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Abstract. Gaussian processes provide a promising framework by which to extrapolate the
equation of state (EoS) of cold, catalyzed matter beyond 1− 2 times nuclear saturation density.
Here we discuss how to extend Gaussian processes to include nontrivial features in the speed of
sound, such as bumps, kinks, and plateaus, which are predicted by nuclear models with exotic
degrees of freedom. Using a fully Bayesian analysis incorporating measurements from X-ray
sources, gravitational wave observations, and perturbative QCD results, we show that these
features are compatible with current constraints and report on how the features affect the EoS
posteriors.

1. Introduction
Numerous types of electromagnetic and gravitational-wave data sets are now available for
neutron stars, and these are being used to infer the composition, thermodynamic, and dynamical
properties of the core matter of these stars (see, e.g., Refs. [1, 2, 3, 4, 5, 6]). Upgrades to
current gravitational wave detectors as well as future instruments and results from the Neutron
star Interior Composition Explorer (NICER) mission are expected to improve the data available
and, therefore, tighten the constraints on the equation of state (EoS) of cold, catalyzed nuclear
matter in neutron stars.

An important part of the inference procedure, which is still under active debate, is how
to generate minimally biased candidate EoS that incorporate all relevant physics. Parametric
models such as piecewise polytropes or spectral decompositions are commonly used, but these
can introduce unwanted correlations across density scales [7]. Additionally, sharp features in
the speed of sound – which are present in nuclear models with exotic degrees of freedom (see,
e.g. Ref. [8]) – are not well represented in the most common parameterizations, although they
play an important role in understanding heavy, ultra-heavy, and twin stars [9, 10].

Instead, we start with procedures based on Gaussian processes (GP), which are more model-
agnostic and can mitigate these issues at the cost of increased functional complexity [11]. It has
been shown that GP ensembles capture a wide range of features in the EoS, including phase
transitions of varying strength at different densities (see Refs. [12, 13] for detailed discussions).
However, investigating specific features in the EoS with GPs can pose computational and
sampling challenges.
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Here, as a way to produce priors that adequately capture behavior that is predicted by
state-of-the-art nuclear models at a low computational cost and without introducing model
dependencies, we present a method for generating EoS with sharp features, which we call
modified Gaussian processes (mGP). An mGP sample consists of a smooth baseline EoS sampled
from a tailored GP that is modified over some range in pressure. The modifications are
constructed such that we produce bumps, spikes, oscillations, plateaus, and first-order phase
transitions while keeping track of how and where modifications appear. We generate a prior
distribution containing samples from both a GP with fixed hyperparameters and a modified
GP and construct mass-radius and EoS posteriors using available measurements and theoretical
input based on the Bayesian procedure described in Ref. [14]. The different constructions lead
to nearly identical mass-radius posteriors, but the EoS posterior is wider in the mGP than in
the unmodified GP framework for densities above ∼ 1.5 times the nuclear saturation density
(nsat = 0.15 ± 0.01 fm−3). In addition, the Bayesian evidence for these non-smooth EoS is
indistinguishable from that for smooth EoS. Thus, current measurements are consistent with
sharp and non-trivial features in the EoS, but the data is not yet informative enough to favor
or disfavor them.

2. Generating the Equation of State
In this section, we give a brief review of GP EoS and describe how we perform our modifications.

Generally, a Gaussian process yields the joint probability density for a continuous function
f(x) at domain points ~x = {xi}, which is a tool for approximating f over some domain. This
joint probability density is presumed to be a multivariate Gaussian with means ~µ and covariance
matrix Σ for the set of domain points ~x. That is,

f(~x) ∼ N (~µ,Σ), (1)

where N indicates a normal distribution. The means and covariance matrix are specified by
hyperparameters and depend on further assumptions about f(x).

In this context, a given functional form for the neutron star matter EoS can be sampled from
a GP which approximates the relationship between two thermodynamic quantities. We follow
Refs. [15, 11] in introducing the auxiliary variable

φ ≡ ln

(
dε

dP
− 1

)
, (2)

where ε is the energy density and P is the pressure. For any φ ∈ (−∞,∞), the adiabatic speed
of sound, c2s = dP/dε, is stable and causal by construction, since when φ → +∞, c2s → 0, and
when φ→ −∞, c2s → 1, in units where the speed of light c ≡ 1.

We model φ as a function of log10 P in cgs units at 100 equally spaced points in the range
log10 P (erg cm−3) ∼ 32− 38, using the following trend for the means

µi(log10 Pi) = b− 2(log10 Pi − 32.7), (3)

where b = 5.5 or 3.7 (sampled with equal probability). The first value of b corresponds to the
approximate trend found in Ref. [5] using several tabulated nuclear EoS. This trend largely
produces EoS that approach the causal limit in the range of maximal central densities. The
second value of b produces EoS that tend to much lower values of c2s and are near the conformal
limit c2s → 1/3 at central densities for maximally massive stars.

