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Measurements of neutron star masses, radii, and tidal deformability have direct connections to nuclear physics
via the equation of state (EoS), which for the cold, catalyzed matter in neutron star cores is commonly repre-
sented as the pressure as a function of energy density. Microscopic models with exotic degrees of freedom
display nontrivial structure in the speed of sound (cs) in the form of first-order phase transitions and bumps,
oscillations, and plateaus in the case of crossovers and higher-order phase transitions. We present a procedure
based on Gaussian processes to generate an ensemble of EoSs that include nontrivial features. Using a Bayesian
analysis incorporating measurements from X-ray sources, gravitational wave observations, and perturbative
QCD results, we show that these features are compatible with current constraints. We investigate the possibility
of a global maximum in cs that occurs within the densities realized in neutron stars – implying a softening of
the EoS and possibly an exotic phase in the core of massive stars – and find that such a global maximum is
consistent with, but not required by, current constraints.

I. INTRODUCTION

One of the main goals of modern nuclear physics is to
determine the phase structure of Quantum Chromodynam-
ics (QCD). The cold, catalyzed nuclear matter in neutron
stars probes the zero-temperature, isospin asymmetric regime
of QCD at baryon number densities (nB) ranging from sub-
nuclear to several times nuclear saturation density (nsat ≡

0.16 fm−3) in the core [1]. In this regime, first-principle QCD
calculations are not yet feasible because of the fermion sign
problem [2, 3], and effective models and parameterizations of
the equation of state (EoS) are used instead.

A large variety of models have been developed to compare
against astronomical observations, all of which have differ-
ent regimes of validity, advantages and disadvantages. One
such model arises from chiral effective field theory (χEFT)
[4], which is valid up to roughly nuclear saturation density. In
this approximation, one prescribes a general Lagrangian that
respects the symmetries of low-energy QCD (with nucleons
and pions as degrees of freedom) and expands the Lagrangian
order-by-order in two- and multi-nucleon interactions. The
low-density crust (≲ 0.5 nsat) and high-density inner core (≳
1.1-1.5 nsat) [5, 6] of neutron stars, however, require additional
modeling and assumptions beyond χEFT about the underlying
degrees of freedom and relevant interactions.

Another class of models relies on mean-field approxima-
tions of an effective Lagrangian with nucleon, electron, and
muon degrees of freedom. These models, however, lead to
a squared speed of sound c2

s = dp/dε (where p is the pres-
sure and ε is the energy density) that increases monotonically
with the density (see, e.g., Refs. [7–9]). Such behavior typi-
cally leads to acausal sound speeds in non-relativistic models
at densities only a few times that of nuclear saturation. Rel-
ativistic hadronic frameworks also break down at high densi-
ties, when nucleons start to overlap [10].

Yet another set of results are available from perturbative
QCD (pQCD) calculations, in which the QCD field equa-
tions are solved perturbatively in a small-coupling expan-
sion. These calculations have found that at very high densities

(nB ≳ 40nsat), c2
s → 1/3 (in units where the speed of light

c = 1) from below and high-density quark matter is approxi-
mately mass-scale-invariant, or “conformal” [11–13]. Astro-
nomical observations, however, strongly suggest that c2

s > 1/3
in the core of neutron stars [14], at densities in the range of
about 2 ≲ nB/nsat ≲ 6. This conclusion indicates that c2

s
must display non-monotonic behavior with increasing den-
sity1, which has motivated searches for evidence that decon-
finement into approximately conformal quark matter occurs
within densities realized in neutron stars [15–18].

The onset of conformal quark matter is, however, not the
only question relevant to constraining the cold nuclear EoS.
Models that include heavy resonances and exotic hadronic
phases and/or strange and quark degrees of freedom predict,
respectively, higher-order phase transitions and crossovers
and/or first-order phase transitions [1, 19–39]. An Nth or-
der phase transition occurs when the Nth susceptibility of the
pressure (i.e., the Nth partial derivative of the pressure with re-
spect to the chemical potential) presents non-analytic behavior
(such as a discontinuous jump or a divergence). A crossover
occurs when there is no phase separation, and the change in
degrees of freedom happens gradually over some range in
density (i.e., all derivatives of the pressure are continuous).
These different types of phase transitions and crossovers do
not necessarily predict an approach of c2

s to 1/3 within neu-
tron star densities (though it may happen at much higher nB,
well beyond the densities at which the star would collapse to
a black hole).

Different physical processes (i.e., phase transitions of dif-
ferent order or crossovers) lead to different, distinguishable
and nontrivial structure in c2

s as a function of nB (see [40] for
details and extensive examples from microphysical models).

1 While exact conformal symmetry implies c2
s = 1/3, and, thus, that other

EoS-related quantities must take on specific values, the reverse is not a
sufficient condition to establish conformal symmetry. Indeed, it is possible
for c2

s to pass through 1/3 a number of times before eventually approaching
it from below at high densities.
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Generally, a first-order phase transition is associated with the
onset of new degrees of freedom. In neutron stars, a first-order
transition could separate a hadronic phase from a quark phase,
for example. When a first-order phase transition takes place,
the presence of latent heat leads to a range in the energy den-
sity ε where the pressure p is constant, which appears as a
plateau in c2

s for a system in equilibrium. On the other hand,
a crossover (or phase transitions of higher order) is typically
associated with the emergence of a new state, new degrees
of freedom/particles, or new interactions, that occur gradually
across a range of nB. These new particles or interactions lead
to a bump in c2

s , which may be wide (like a positive plateau)
or narrow (like a positive spike), depending on whether the
crossover occurs over a wide or narrow region in baryon den-
sity (see examples of quarkyonic matter [23, 41–43] or per-
colation approaches [44]). Second-order phase transitions are
associated with critical points (or, at vanishing temperatures,
quantum critical points). In this case, c2

s displays a negative
spike approaching zero (for an example at finite temperatures
see Fig 2 from [45]). Higher-order phase transitions are also
possible and may occur due to exotic baryon states or new
types of interactions that could lead to a kink in c2

s [46]. An
EoS can display one, or a combination of such features de-
pending on the assumptions made about the relevant degrees
of freedom and interactions.

Recently, astronomical observations across the electromag-
netic and gravitational-wave spectra have placed constraints
on the macroscopic properties of neutron stars, such as the
mass (M), radius (R), and tidal deformability (Λ). These mea-
surements have also made it possible to indirectly infer the
allowed EoS via model-to-data Bayesian comparisons, since
the EoS determines M, R, and Λ as a function of central den-
sity nmax

B . Analyses typically include binary tidal deformabil-
ity (Λ̃) posteriors from the LIGO gravitational wave observa-
tions of events GW170917 [47–49] and GW190425 [50], the
existence of heavy pulsars [51–53] and NASA’s Neutron Star
Interior Composition Explorer (NICER) joint M-R posteriors
from PSR J0030-0451 [54] and PSR J0740+6620 [55] (see,
respectively, [56] and [57] for independent analyses of these
two pulsars from a separate group within the NICER collabo-
ration).

Other constraints are also available from the measured
properties of nuclei at nsat. These properties include the sym-
metry energy (S = ESNM − EPNM), defined as the difference
in the binding energy per nucleon between symmetric nuclear
matter (SNM) and pure neutron matter (PNM), and the slope
parameter (L), which determines how the symmetry energy
changes with density [58–64].

From the theory perspective, it recently became possible to
consistently extrapolate pQCD results to densities as low as ∼
2.5 nsat [65, 66]. These constraints are based on the mechani-
cal stability and causality of the EoS (0 ≤ c2

s ≤ 1) and the con-
sistency of the underlying thermodynamic potential that con-
nects the low-density regime of the EoS to the high-density
regime (≳ 40 nsat) constrained by pQCD. These constraints
offer information at each nB about the region in p − ε that
can be connected to the high-density perturbative results via a
stable and causal EoS and a consistent thermodynamic poten-

tial. For a given EoS, it is possible to check its compatibility
with stability, causality, and integral constraints at any density
between ∼ 2.5 − 40 nsat. We will refer to these constraints
collectively as the pQCD constraints from here on.

