.273 12.58 0.462 11.82 1.159 11.72 1.641 12.01 2.021 12.18 2.274 12.81
0.320 12.05 0.552 11.56 1.339 11.63 1.754 11.83 2.073 11.96 2.278 12.69
0.376 11.69 0.749 11.34 1.498 11.53 1.851 11.65 2.115 11.77 2.282 12.64
0.440 11.45 0.956 11.30 1.631 11.41 1.933 11.48 2.148 11.61 2.284 12.60
0.511 11.30 1.156 11.28 1.743 11.30 1.999 11.34 2.174 11.49 È È È È È È
0.593 11.21 1.335 11.25 1.840 11.19 2.051 11.20 2.194 11.38 2.286 12.56
0.686 11.16 1.493 11.20 1.921 11.09 2.093 11.10 2.209 11.29 2.299 12.36
0.789 11.14 1.626 11.16 1.986 11.00 2.126 10.98 2.220 11.22 2.312 12.17
1.022 11.15 1.738 11.09 2.038 10.87 2.152 10.89 2.228 11.18 2.324 12.02
1.271 11.16 1.834 11.00 2.080 10.77 2.172 10.79 2.233 11.13 2.334 11.80
1.513 11.12 1.915 10.90 2.113 10.67 2.187 10.72 2.240 11.08 2.345 11.66
1.726 11.02 2.032 10.71 2.159 10.49 2.198 10.66 È È È È È È 2.354 11.45
1.907 10.85 2.106 10.52 2.185 10.36 2.206 10.61 2.256 10.95 2.362 11.24
2.041 10.63 2.152 10.34 2.199 10.26 2.212 10.57 2.269 10.82 2.366 10.80
2.129 10.38 2.179 10.19 2.206 10.19 2.219 10.52 2.275 10.75 2.367 10.61
2.177 10.13 2.190 10.06 È È È È È È È È È È È È 2.281 10.67 . . . . . .
2.189 10.01 2.199 9.96 2.207 10.16 2.235 10.39 2.288 10.38 . . . . . .
2.195 9.898 È È È È È È 2.214 10.04 2.247 10.01 2.291 10.23 . . . . . .
2.196 9.814 2.205 9.86 2.219 9.92 . . . . . . . . . . . . . . . . . .. . .

NOTE.ÈThe dashed lines indicate the boundary between normal and supramassive stars for each spin frequency.

limit is indicated by the short-dashed lines in Figures and3a
The maximum gravitational mass increases with3b.

increasing spin rate, both because the gravitational mass
corresponding to a given baryonic mass increases with
increasing spin and because the maximum stable baryonic
mass increases with increasing spin. The low-mass end of
each mass-radius relation shown is the gravitational mass
below which the star is subject to mass-shedding at the
equator. This mass limit is indicated by the dotted lines in
Figures and3a 3b.

Consider now the possible further restrictions on the
allowed mass and radius intervals imposed by observation
of an SCO with a high frequency. The requirement that the
radius of an orbit be larger than the equatorial radius of the
star places a lower bound on the mass of the star given the
frequency of an SCO. If, for that starÏs spin rate, there are
stable stars with masses smaller than this lower bound, then
the observation of an SCO raises the lower bound on the
mass of a star. Whether observation of an SCO with a given
frequency raises the lower bound on the stellar mass
depends on the equation of state and the starÏs spin rate as
well as the frequency of the SCO. For example, for the FPS
equation of state and a spin rate of 600 Hz, observation of a
1200 Hz SCO imposes a lower bound on the mass of 0.8

whereas the mass-shedding limit is 0.56 (seeM
_

, M
_

Fig.
Hence, in this case the limit imposed by the SCO is3a).

stricter. On the other hand, if Hz, there islspin[ 1200
always an SCO with a frequency of at least 1200 Hz around
any FPS star that is stable against mass-shedding and hence
the SCO observation does not further restrict the allowed
mass interval. In contrast, the lower mass limit imposed by
observation of an SCO with a frequency of 1400 Hz is
always stricter than the mass shedding limit for a UU star,
regardless of its spin rate.