We assume that the correlation between the function values at different domain points can be
represented by a kernel function of the two points, Σ(fi, fj) = K(xi, xj). We also assume that



K(xi, xj) is a Gaussian which depends only on the distance between the two points, commonly
referred to as the squared-exponential kernel,

Kse(xi, xj) = σ2 exp

[
−(xi − xj)2

2l2

]
, (4)

where l determines the correlation length scale (the limit where all points are independent of
each other is l→ 0 ) and σ is the strength of the overall correlation (σ → 0 means the variance
is negligible). We choose to fix l = σ = 1, following Ref. [5], which is motivated by the spread of
the tabulated EoS used to obtain Eq. (3). Our approach differs from that in Ref. [5] in that we
allow for two values of b, which introduces an additional degree of flexibility and ensures that a
wider range of c2s are represented, despite the other hyperparameters being fixed.

A modified Gaussian process EoS is produced by taking a sample from the GPs outlined
above, which becomes the baseline EoS, removing part of the baseline EoS over some range in
P , and then replacing it with a modification. Modifications are introduced in the form of spikes
and plateaus in three different categories:

(i) Sharp bump/dip – a single point in the EoS (selected randomly with uniform probability)
gets shifted up/down with respect to the baseline to a random value of c2s between 0 and 1
that is at least 10% above or below the baseline value.

(ii) Bump/dip + plateau – In addition to a bump/dip, a plateau is introduced. A plateau spans
between 2 and 20 points in pressure (in units of erg cm−3, log10 ∆Pplateau = 0.12−1.2). The
location, height, and length of a plateau are sampled randomly with uniform probability
across the allowed ranges in P and c2s. There is a conditional relationship between the
bump/dip and the plateau: if a bump above the baseline value is introduced, the plateau
must be below the baseline value at the point where the plateau is introduced. If a dip
is introduced, the plateau must be above the baseline value. The 10% rule of the sharp
bump/dip modification still applies.

(iii) Double plateau – In this case two plateaus are introduced, instead of a bump/dip + plateau.
The same rules apply.

We produce a total of 900,000 candidate EoS. For any given sample there is a 25% probability
that it will be left unmodified and a 75% probability that it will be modified in one of the
three ways listed above (25% for each category). At densities below 0.5nsat (roughly the crust-
core transition density [16]), we use the QHC19 EoS [17]. We also compute the full range
of thermodynamic quantities and remove any mGP samples that contain modifications below
the nuclear saturation density, where the properties of equilibrium nuclear matter are better
constrained.

Figure 1 illustrates samples from both the Gaussian process and the modified Gaussian
process, where the speed of sound is shown as a function of the pressure. Through this small
sample of EoS, we see that the modification procedure introduces various interesting features
consistent with nuclear models with exotic degrees of freedom, at a low computational cost.
We emphasize that traditional GPs can, in principle, approximate these functions and that
the unmodified GPs implemented here are tailored to two specific trends and are, thus, not
representative of the capabilities of GPs in general. However, the low computational cost and
ability to track the location and properties of nontrivial features associated with mGPs make
this framework useful for studying exotic degrees of freedom in neutron star cores.

3. Prior pruning based on observational constraints
Before proceeding with the Bayesian analysis, we perform a process of informing our prior
with conservative cuts motivated by NICER measurements of PSR J0030+0451 [18] and



Figure 1. The speed of sound squared in units of c2, as a function of the pressure, for
an unmodified (left panel) and modified (right panel) Gaussian process. We use a squared-
exponential kernel with fixed hyperparameters, σ = 1, l = 1, and µ(log10 P ) = b − 2(log10 P −
32.7), where P is the pressure in cgs units and b = 5.5 or 3.7 (see text for more details). These
samples have not been compared with data, which means that the EoS need not be consistent
with observational and theoretical constraints.

J0740+6620[5], and the detection of GW170817 [19]. We refer to this step as pruning, as
it is used not to extract the EoS, but rather to ensure we have a suitable number of strong
candidate EoS in our prior.

The pruning process happens in two steps. We first impose that the maximum mass of a
nonrotating star, Mmax, must be at least 1.8 M�. For these EoS, we then calculate the equatorial
circumferential radius and dimensionless tidal deformability for a 1.4 M� star, R1.4 and Λ1.4,
respectively. We require that 10 ≤ Λ1.4 ≤ 2000 and 9.0 ≤ R1.4 ≤ 18.0 km.