The lack of first-principle approaches for the β-equilibrated,
zero-temperature nuclear EoS between ∼ 1.1 nsat up to nmax

B
realized in neutron stars means that astronomical observations
are the only probe of the EoS in this regime. Thus, model-to-
data Bayesian comparisons of generic functional forms of the
EoS are the state-of-the-art for obtaining posterior distribu-
tions for the EoS. Nonetheless, microscopic models are vital
in providing guidance for the behavior of functional forms of
the EoS, especially so that specific features associated with
the onset of new degrees of freedom and interactions can be
correctly identified.

The posterior distribution that is extracted from a Bayesian
analysis is sensitive to how data and theoretical input are in-
corporated [67], as well as prior-imposed assumptions about
the EoS (e.g., correlations across density scales) [68–71].
Parametric descriptions, such as spectral expansions [72, 73]
or piecewise polytropes, provide a framework to represent the
EoS without relying on micro-physics models. Spectral rep-
resentations of the EoS assume the adiabatic index Γ(p) as a
function of pressure can be expanded in terms of a set of spec-
tral basis functions and coefficients, which uniquely determine
the EoS [72–74]. Piecewise polytropes divide the EoS into a
number of segments and represent the pressure for each seg-
ment as a polytrope, p = κρΓ, where κ and Γ are the fixed
polytropic constant and the adiabatic index, respectively [75].
Parametric representations have been widely used, since they
do not rely on as many assumptions as physics-based mod-
els (see, e.g., Refs. [15–17, 49, 54, 55, 75–81], though this
list is far from comprehensive). However, the question of
whether these parameterizations are flexible enough to capture
all relevant physics has recently been raised in the literature
[68, 71, 82]. Specifically, it has been shown that parameter-
ized EoSs can introduce undesired correlations across density
scales [68, 71] and are unable to capture behavior consistent
with state-of-the-art nuclear physics models with exotic de-
grees of freedom [82].

Physics-agnostic frameworks based on Gaussian processes
(GPs) offer more flexibility in the modeling of the EoS at the
cost of increased functional complexity [14, 83–86]. Gener-
ally, a GP models the speed of sound as a continuous func-
tion over a specified domain. The properties of the proba-
bility density for the speed of sound at each point of the do-
main are determined by a mean vector and covariance matrix.
Typically, the covariance matrix is calculated using a specific
kernel function. The kernel function requires hyperparameters
that can be fixed or sampled from a hyperprior. The hyperprior
may be model-agnostic or conditioned to more closely repro-
duce a set nuclear physics models [86]. In principle, a GP can
be tailored to resemble any continuous function across some
domain. So far, GPs have been implemented with a fixed set of
hyperparameters for an individual EoS [14, 15, 55, 57, 66, 83–
86], though priors may contain samples drawn from mixture
of multiple stationary kernels, probing a wide range of poten-
tial correlation properties [14, 86]. In contrast with the as-
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sumption of uniform correlations across density scales, many
state-of-the-art nuclear physics models with exotic degrees of
freedom display multiscale correlations across various densi-
ties [82]. Furthermore, the features that emerge in the speed of
sound as a result are known to be important for understanding
heavy, ultra-heavy (neutron stars with masses above 2.5 M⊙),
and twin stars [40, 82, 87].

With that motivation, we introduce modified GPs (mGPs)
as a framework for modeling EoSs with nontrivial fea-
tures that possess long, medium, and short-range correlations
across densities. First, we produce a family of EoSs from
a benchmark model of GP EoSs that contain only long and
fixed-range correlations in c2

s . We then generate a family of
EoSs from mGPs, which introduce multiscale correlations in
the form of nontrivial features in c2

s . With these two families
of EoSs, we carry out Bayesian parameter estimation analysis
against observational and experimental data and input from
pQCD. The results of this analysis allow us to compare the
marginalized posteriors of the mass and radius curve and the
speed of sound and number density curve when we use the
benchmark GP model and the modified GP to represent the
EoSs. We find that neither EoS family is favored over the other
by current data. We do find, nonetheless, that the marginalized
posterior for the speed of sound at densities ∼ 1.5−2 nsat is not
identical for EoSs from GPs compared to mGPs, although the
data are not informative enough yet to discriminate between
these posteriors.

The remainder of this manuscript presents the details of the
analysis summarized above. In Sec. II, we discuss GPs as a
model-agnostic framework for generating the EoS and how
we introduce multiscale correlations to the EoS with mGPs.
Section III outlines how we generate EoS priors from the GP
and mGP frameworks. Statistical methods are discussed in
detail in Sec. IV, followed by results in Sec. V and conclusions
and discussion in Sec. VI. Throughout this manuscript, we use
c = 1 and the Einstein summation convention when necessary.
Thermodynamic quantities are in cgs units (unless otherwise
stated), with the exception of c2

s , which we always normalize
by c2.

II. GENERATING THE EQUATION OF STATE

Both the benchmark EoS model that is a standard GP and
the modified GP EoS are built from model-agnostic GPs,
which approximate functional forms of c2

s as a function of
the pressure over a fixed domain (for a more comprehen-
sive overview of Gaussian processes, we recommend Refs.
[83, 88].) We now discuss the details and motivation for the
construction of both models.

Generally, a GP provides the joint probability density for a
continuous function f (x) over a domain of interest, which we
represent here by a sample of discrete values labeled xi. This
probability density is assumed to be a multivariate Gaussian
distribution (no summation over i implied)

f (xi) = N
[
µi(xi),Σi j(xi)

]
, (1)

where N(·, ·) is the normal distribution function at xi, with a

mean µi that varies with xi and a covariance matrix Σi j, which
gives the correlation between the values of f at xi and x j,
where i can equal j.

In the context of extracting the properties of neutron stars
from data using an ensemble of synthetic EoSs, GPs have been
used to approximate the EoS from samples of functional forms
of c2

s [14, 83, 85, 86, 89–91]. Because the range of Gaussian
distributions is infinite, while c2

s is bounded by stability and
causality (0 ≤ c2

s ≤ 1), it is common to use the GP to approx-
imate an auxiliary variable that compactifies the range of c2

s .
Let us call this variable ϕ [72, 83] and define it via

ϕ ≡ ln(dε/dp − 1) = ln(1/c2
s − 1), (2)

where p is the pressure and ε is the energy density. This auxil-
iary variable has the desired range for a GP, but when mapped
to c2

s using the definition above, ϕ → +∞ corresponds to
c2

s → 0, while ϕ → −∞ corresponds to c2
s → 1. It is common

in the literature to model ϕ as a function of log10 p in cgs units
[14, 55, 83, 85, 86, 90, 91]. More explicitly, Eq. (1) becomes

ϕ(log10 pi) = N
[
µi(log10 pi),Σi j

]
. (3)

Other units and thermodynamic variables can be used instead
(e.g. Ref. [89] uses baryon density in units of nsat), but we will
use the parameterization presented above.

A more computationally practical implementation of a GP
is to decompose it into a mean and a scatter via

ϕ(log10 pi) = µi(log10 pi) + Li ju j, (4)

where Li j is the Cholesky decomposition of the covariance
matrix plus a white-noise kernel contribution, i.e. LikLT

k j :=
Σi j + σ

2
wnδ(xi − x j), with u j = N(0, 1) and σwn a constant

white-noise variance. The white-noise kernel (the second
term on the right-hand side of the Cholesky decomposition)
is added for numerical stability, since the determinant of Σi j
can be nearly singular. The effect of the white-noise kernel is
to slightly smear the GP by adding noise to the diagonal ele-
ments of Σi j. A small σwn is sufficient to dramatically increase
the stability of the calculation without changing the overall
properties of the final sample. We use σ2

wn = 0.0003, but any
other value of the same order of magnitude would produce
similar results.