Observation of an SCO lowers the upper bound on the
mass of a star if, for that starÏs spin rate, there are stable
stars with ISCOs with radii larger than that permitted by
the requirement that the radius of the orbit be larger than
the radius of the ISCO. Again, whether observation of an
SCO with a given frequency lowers the upper bound on the
stellar mass depends on the equation of state and the starÏs
spin rate as well as the frequency of the SCO. For example,
for the FPS equation of state, observation of a 1200 Hz
SCO frequency would not lower the upper bound on the
stellar mass imposed by the radial instability limit, regard-
less of the starÏs spin rate. In contrast, for the UU equation
of state observation of a 1400 Hz SCO frequency would
lower the upper bound on the stellar mass imposed by the
radial instability limit, regardless of the starÏs spin rate.

shows clearly that observation of an SCO with aFigure 3
frequency Hz usually reduces greatly the area of theZ 1200
radius-mass plane allowed for stars constructed using a
given equation of state. For example, the area allowed for
the UU equation of state if a 1400 Hz SCO is observed is
only a small fraction of the area allowed by the requirement
of stellar stability (see Fig. 3b).

If the spin frequency of a star is known, the upper and
lower bounds on its mass and radius imposed by obser-
vation of an SCO of a given frequency can be read o†

by looking for the intersections of the relevantFigure 3
bounding curves with the mass-radius curve for that spin
frequency. For example, if the spin frequency is 600 Hz and
the SCO frequency is 1200 Hz, then a neutron star with the
FPS equation of state must have a mass between 0.80 and
1.82 and a radius between 9.39 and 12.26 km.M

_Even if the spin frequency of a neutron star is unknown,
one can still extract upper and lower bounds on the mass
and radius of the star for a given equation of state, using the
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highest observed frequency of an SCO from the source and
the appropriate Ðgure, such as or 3b. ForFigure 3a
example, if a 1200 Hz SCO is observed, then a neutron star
with the FPS equation of state must have a mass between
0.64 and 2.12 and a radius between 9.28 and 15.1 km.M

_Figures and also show that, for a given equation of3a 3b
state, knowledge of any two of the mass, radius, and spin
frequency Ðxes the value of the third quantity, which may or
may not be consistent with the kilohertz QPO frequency.
Thus, if the spin frequency of a neutron star in a low-mass
X-ray binary is known and the radius or mass can be deter-
mined by means other than observation of a kilohertz QPO
(e.g., by measuring the emitting area during a thermonu-
clear X-ray burst or by measuring the mass dynamically),
then observation of a kilohertz QPO will overdetermine the
properties of the star, providing a check on the consistency
of the mass and radius estimates.

4. CONCLUSIONS

Our results show that deviations from a Ðrst-order treat-
ment of the e†ects of spin on the structure of neutron stars
and on circular orbits around them are typically signiÐcant
for spin frequencies Hz. The Kerr spacetime is gener-Z400
ally a poor approximation to the exterior spacetime of
neutron stars spinning this fast or faster.

Our results demonstrate that the upper bounds on the
sti†ness of neutron star matter implied by the high fre-
quencies and coherences of the kilohertz QPOs are tight-
ened signiÐcantly if the star is rotating rapidly. The
constraints on the equation of state become much tighter if
observations conclusively identify a QPO frequency as the

orbital frequency at the ISCO. For example, if the orbital
frequency at the ISCO is 1100 Hz, the required mass is 2.0

for nonrotating stars and substantially more for rotat-M
_ing stars. Such a high mass would rule out many of the

softer equations of state and would imply that the three-
nucleon interaction is strongly repulsive at high densities
(see et al.Pandharipande 1998).

As shown in even if the spin rate of the star is° 3.3,
unknown, the area of the mass-radius plane allowed by
observation of a high-frequency SCO can be quite small. If
the spin rate is known, the range of radii allowed for a given
equation of state is usually very small.

Results of the kind presented in this work will be still
more constraining if measurements of SCO frequencies can
be combined with constraints on other quantities, such as
the stellar compactness M/R (see Strohmayer 1997 ; Miller
& Lamb et al. et al. or1998 ; Lamb 1998 ; Strohmayer 1998)
the radius of the star (see et al.Strohmayer 1997b ;

et al.Strohmayer 1998).
Additional observations of kilohertz QPO sources are

extremely important, because these observations could
provide very tight and robust constraints on the fundamen-
tal properties of neutron stars and on the equation of state
of neutron star matter.
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