In Figure 2, we show the effect of the prior pruning on the speed of sound of the combined
GP and mGP samples. The priors are labeled 1 and 2 and are represented by their means and
90% contours. Prior 1 is the original sample of 900,000 EoS (25/75 % split between GP/mGP
samples) which does not incorporate assumptions about the physics. Prior 2 shows the 104,594
samples (30/70 % split between GP/mGP samples) which meet the requirements informed by
GW190817 and PSR J0030+0451, the mass cut Mmax ≥ 1.8M�, and had no modifications below
nsat. This final set of EoS is overall stiffer compared to prior 1 but constrained to low values of
c2s for log10 P . 33.5 because of the constraints at 1.4M� and theoretical input. We use prior 2
in the Bayesian analysis.

With Figure 2, we also note that implementing some form of prior pruning is important in
nonparametric frameworks for the EoS, especially in the model-agnostic limit. Because these
frameworks incorporate minimal physics by construction, creating a reasonable subset of EoS
takes significantly more samples. Taking the numbers from our analysis, out of an ensemble
of 900,000 EoS, only ∼ 10% provide a reasonable match to the observed properties of neutron
stars.

4. Statistical method and constraints
In the Bayesian analysis, we follow the procedure outlined in detail in Ref. [5]. As usual,
the posterior probability of a given EoS model k is proportional to the product of the prior
probability and the likelihood, pk ∝ qkLk. The likelihood of a set of observations (i, j) for EoS
model k is given by



Figure 2. The speed of sound squared in units of c2 as a function of the pressure from the
combined distribution of GP and mGP samples. The solid lines delimit the 5% and 95% contours
and the dashed lines indicate the mean. Prior 1 (gray) corresponds to 900,000 candidate
EoS before any pruning is performed. Prior 2 (blue) contains the 104,594 EoS that meet
the conservative criteria for the mass and tidal deformability based on GW170817 and PSR
J0030+0451 and Mmax ≥ 1.8M�.

Lk =
∏
i

j(i)∏
j=1

Lk(i, j)

 (5)

where i is a type of measurement (e.g. mass, radius) and j is an independent measurement of
type i (e.g. two independent measurements of the mass of one object). We follow the procedure
developed in Ref. [14] to determine Lk for each EoS, which uses the full posterior probability
distributions of all measurements included.

The constraints included in the analysis are the masses of three high-mass pulsars [20, 21, 22],
the joint mass and tidal deformability posteriors extracted from GW170817 [19] and GW190425
[23], and the mass-radius posterior from NICER data on PSR J0030-0451 [18] and PSR
J0740+6620 [5] (see, respectively, [24] and [25] for independent analyses of these two pulsars
from a separate group within the NICER collaboration), with a Gaussian prior for the value
of the symmetry energy at nuclear saturation density, S = 32 ± 2 MeV [26]. We also
implement perturbative QCD (pQCD) stability and integral constraints from Ref. [27] for the
renormalization parameter range X = [1/2,2], using the pQCD likelihood introduced in Ref. [2]
at the central density for a maximally massive star, nmax

B (varies for each EoS), as was done in
[28].

5. Results
We separate the EoS in the prior between modified and unmodified samples and look at the
Bayesian evidence (the probability for a model given the constraints) for each model separately.



Since we assume each EoS has an equal prior probability, the Bayesian evidence for a smooth
EoS (represented by the GP samples) or an EoS with sharp/non-trivial features (mGP samples)
is given by the average likelihood of the EoS in each category,

P [m(GP )|constraints] =
1

Nm(GP )

N(m)GP∑
i=0

Li, (6)

where the prior probability of a model is P [m(GP )] = 1
Nm(GP )

and Li is the likelihood of EoS i.

The Bayes factor K is the ratio between the evidence for hypotheses – the bigger the deviation
from unity, the more indication that a set of data supports one hypothesis over the other.
Comparing the evidence for GP EoS against mGP EoS yields

K =
P [(GP )|constraints]

P [(mGP )|constraints]
= 1.126, (7)

from which we conclude that sharp and non-trivial features in the EoS are not ruled out by
current constraints. Note also that K=1.126 is a statistically insignificant deviation from unity.
That is, each hypothesis is comparably good at explaining the data.

In Figure 3, we show the mass-radius prior and posterior probability distributions for GP and
mGP EoS separately and find that they are virtually the same. Rather than approximating a
continuous distribution from the samples, we bin the EoS by mass and radius and then normalize
such that the sum of the heights of the bins is equal to one. To produce the posterior, we weigh
each EoS by its corresponding likelihood before normalizing the bins. We also show the 90%
and 68% credible regions for the radius at a given mass for 1.1 ≤ M ≤ 3.5 M�. Note that,
although we show the credible regions for masses as high as 3.5 M�, the posterior probability is
negligible for masses M & 2.7 M�. We emphasize that the radius contours shift to the right for
large masses because larger maximum masses require stiffer EoS, and thus larger radii. Hence,
the shape of the contours is not representative of individual EoS, because the only EoS that
contribute in the high-mass region are the ones that reach high masses.