Given the joint probability density for ϕ, we can construct a
GP realization, or “sample”, by selecting a range of pressures
and then drawing the associated ϕ values using Eq. (4) [63].
We then invert Eq. (2) to find c2

s as a function of p. The def-
inition of the speed of sound can then be used to specify a
differential equation for the EoS, c2

s(p) = dp/dε, which can
be solved in first quadrature as

ε =

∫
dp

c2
s(p)
, (5)

and then inverted to find p(ε). We then obtain the baryon den-
sity using the first law of thermodynamics, which, at zero tem-
perature and assuming charge neutrality, can be written as

dnB

dε
=

nB

ε + p(ε)
. (6)



4

FIG. 1. The auxiliary variable ϕ ≡ ln((dε/dP) − 1) as a function of log10P in cgs units (left) and the speed of sound as a function of baryon
number density in units of nsat (right) for different parameterizations of the EoS from chiral mean field theory (CMF), which include nucleons
(n), electrons (e), delta resonances (D), hyperons (H), and quarks (q) [92–98], and the QHC19 EoS (n + e + q) [38]. In light gray we show
a sample of 160 total functional forms for c2

s from the benchmark GPs using the ansatz in Eq. (7) and a squared-exponential kernel with
l = σ = 1. The functional forms from the hard and soft GP are shown in dot-dashed and solid lines, respectively. The benchmark GPs capture
a wide range of behavior, but the a priori requirement that functional forms display only long-range correlations across densities exponentially
suppresses sharp and non-trivial features in c2

s , which are observed in state-of-the-art nuclear physics simulations.

Once these equations are solved, we have the set{
ϕ(p), c2

s(nB), p(ε)
}
, which defines an EoS sample from a GP.

In practice, we build our EoSs numerically by sampling on a
finite set of pressures and baryon densities with a sufficiently
fine discretization. As pointed out in Ref. [40], a simple check
that the EoS is being recovered correctly is to calculate c2

s
from p and the reconstructed ε, and check that it matches the
c2

s from the GP. The EoS samples generated through the GPs
will only be used above 0.5 nsat [79], which we denote as the
core-crust transition. Below this density, we model the crust
through the QHC19 EoS [38, 99].

A. Benchmark Gaussian Processes

Now that we have explained the idea behind constructing
an EoS sample from a GP, we need to specify the input for

the joint probability density function in Eq. (3). The two main
ingredients that define a GP are the means {µi}, which will de-
termine the average trend for the function that is being sam-
pled, and the covariance matrix Σi j, which specifies the joint
variability between two points xi and x j. Our goal is to first
create a benchmark model c2

s(p) without any sharp, nontriv-
ial features. To do so, we adopt the approach taken in Miller
et al. [55], which looked at a collection of twelve cold neu-
tron star EoSs from the CompOSE data base [100, 101] on the
log10 p−ϕ plane, and found that these EoSs generally follow a
linear trend over the domain 32.7 ≤ log10 pi(erg cm−3) ≤ 37.
This trend was empirically approximated as

µi(log10 pi) = 5.5 − m(log10 pi − 32.7) , (7)

where m is the slope of the linear regression. Reference
[55] fixes m = 2 based on the spread of EoSs from Com-
pOSE. Other choices for the means are also possible [86]. Out
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of the total twelve EoSs that this model is based on, seven
were purely proton, neutron, and electron matter (npe) mod-
els [7, 8, 102–110], one model included npe matter, heavy
baryonic resonances, and a crossover transition to quarks
(QHC18 [1, 99, 111]), and four models included npe matter
plus strange baryons [7, 92, 93, 108–110, 112–114]. These
models largely approach the causal limit at high densities,
which biases the behavior of the EoS in that regime. Notably,
models that predict a softer EoS at large densities, such as
quarkyonic models [23, 41–44], are missing from the collec-
tion of EoSs that was used to determine Eq. (7).

To test the assumption of Miller et al. [55], we use the rela-
tion in Eq. (7) with m = 2 to create a set of EoS samples. As
shown in the top left-panel of Fig. 1 (solid, thin, gray lines),
these EoS samples cluster around a mean (solid, thick, black
line). The top right panel of this figure shows that speed of
sound functional forms constructed using m = 2 largely ap-
proach unity with increasing density. This behavior is high-
lighted in the bottom panel, which shows c2

s as a function of
pressure. Note that different EoSs have different ranges in
baryon density for the same range of pressure, so the range
of pressures in the top left panel does not correspond to the
range of baryon densities in the top right panel. We now con-
trast this set of EoS samples with a new set, constructed from
GPs with a softer mean. More specifically, we set m = 1.6
in Eq. (7), resulting in the functional forms shown in the top
left panel of Fig. 1 (dot-dashed, thin, gray lines). As expected
by construction, the mean of these samples has a softer slope
(dot-dashed, thick, black line). The effect of this softer mean
is to reduce the speed of sound to values largely below ≈ 0.4
in the neutron star range of baryon densities, as shown in the
top right panel of Fig. 1. For baryon densities larger than this,
the distribution of speeds of sound has a mean of 1/3 (i.e. the
conformal limit), and a scatter that leads to c2

s’s as large as 0.8
and as small as 0.1, as shown in the bottom panel. From here
on, we refer to the set of EoS samples resulting from GPs with
m = 2 and m = 1.6 as “hard GP” and “soft GP,” respectively.
Figure 1 also presents specific realizations of nuclear physics
simulations of the EoS, but we defer a discussion of those to
Sec. II B.

Why consider a soft GP when astronomical observations
seem to indicate that the conformal limit is broken at nB ≈

2nsat [6, 14, 55, 115]? Our motivation is to show the ef-
fect of softer means in the speed of sound, while at the same
time generating a new benchmark model that can be modi-
fied through sharp features (active in a narrow baryon density
range) to make them consistent with astronomical observa-
tions. We will discuss such modifications in the next subsec-
tion.

Before proceeding, let us discuss two other important mod-
ifications from the approach in Miller et al. [55]. The highest
value sampled in log10 p is 37, instead of 36 in [55], and we
use a significantly finer grid – Miller et al. samples 50 points,
whereas we sample 100. These modifications are necessary
because our procedure allows for softer EoSs, which result in
higher neutron star central pressures. Expanding the sampled
domain ensures that the entire stable branch is captured, rather
than cutting it off at an arbitrary, smaller value. Also, since in

the next subsection we will introduce sharp features in c2
s that

lead to rapid changes in the EoS, a finer grid is needed to keep
numerical errors under control when recovering the EoS sam-
ples from a GP.

Let us now discuss the second ingredient that defines a GP:
the covariance matrix. We assume that Σi j is a matrix whose
elements are determined through a kernel function of the pair
{xi, x j}, where xi is the point at which the normal distribution
is being sampled (i.e., in our case x is the log10 of the pressure
in cgs units) and x j is any other point, i.e. Σi j = K(xi, x j). We
further assume a squared-exponential kernel,

Kse(xi, x j) = σ2 exp
[
−

(xi − x j)2

2ℓ2

]
, (8)

which depends only on the distance between xi and x j, and
on two hyperparameters, ℓ and σ. Specifically, ℓ determines
the correlation length scale (e.g., when ℓ → 0 all points are
independent of each other) and σ represents the strength of
the overall correlation (e.g. when σ → 0 all points go to the
mean). The benchmark models should be smooth, meaning
that ℓ should be compatible with longer correlations across
domain points. In addition, because of the exponential map
between ϕ and c2

s , a σ that is too large would lead to c2
s ≈ 0

or c2
s ≈ 1 more often. Nonetheless, σ should not be too small,

so that there is enough variability in the EoS samples from
any given GP. In accordance with Miller et al. [55], we set
l = σ = 1 for both the hard and soft GP benchmark models.

Let us now consider the effect of our choice of ℓ and σ
on our EoS samples. Figure 1 shows that, in the hard GP
case, σ = 1 still allows for enough deviation from the mean
to create variability in the EoS samples, without oversampling
c2

s ≈ 1 or c2
s ≈ 0. In the case of the soft GP, a σ = 1 leads

to oversampling c2
s ≈ 0, since the mean is already at very low

values of c2
s . However, for both GPs, ℓ = 1 heavily suppresses

large deviations in c2
s from one value of pressure to pressures

in a close neighborhood, resulting in EoSs without sharp, non-
trivial features. Our assumptions in the benchmark models do
not force c2

s to increase monotonically; nevertheless, because
ℓ = 1 imposes large-scale correlations, non-monotonic behav-
ior is smeared out across a wide range of densities, a feature
that is consistent only with a smooth (i.e. wide) crossover.

B. Modified Gaussian Process

Are the benchmark models discussed in the previous
subsection enough to accurately represent nuclear-physics-
derived EoSs? Figure 1 shows a set of EoSs derived from
state-of-the-art simulations of chiral mean field (CMF) mod-
els [92–97] and a simulation of the commonly-used quark-
hadron crossover EoS framework (QHC19) [38]. In partic-
ular, we include in this figure CMF models with delta reso-
nances (D), hyperons (H), and quark (q) degrees of freedom,
where the transition to quark degrees of freedom is a first-
order phase transition (denoted CMF) or a crossover due to
an excluded volume term (denoted CMFex) for two different
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parametrizations of the strange vector quark couplings [98]2

As shown in Fig. 1, exotic degrees of freedom lead to kinks,
spikes, and plateaus in c2

s that occur across short correlation
lengths in baryon density. None of the EoS samples drawn
from either of the two benchmark GPs is able to reproduce
these features.

This discrepancy between the benchmark GPs and nuclear
physics simulations motivates the creation of modified Gaus-
sian processes (mGP). More specifically, we wish to create a
modification to the benchmark GPs that lead to EoS samples
that contain the short-length correlation structures in the speed
of sound that are present in realistic nuclear-physics simula-
tions, while maintaining long-length correlation scales driven
by an overarching mean behavior. An mGP sample is built
from a benchmark GP that serves as a baseline, but that is
modified through the addition of a specific feature in a range
of pressures. In general, we do not introduce modifications
below nsat because a variety of experimental constraints (see
[59, 116] for a recent review) and χEFT calculations [4] re-
quire no such structure at these low densities.

Two main reasons drive our choice to introduce modifica-
tions to a baseline GP: (i) direct control over the functional
form of c2

s at a low computational cost – each modification
that is introduced can be directly related to a thermodynamic
process – and ability to track where and how modifications ap-
pear without any post-processing, and (ii) a priori multi-scale
correlations in density. We note that GPs with a fixed, but
sufficiently small correlation-length can converge to an EoS
that displays long, medium, and short correlations in den-
sity a posteriori, in which case convergence (i.e. the poste-
rior credible regions are small and centered around the true
EoS at all density/mass scales) may require a large number of
samples.3 However, if the GPs are constrained to larger cor-
relation lengths a priori, medium and short-range correlations
will be exponentially suppressed and an even larger number
of samples would be required to converge to a posterior that
displays multi-scale correlations [117].

In what follows, we connect the types of modifications we
introduce in the mGPs to the phase transition phenomenol-
ogy from numerical simulations of nuclear physics models
and general thermodynamic arguments.

There are a few different thermodynamic phenomena rel-
evant to phase transition phenomenology. These phenomena
are illustrated in Fig. 2 as functional forms of the speed of
sound as a function of baryon number density and Table I,
which connects the different features illustrated in Fig. 2 to
relevant physical processes and nuclear physics models. We

2 See also Fig. 2 in Ref. [82] for more examples of nuclear physics simula-
tions of EoSs with exotic degrees of freedom and how non-trivial features
appear in the speed of sound.

3 It is also important to note that data may not constrain large changes in
the speed of sound over a short range in density very strongly. That is,
the likelihood for any individual event may not be very informative, which
would required many events to get an informative joint-likelihood. In that
case, any tighter credible regions derived with priors constrained to display
short-range correlations would be due to the prior rather than the likelihood
[117].

FIG. 2. Cartoon of c2
s as a function of nB to illustrate different phys-

ical features to incorporate in mGPs. A sharp crossover corresponds
to a rapid change in degrees of freedom, where c2

s will first become
stiffer – due to the onset of, e.g., repulsive or excluded volume in-
teractions – and then quickly soften with the emergence of new de-
grees of freedom; this leads to a spike/sharp bump upwards in c2

s
with respect to the baseline (top left). A smooth crossover corre-
sponds to a slower change in degrees of freedom, which we model as
a plateau upwards with respect to the baseline (top right). A second-
order phase transition corresponds to the critical point at the end of
a first-order phase transition line, leading to a very small region (ap-
proximately a point) where c2

s = 0, which can be modeled as a spike
downwards with respect to the baseline (bottom left). Lastly, a first-
order phase transition separates two phases with distinct densities,
leading to a gap in c2

s , which can be represented as a plateau, or re-
gion, where c2

s = 0 (bottom right).

will now discuss each of the categories of physical phenom-
ena and modifications individually, and draw connections to
Fig. 2 and Table I.

In general, a phase transition can be continuous (also
known as a crossover) or discontinuous. If continuous, all
derivatives of the pressure are finite, i.e.(

∂n p
∂µn

B

)
crossover

, ∞, (9)

and the pressure is an analytic function of the energy density.
If a discontinuity exists, i.e.(

∂n p
∂µn

B

)
nth−order

→ ∞, (10)

the phase transition is classified through its order n. An (nth)-
order phase transition is one in which the (nth)-order derivative
of the pressure with respect to the chemical potential at the
critical baryon density nB = ncrit.

At vanishing temperatures, crossovers lead to a non-
monotonic peak-like behavior in the speed of sound (see [23]
for an example and explanation of this behavior). Mathemat-
ically, we can define the center of this bump at ñB and half
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TABLE I. Connection between phase transitions of different orders/crossover to corresponding physical processes in terms of the effect on the
speed of sound in equilibrium and modifications in the mGP framework. Note that a first-order phase transition has a jump in baryon density
across ∆nB.

Transition type Physical Process Representation in c2
s Modification

sharp crossover quarkyonic matter
[23, 41–43, 118], percolation to

quark matter [38, 44],
quark-meson coupling

[34, 119] heavy resonances
[92–98], hyperons [46, 92],
chiral-superfluid transition

[120]

for δ ≪ 1, if nB = ñB ± δ,
then

(
c2

s

)′
= ±δ−1

if nB = ñB, then
(
c2

s

)′
= 0

spike up, c2
s , 0

smooth crossover

for δ > 0,
if nB = ñB ± δ, then(

c2
s

)′
= ±δ−1

if nB ∼ ñB, then
(
c2

s

)′
∼ 0

plateau up, c2
s = 0

nth-order PT, n > 2
if nB = ncrit, then
dn p/dµn

B → ∞

spike or plateau down,
c2

s , 0

2nd order PT critical point due to exotic
quark phases c2

s(ncrit.) = 0 spike down toward c2
s ≈ 0

1st order PT
quark deconfinement [92, 94],

color-superconductivity,
colorflavor-locking [25]

c2
s(nB) = 0 with nB ∈ [n∗B, n

∗
B + ∆nB] plateau down at c2

s ≈ 0

the range in nB where this bump occurs will be defined as δ.
Then, if the peak of the bump is centered at ñB (we make the
assumption here that ñB is centered at the middle of the bump
but it does not necessarily have to be the case), we find that at
nB = ñB, and

(
c2

s

)′
∼ 0.