In Figure 4, we show the EoS posteriors for the square of the speed of sound as a function of
baryon number density in units of nsat, up to nmax

B for each EoS. The binning and calculation
of the prior and posterior probability distributions are done as discussed for Figure 3. Also
shown are the 68% and 90% credible regions for the speed of sound at a given density up to
nB = 8.0 nsat, although the posterior probability for nmax

B & 6.0 nsat is negligible. As before,
the only EoS that contribute at any given density are the ones that are still stable neutron stars
at that particular density.

Overall, the posteriors are in good agreement. We note that, at the 90% level, compared to
the GP posterior, the mGP posterior is wider. Notably, the mGP posterior allows for slightly
stiffer EoS in the regime 1.5 . nB . 3.0 nsat, and softer EoS above 3.0 nsat. For instance,
at twice nuclear saturation density, we extract c2s = 0.29+0.27

−0.11 using EoS from the GP and

c2s = 0.29+0.34
−0.14 using the mGP posterior. At four times nuclear saturation density, the GP

EoS range is c2s = 0.63+0.27
−0.23, while the mGP EoS allows for c2s = 0.59+0.31

−0.34. While the relative
differences in the posteriors are dependent on our choices for the two GPs implemented in the
unmodified case, the point holds that when the speed of sound is allowed to display sharp
features, the posteriors are wider than when a smooth EoS is presumed. We, therefore, argue
that such features should be adequately represented in priors for the extraction of the EoS in
neutron star regimes. We emphasize that adequate representation requires not only that these
features are present in the synthetic EoS, but that additional steps are taken to ensure a sufficient
number of EoS with nontrivial features can account for observations (see discussion in Section
3 regarding prior pruning).



Figure 3. Mass-radius prior (left) and posterior (right) probability distributions for GP (top)
and mGP (bottom) EoS. Both the prior and posterior probability distributions are produced by
binning the EoS by mass and radius and then normalizing the heights of the bins such that their
sum is equal to one. For the posteriors, each EoS is weighted by the corresponding likelihood.
Also shown in the posterior plots are the 90% and 68% credible regions for the radius at a given
mass for 1.1 ≤M ≤ 3.5 M�.

6. Discussion
We introduced modified Gaussian processes as a new technique for generating synthetic equations
of state for the cold, catalyzed nuclear matter in neutron stars. These EoS can be generated at a
low computational cost, and contain non-trivial structure consistent with the emergence of exotic
degrees of freedom. We prune our samples to ensure that a prior of synthetic EoS contains a large
number of strong candidates, given that model-agnostic methods contain minimal physical input
by construction. In this analysis, only ∼ 10% of the EoS generated in a combined ensemble of
modified and unmodified Gaussian process samples were candidates for explaining current mass,
radius, and tidal deformability measurements, reinforcing the importance of informing the prior.

We implement the modified Gaussian process framework in a fully Bayesian analysis to verify



Figure 4. EoS prior (left) and posterior (right) probability distributions for GP (top) and mGP
(bottom) EoS. The EoS are represented by the speed of sound squared in units of c2 as a function
of baryon number density in units of nsat. The prior and posterior probability distributions are
produced by binning the EoS by the speed of sound and number density and then normalizing
the heights of the bins such that their sum is equal to one. For the posteriors, each EoS is
weighed by the corresponding likelihood. Also shown in the posterior plots are the 90% and
68% credible regions for the speed of sound squared at a given density for 0.5 ≤ nB ≤ 8.0 nsat.
The posterior probability that the central density for a maximally massive star is greater than
∼ 6.0 nsat is negligible in both cases.



that sharp and non-trivial features are consistent with current measurements and theoretical
constraints by comparing the evidence for modified Gaussian process EoS against smooth EoS
from a standard Gaussian process. Additionally, at the 90% level, the inclusion of non-trivial
structure broadens the allowed range for the speed of sound in the core of neutron stars compared
to the assumption that the EoS is smooth.

The results presented here suggest that current constraints are not enough to rule definitively
in favor of or against phase transitions to exotic degrees of freedom in the core of neutron
stars. The question of how future measurements can further constrain the nuclear EoS has
been explored (see, e.g., Refs. [29, 30]), but unambiguous signatures of structure in the EoS are
still being investigated. Recently, the slope of binary Love relations has been shown to encode
structure in the EoS below 3 nsat, with twin stars leading to characteristic signatures that
can be detected with future instruments [31]. However, a more complete picture of the phase
structure of QCD for asymmetric matter at zero temperature will require constraints from both
astrophysical observations and laboratory measurements, as well as input from effective theories
and pQCD (for a detailed discussions see Refs. [32, 33]).
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