Crossovers can be further classified into smooth e.g. [23]
or sharp e.g. [118], depending on the abruptness of the non-
monotonic behavior. A sharp crossover is when the change
in degrees of freedom happens rapidly (as expected e.g. in
quarkyonic matter models [23, 41–43, 118]), such that δ ≪ 1
and the peak behavior becomes more of a “spike” (although
all derivatives of the pressure remain finite). This kind of
crossover is summarized in the top row of Table I, is illustrated
through the cartoon in the top left panel of Fig. 2, and will be
represented in the mGP framework by a spike that rises rela-
tive to the baseline. A smooth crossover is when the change
in degrees of freedom happens slowly so that δ > 0 is large
and the peak behavior becomes more of a “plateau” such that
there is no longer a single sharp point in baryon density where
the derivative of c2

s is zero but rather a range of nB ∼ ñB such
that

(
c2

s

)′
∼ 0. This kind of crossover is summarized in the

second row of Table I, is illustrated through the cartoon in the
top right panel of Fig. 2, and will be represented in the mGP
framework by constant c2

s , 0 in a ñB ± δ region. For both
sharp and smooth bumps, we define the bump as an increase
of at least 10% compared to the original benchmark functional
sampled in the regime of ñB ± δ.

Let us consider an example of a sharp crossover in more
detail, taking the quarkyonic model as a reference [23, 118].
In this framework, the speed of sound squared is always be-
low the conformal value of 1/3, except in a narrow range of
densities where the crossover transition happens. The rapid
stiffening is associated with repulsive, excluded volume inter-
actions, followed by a softening of the speed of sound, once
quark and gluon degrees of freedom appear in the system. A
scenario like this one is equivalent to a soft GP baseline with

a spike that rises up in a small baryon density region. Our
mGP will also include more general cases where a spike up
is added to a hard GP baseline, meaning that c2

s will not be
required to stay below the conformal value neither before nor
after the crossover, since those cases cannot yet be ruled out
by the data.

Let us now consider a few examples of smooth crossovers
in more detail. A minimal set of requirements to create a
plateau or “bump” structure is discussed in Ref. [120], which
found that in QCD this feature can be the result of a “chiral-
superfluid” transition, such as the condensation of diquarks
or dibaryons. In quarkyonic frameworks, a plateau structure
can appear when repulsive excluded-volume terms are par-
tially balanced by the onset of quark degrees of freedom,
which stiffen and soften the EoS, respectively [41–43]. In
the CMF model, implementing an excluded-volume term for
the hadrons leads to a crossover transition to the quark phase
[98]. In the quark-hadron crossover EoS (QHC) [38] or three-
window modeling of the EoS [44], the crossover regime is
constructed via a smooth interpolation of the hadronic and
quark regimes, which must also respect thermodynamic con-
straints such as causality. Lastly, the Quark-Meson Coupling
(QMC) class of models, which is based on baryons that in-
teract via the exchange of virtual mesons between confined
valence quarks, also gives rise to smooth crossover structure
in c2

s [34, 119]. Furthermore, QMC EoSs soften rapidly with
the onset of hyperons, leading to c2

s < 1/3 within neutron
star densities even when no quarks are produced [34], a fea-
ture that is relevant for recent discussions on the onset of
a “conformal” regime in the core of massive neutron stars
[15, 17, 66]. Scenarios like the ones described above lead
to a rounded peak structure in the speed of sound (see Fig.
1), which can be approximated as a plateau at some finite c2

s
that rises above the baseline EoS. We make this approxima-
tion for simplicity, given that there are an infinite number of
continuous functions that can be constructed in the crossover
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regime. Although we do not expect this approximation to af-
fect macroscopic observables significantly, it would be valu-
able to quantify its impact in a future study, accounting for
variables such as the width and height of the peak and den-
sity dependence. A smooth crossover can also be constructed
phenomenologically (see, e.g., Ref. [121]).

Discontinuous phase transitions of order higher than > 2
lead to speeds of sound that resemble that of crossovers, al-
though technically the higher derivatives of the pressure are
not defined and the pressure is thus a non-analytic function of
energy density. In fact, for some models, it is still an open
question whether certain phase transitions are crossovers or
discontinuous phase transitions of finite order [46]. For this
reason, we will model discontinuous phase transitions of or-
der higher than 2 through spikes and plateaus in the speed of
sound that dip below the baseline but do not lead to vanish-
ing c2

s . The inclusion of these features leads to a variety of
non-monotonic structure in c2

s across some finite range in nB.
A discontinuous phase transition of order two is sometimes

referred to as a “critical point” (illustrated in Fig. 2, bottom
left) because it is the endpoint of a first-order phase transi-
tion line. As presented in Table I, we are not aware of any
models that predict a critical point at zero temperature for β-
equilibrated nuclear matter (note that a zero temperature criti-
cal point is known as a quantum critical point). However, this
possibility cannot currently be ruled out by the data, and thus,
we choose to model it. At a critical point, c2

s ≈ 0 only at a crit-
ical baryon density nB,crit.. In the mGP framework, we model
a critical point as a spike that dips to exactly zero at a single
value of baryon density, i.e. c2

s
(
nB,crit.

)
= 0.

A discontinuous phase transition of order one, also known
as a first-order phase transition, occurs when the transition be-
tween two different phases of matter requires a non-zero latent
heat. As a result, the two phases have different baryon densi-
ties. If the transition density is n∗B, then the speed of sound
displays a gap, i.e. a region where c2

s ≈ 0, between n∗B and
n∗B + ∆n∗B . The larger the gap, the stronger the phase transi-
tion. This description assumes that the system is in equilib-
rium and a Maxwell construction was performed to remove
any metastable region. In a dynamical system, the first-order
phase transition would present as a metastable, or spinodal,
region wherein one would see non-monotonic behavior in
c2

s(nB), nB ∈ [n∗B, n
∗
B + ∆n∗B]. Since neutron stars are in equi-

librium, a Maxwell construction across the phase transition is
a good assumption, leading to a plateau in p(ε) that results in
a region of c2

s(nB) = 0, nB ∈ [n∗B, n
∗
B + ∆n∗B].

First-order phase transitions naturally arise in a variety of
nuclear-physics models, as presented in Table I. In the CMF
framework [92, 94], a first-order phase transitions results from
a Polyakov loop being used to describe the separation between
the hadronic phase with deltas and hyperons from the quark
phase. The Triplets model [25] contains sequential first-order
phase transitions that separate a density-dependent relativis-
tic mean-field model with nucleons and hyperons phase from
a 2-flavor quark color-superconducting phase (2SC) and a
quark color-flavor-locked phase (CFL). First-order phase tran-
sitions can also be constructed phenomenologically to sepa-
rate phases from different descriptions using n∗B and ∆nB as a

variable parameter to tune the transition density and the gap
in baryon number density between the two phases (see, e.g.,
[122–125]). Such transitions are straightforward to model
with an mGP assuming a Maxwell construction by replacing
a portion of the baseline c2

s with a segment for which c2
s = 0.

III. CHOICE OF PRIORS

Now that we have described how EoSs are created from the
benchmark GP and the mGP models for c2

s(log10 p), we will
specify how we generate a prior distribution. Generally, what
constitutes an appropriate prior will depend on the parameters
being estimated in a Bayesian analysis. The implicit assump-
tions we make by modeling the EoS from a non-parametric
framework are (i) that the speed of sound at each sampled
value of pressure, c2

s(pi), is an effective parameter, and (ii) that
the method and the hyperparameters we choose for generating
c2

s(pi) dictate both the prior distribution and the correlations
across the effective parameter space.

The prior distribution that we must choose is, therefore, a
statement on our prior beliefs of the allowed values of c2

s(pi).
When dealing with effective parameters of this type, there are
two important aspects to consider. On the one hand, we must
model a diverse set of functional forms of c2

s(pi) to span a suf-
ficiently large sample of its function space. On the other hand,
we must also ensure that this diverse set of functional forms
leads to c2

s(pi) that are statistically consistent with astronomi-
cal observations of neutron stars.

In the next two subsections, we will discuss in detail the
priors on the GP and mGP hyperparameters, and how we en-
sure the sample size is large enough and still consistent with
reliable astronomical observations.

A. Priors on GP and mGP hyperparameters

Let us first discuss the priors that we choose on our bench-
mark GP hyperparameters. These hyperparameters corre-
spond to the correlation length (ℓ) and correlation strength
(σ) at each c2

s(pi), and the slope (m) of the mean function
µi(log10 pi). For ℓ and σ, we choose delta-function priors that
fix these parameters to unity. For m, we choose two equal-
probability delta-function priors, one peaked at m = 1.6 and
one at m = 2, such that 50% of the time the benchmark GP
corresponds to a hard GP and 50% of the time to a soft GP.

We will now discuss the priors for the mGP hyperparame-
ters. As noted in Sec. II B, the mGP model introduces mod-
ifications on top of a baseline, which is modeled through the
benchmark GP. The introduction of one spike is controlled
by four hyperparameters: a true or false switch qsp, a spike
magnitude sp, a spike direction ŝp, and a spike location
psp, such that c2

s(psp) = sp if a spike is present. Similarly,
the introduction of one plateau is controlled by five hyper-
parameters: a true or false switch qpl, a plateau magnitude
pl, a plateau direction p̂l, a plateau width in pressure ∆ppl,
and a plateau starting location ppl, such that c2

s(p) = pl for
p = [ppl, ppl + ∆ppl] if a plateau is present.
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In this work, we will consider the introduction of
one spike, one spike and one plateau, and two plateaus.
This implies that every modification is controlled by
a choice of the hyperparameter vector h⃗ = h⃗1 ∪

h⃗2, where h⃗1 = {qsp, qpl1, qpl2, ŝp, p̂l1, p̂l2} determines
whether spikes and plateaus are present, and h⃗2 =

{sp, psp, pl1,∆ppl1, ppl1, pl2,∆ppl2, ppl2} determines the prop-
erties of these modifications.

The hyperparameters in h⃗2 are dependent on the choices
made for h⃗1 so we first focus on h⃗1. The switch hyperparame-
ters {qsp, qpl1, qpl2} determine whether a feature is present, and
thus, they can only be 0 or 1. Similarly, the unit vector hyper-
parameters {ŝp, p̂l1, p̂l2} indicate the direction of a spike or a
plateau (i.e. whether the modification increases or decreases
the speed of sound with respect to the baseline) and can only
take values of ±1. We consider the following seven configu-
rations:

• h⃗1 = {0, 0, 0, ŝp, p̂l1, p̂l2}. No modification is intro-
duced and the mGP reduces to the benchmark model.

• h⃗1 = {1, 0, 0,±, p̂l1, p̂l2}. A spike is introduced that goes
either above or below the baseline.

• h⃗1 = {1, 1, 0,±,∓, p̂l2}. A spike is introduced that goes
either above or below the baseline, and a plateau is in-
troduced, which goes in the direction opposite to the
spike.

• h⃗1 = {0, 1, 1, ŝp,±,±}. Two plateaus with different
magnitude are introduced, with both plateaus being al-
lowed to go above or below the baseline.

We assign equal prior probability to each of these four options,
implying that 25% of our samples are from the benchmark
GPs and the remaining 75% come from the mGPs (i.e., out
of the total number of samples, 25% contain a single spike,
25% contain a spike and a plateau, and 25% contain a double
plateau.)

The remaining hyperparameters h⃗2 have specific allowed
ranges, which depend on which of the above four options is
drawn. In the single spike case (⃗h1 = {1, 0, 0,±, p̂l1, p̂l2}), we
must choose the height of the spike sp and its location psp,
such that at the spike c2

s(psp) = sp. For the location of the
spike, psp, we choose a flat prior with edges at p(nB = 1.1nsat)
and p = 1037 erg cm−3. For the height parameter, sp, we
choose different priors depending on whether the spike goes
above or below the baseline. If the spike is up, then we choose
a flat prior with edges at sp = 1.1 c2

s,benchmark(psp) and sp = 1.
If the spike is down, then we choose a flat prior with edges
sp = 0 and sp = 0.9 c2

s,benchmark(psp). This choice of prior
guarantees that the spiked speed of sound squared is never
negative, never exceeds unity, and always introduces at least a
10% modification.

In the spike plus a plateau case (⃗h1 = {1, 1, 0,±,∓, p̂l2}),
we must first choose the properties of the plateau to guarantee
that there are no spikes within the plateaus. That is, because
the plateau has a width ∆ppl1, when sampling the location of
the spike, psp, we must not sample within [ppl1, ppl1 + ∆ppl1].

Given the above, for the plateau width, ∆ppl1 we sample
on log10 ∆ppl1 from a flat prior on the interval [0.12, 1.2],
with pressure in units of erg cm−3. For the plateau loca-
tion, ppl1, we use a flat prior with edges p(nB = 1.1nsat) and
p = (1037erg cm−3 − ∆ppl1) to ensure the entire plateau falls
within the allowed pressure range. Thus, the range of the prior
for the location of the spike, psp, must be modified (from
the case when there is no plateau) to [p(nB = 1.1nsat), ppl1)
∪ (ppl1 + ∆ppl1, 1037 erg cm−3]. The prior on the plateau
magnitude, pl1, is chosen in the same way as the prior on
the spike magnitude sp (see paragraph above), but with one
modification: instead of setting the edge at 0.9 or 1.1 of
c2

s,benchmark(psp), we use 0.9 or 1.1 of c2
s,benchmark(ppl1). With

this adjustment, the plateau always introduces at least a 10%
modification to the benchmark from the starting point of the
plateau, ppl1.

In the case with two plateaus (⃗h1 = {0, 1, 1, ŝp,±,±}), we
follow the same procedure as above, but with the follow-
ing modifications. After drawing a location and width for
the first plateau, we must ensure the second one is distinct
(i.e. non-overlapping), and thus, it must be placed to the left
or to the right of the first plateau. We enforce this constraint
by first drawing ∆ppl2 from the same flat prior as that used
for ∆ppl1. We then remove ∆ppl2 from the right side of the
intervals [p(nB = 1.1nsat), ppl1) and (ppl1 + ∆ppl1, 1037 erg
cm−3]. Finally, we draw ppl2 from a flat prior in the inter-
val [p(nB = 1.1nsat), ppl1 − ∆ppl2) ∪ (ppl1 + ∆ppl1, 1037 erg
cm−3 − ∆ppl2]. This procedure is computationally efficient
and it guarantees the two plateaus do not overlap.

In Fig. 3, we show examples from each of the three groups
within the mGP framework: a spike modification (ŝp = ±),
a spike and a plateau modification (( p̂l1, ŝp) = (±,∓)), and
a two-plateau modification ((p̂l1, p̂l2) = (±,±)). In the top
panel, the samples are represented by c2

s as a function of
log10P, where P is in units of erg cm−3, exactly as they were
generated by the mGP. We can see that the mGP framework
succeeds in introducing multi-scale correlations to the speed
of sound functional form. Once the samples are generated,
the EoS p(ϵ) is extracted by solving the differential equation
dp/dϵ = c2

s(log10 p). In the middle panel, the same samples of
c2

s are shown but now as a function of nB/nsat. In this panel, we
also calculate the maximal central density for a stable, nonro-
tating star and denote it with a circle.

From these two panels, we can make several observations.
First, note that in the middle panel the structure in c2

s is more
condensed at low densities and more spread out at large den-
sities, relative to the structure in the top panel. This is because
the pressure decreases more rapidly as a function of density in
the outer layers of the star, where the densities are low. As a
consequence, even the smallest structure in c2

s at low densities
introduces structure over a large range of pressures. In con-
trast, at higher densities, the pressure decreases slowly with
respect to density. Therefore, dramatic features in c2

s at high
densities translate into structure that arises over a small range
in pressures.

From this comparison, we also arrive at an important con-
clusion regarding the optimal variable to sample over when in-
troducing modifications. As shown in the middle panel, most
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stable, nonrotating stars (those with darker lines) will reach at
most nB ∼ 7 nsat. The density regime between 1 − 7 nsat is
precisely where structure in c2

s is spread out over a larger in-
terval in P. This implies that sampling over P will allow us to
resolve this structure better than if we sampled over nB, for a
finite resolution. This is the choice, i.e. to sample in pressure,
that we will make henceforth in this paper.

The bottom panel of Fig. 3 displays the EoS samples on
the ε − P plane, with squares denoting the maximal central
pressure and energy density for each EoS. From this panel, it
is clear that the modifications introduced in c2

s are not caus-
ing the EoSs to significantly deviate from each other. In fact,
we see that large changes in the speed of sound translate into
rather small changes in the EoS, leading to clustering around
a region in the ε − P plane. We stress here that Fig. 3 only
shows six representative samples of c2

s and EoSs out of the
nearly one million samples that we study in this paper.

B. Astronomical observables

We have specified a prior for the EoS, a quantity that we
cannot directly measure. Thus, we need to translate the in-
formation carried by the EoS into astronomical observables
if we wish to infer properties of the former. For each EoS,
we can calculate the mass-radius (M − R), moment of inertia-
mass (I − M), quadrupole moment-mass (Q − M), and tidal
deformability-mass curves (Λ−M), which encode the proper-
ties of neutron stars of different central densities. These prop-
erties can then be compared to astronomical observations to
determine the validity of the EoS. In this subsection, we will
discuss briefly how these quantities are obtained, following
mostly [126]. In the next subsection, we will explain how we
use astronomical observations of these quantities to inform
our prior sample size.

Millisecond pulsars rotate slowly compared to their mass-
shedding limit, and any radius corrections resulting from ro-
tation are significantly below measurement precision for the
NICER mission [55]. Therefore, for calculating the mass-
radius curve, we can approximate milisecond pulsars as non-
rotating, isolated objects. The condition that a stable nonro-
tating star must be in hydrostatic equilibrium yields the well-
known Tolman-Oppenheimer-Volkoff (TOV) equation. For
each EoS, given a central pressure pc, the TOV equation will
describe how the mass and pressure vary with the radial coor-
dinate up to a limiting value, R∗, where p(R∗) ≈ 0. The mass
of the star is given by M = M(R∗) and the stellar radius is
R = R∗. By repeating this process for multiple values of pc,
we get the M − R curve for a given EoS.

At some value of central pressure, the M − R sequence will
become unstable, which occurs when dM/dpc < 0. This value
of the central pressure marks the end of what we refer to as the
(stable) neutron star EoS, and establishes a maximal allowed
value for the central pressure, pmax

c , for astrophysically realis-
tic stars. Note that the zero-temperature QCD EoS continues
beyond pmax

c , but we do not expect to observe stable, isolated,
non- or slowly-rotating pulsars with central pressures exceed-
ing pmax

c , assuming the EoS used in the calculation is correct.

FIG. 3. Top to bottom: The speed of sound squared in units of c2 as
a function of the pressure in units of erg cm−3, the speed of sound
squared in units of c2 as a function of the baryon number density
in units of nsat, the pressure as a function of energy density, both in
units of MeV fm−3, for a representative set of samples generated us-
ing the mGP framework. The circles in the middle panel represent
the maximal central density predicted for a stable, nonrotating star.
The squares in the bottom panel are the corresponding maximal val-
ues for the pressure and energy density for a stable, nonrotating star.
Samples that contain a spike are shown in pink, samples that contain
a spike and a plateau are shown in blue, and samples that contain two
plateaus are shown in green. Solid and dot-dashed lines differentiate
between different features for samples in the same category, as indi-
cated by the switch parameters ŝp, p̂l1 and p̂l2, which are defined in
Sec. III C. The mGP framework produces a diverse set of EoS which
contain multi-scale correlations across densities at a low computa-
tional cost.
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We also note that the M−R sequence can have multiple stable
branches separated by unstable regimes where dM/dpc < 0.
When that is the case, pmax

c is still the largest density corre-
sponding to the end-point of a stable branch, but it might not
correspond to the central density of a maximally massive star
for a given EoS.

Now, let us consider an isolated star that rotates with di-
mensionless angular velocity Ω, where we have normalized
the stellar angular velocity by the mass-shedding limit. We
assume Ω is small enough that the solutions to the Einstein
equations can be expanded in powers of this dimensionless an-
gular frequency. Note that toO(Ω0), the (t, t) and (r, r) compo-
nents of the Einstein equations, in conjunction with the stress-
energy conservation equation, yield the TOV and continuity
equations. At O(Ω), the Einstein equations only modify the
gravito-magnetic sector of the metric, whose exterior behav-
ior is characterized by the moment of inertia I. At O(Ω2), we
obtain a correction to the total mass and to the mass distribu-
tion within the star, which now acquires an oblate spheroidal
shape due to rotational motion. The latter is controlled by
the quadrupole moment Q. Both I and Q vary with the cen-
tral density of the star, such that we can obtain solutions for a
range of central pressures and relate them to the M − R curve
to obtain the I − M and Q − M curves.

Finally, we will consider a non-rotating star in the pres-
ence of a companion compact object, which causes the star
to tidally deform. We can study the redistribution of mass
due to the external perturbation through a multipolar expan-
sion. The deformation at leading order in perturbation the-
ory is dominated by the quadrupole moment. The quadrupo-
lar deformation is controlled by the Love number, or its di-
mensionless version, the tidal deformability Λ. The tidal de-
formability can be calculated by solving the linearized Ein-
stein equations combined with continuity and differentiability
arguments. Once again, the exact solution for Λ requires an
EoS and is dependent on the central pressure of the star [127].
The calculation can be repeated for a range of central pres-
sures to obtain the Λ − M curve.

C. Prior sample size

The priors on neutron star observables, such as their mass,
radius and tidal deformability are determined by the prior on
the EoS. But how do we know that we have chosen a good
EoS prior? For instance, it is possible that the EoS prior
largely favors neutron stars with maximum masses below 1.8
M⊙, which we know to be incompatible with the observation
of ∼2.0 M⊙ pulsars [51–53]. This feature is not inherently
bad, but it would mean that a larger overall number of sam-
ples would be required to obtain a representative sample of
EoS that lead to maximum masses around or above 2.0 M⊙.

For each measurement available, we want enough samples
in the prior that offer a reasonable match to observations as
predictions. Due to the functional complexity allowed by
both the GP and mGP frameworks, we expect that most EoS
generated will not meet basic requirements based on neutron
star observations. With that in mind, we use three metrics

to gauge the ability of samples in the prior to describe astro-
nomical measurements. First, we check that Mmax ≥ 1.8 M⊙
based on the observation of three high-mass pulsars [51–53].
Second, based on the inference of the tidal deformability of
a 1.4 M⊙ star, Λ1.4, from GW170817 [128], we check that
10 ≤ Λ1.4 ≤ 2000. Third, based on NICER’s inference of the
mass-radius posterior for PSR J0030+0451 [54, 56], we check
that 8.0 ≤ R1.4 ≤ 16.0 km. We note that these bounds are far
outside the 90% credible region for the most constraining es-
timates of the maximum mass [129], radius of a 1.4 M⊙ star
[55], and tidal deformability of a 1.4 M⊙ star [128].

For every sample EoS that we draw from our GP or mGP
framework, we keep tally of whether the three checks speci-
fied above are passed or not. We emphasize that these metrics
are not used to cut the sample size or to modify our priors
in any way. We simply track how many samples pass these
checks to ensure that we have enough strong candidate EoSs
in our prior sample. In particular, we continue drawing sam-
ples until we have obtained a subset of at least 100,000 can-
didate EoSs that pass all three checks. This requires that we
sample about 1,000,000 times from the benchmark GP and
mGP frameworks.

Another benefit of checking our priors in terms of astro-
nomical observables is that we can assign zero likelihood to
EoS that fall outside the intervals we defined above. This is
because those sample EoSs are already in significant conflict
with the observations discussed above, and thus, their likeli-
hood will be very close to zero. We can justify this approach
as follows. Consider an observable Y at the value yk predicted
by EoS k, which we will parametrize in terms of a ϕ⃗k (see
Eq. (2), where here the vector symbol denotes the 100 values
of ϕ that we sample at each point in pressure). Let us also con-
sider a set of N total number of EoSs, such that k is between 1
and N. Then, the conditional probability of yk given EoS k is

P(yk) =
ykq(ϕ⃗k)L(ϕ⃗k)∑N

i q(ϕ⃗i)L(ϕ⃗i)
, (11)

where q(ϕ⃗k) is the prior probability assigned to EoS k and
L(ϕ⃗k) is the likelihood of the data given EoS k. Let us now
order the values of yk from smallest to largest, such that

P(y1 ≤ y ≤ y2) =
∑

k

P(yk), yk ∈ [y1, y2], (12)

defines the credible region delimited by y1 and y2. For most
observables, only a limited domain in yk will have nonzero
likelihood. That is,

P(ylow ≤ y ≤ yhigh) =
∑

k

P(yk) ≈ 1, yk ∈ [ylow, yhigh], (13)

where P(yk) ≈ 0 for yk outside the interval [ylow, yhigh]. For
Nobs different observables (e.g., maximum mass, radius at
1.4 M⊙, or dimensionless tidal deformability at 1.4 M⊙), we
then simply have a Nobs-dimensional region [y1

low, y
1
high] ∪

[y2
low, y

2
high] ∪ . . . ∪ [yNobs

low , y
Nobs
high] outside of which we expect

P(yk) ≈ 0. In our case, we consider three observables, so
the region outside of which the posterior is approximately
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zero is [Mmax,low = 1.8 M⊙,Mmax,high = ∞) ∪ [R1.4,low =

8.0 km,R1.4,high = 16.0 km]∪ [Λ1.4,low = 10,Λ1.4,high = 2000].
We can implement the condition that the posterior is zero

outside of the above region as follows. First, we divide our
prior sample into two subsets, one for which each EoS meets
all the requirements specified above (Φ✓), where

Φ✓ = {ϕ⃗k : Mmax,k ≥ 1.8M⊙ ∧ R1.4,k ∈ [8.0 km, 16.0 km]
∧Λ1.4,k ∈ [10, 2000]}, (14)

and one for which all EoS fail at least one of the checks (Φ×),
such that

Φ = Φ✓ ∪ Φ×. (15)

With this in hand, we now define the likelihood of the data
given EoS k to be L(ϕ⃗k)✓ = L(ϕ⃗k) if ϕ⃗k ∈ Φ✓, and we define
L×(ϕ⃗k) = 0 if ϕ⃗k ∈ Φ×. We emphasize again that the prior
distribution remains unchanged, so this procedure is in no way
equivalent to performing cuts on the prior.

Our goal is to generate enough samples to ensure that Φ✓
contains at least ∼100,000 EoS. Using the Mmax,R1.4, andΛ1.4
checks as a guide, we generate 900,000 EoS. Out of this to-
tal sample, 104,594 EoSs passed the checks, and therefore,
contribute non-negligibly to the posterior distribution of the
observables discussed later in Sec. V. Note that the number of
samples in Φ✓ is roughly 10% of the total number of samples
generated. Based on this result, we argue that studies using
non-parametric methods, or any method that allows for a vast
functional space, should implement similar checks, or at least
verify the robustness of results for different prior sample sizes.

IV. STATISTICAL METHODS

There should be a unique EoS that correctly describes all
neutron stars in the universe. However, honing in on this ex-
act EoS would only be possible with infinitely precise obser-
vations. A more common and realistic approach is to obtain
posteriors that describe the probability of a given EoS by com-
paring its predictions against data. Using an ensemble of the-
oretical models for the EoS, each with a corresponding pos-
terior probability, we can extract credible regions for the EoS
that occurs in nature. This method requires us to first state our
prior beliefs about the EoS, which then get updated as we gain
knowledge of the EoS through data.

We have introduced in Sec. II two frameworks for gen-
erating theoretical models for the EoS: benchmark GPs and
mGPs. Those frameworks reflect two different beliefs about
the EoS. The GP assumes the EoS displays long-range corre-
lations in pressure, resulting in smooth functional forms for
c2

s(p). This belief is compatible with nuclear physics simu-
lations for hadronic models, or models that display a smooth
crossover into an exotic phase, where the change in the de-
grees of freedom happens over a wide range in density. On
the other hand, the mGP framework assumes the EoS con-
tains nontrivial degrees of freedom or interactions that lead
to sudden changes in c2

s(p) in the form of kinks, spikes, and

plateaus. These features are predicted by many state-of-the-
art nuclear physics simulations with exotic degrees of free-
dom. With these two distinct prior beliefs in mind, our goal is
to assess if one framework is better at accounting for observa-
tions than the other.

We attempt to answer this question using a fully Bayesian
approach. In Sec. III, we detailed how we generate a prior dis-
tribution using the benchmark GP and the mGP as theoretical
frameworks. Now, we need to discuss how we calculate pos-
terior distributions by incorporating constraints on the EoS of
neutron stars from astronomical observations, controlled ter-
restrial experiments, and perturbative QCD calculations 4, and
how we quantify each framework’s ability to describe obser-
vations.

We begin this section with a Bayesian “primer,” where we
review a generic approach for implementing our knowledge
about the EoS into a posterior distribution and how we can
determine whether observations favor one of the EoS frame-
works over the other using the Bayes factor. Obtaining pos-
terior distributions requires specific choices and assumptions
for which observations and associated likelihood factors are
used. Those are discussed in a dedicated likelihood subsec-
tion. Similarly, we devote a separate subsection to explaining
how the model evidence for the benchmark GP and the mGP
are determined – a requirement for calculating the Bayes fac-
tor.

A. Bayesian primer

Consider an EoS k which is represented by a set of val-
ues sampled from either the benchmark GP or the mGP, ϕ⃗k.
Bayes’ theorem states that the posterior probability of EoS k
is proportional to the product of a prior term and the likelihood
of the data given ϕ⃗k,

PEoS(ϕ⃗k) ∝ q(ϕ⃗k)L(ϕ⃗k), (16)

where we recall that q(ϕ⃗k) is the prior probability distribution
encoding our prior beliefs about how likely EoS k is to occur,
and we recall that the likelihood term L(ϕ⃗k) reflects how well
predictions from EoS k match observed properties.

In this paper, we assume that all observations are indepen-
dent of each other, which means the likelihood of a set of ob-
servations (i, j) for EoS model k can be written as

L(ϕ⃗k) =
∏

i

 j(i)∏
j=1

Lk(i, j)

 , (17)

where i is a type of measurement (e.g. mass, radius) and j is
an independent measurement of type i (e.g. two independent
measurements of the mass of one object). For each of the

4 For a detailed discussion on current constraints on the QCD EoS across
different regimes, see Ref. [116].
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measurements, we must make a choice for how it will be in-
corporated into the analysis via a likelihood function, Lk(i, j).
We will discuss our choice of likelihood functions and spec-
ify which measurements we include in our analysis in the next
subsection.

Let us now instead return to Eq. (16). The normalizing fac-
tor that would make Eq. (16) an equality is called the model
evidence. In general, the model evidence assesses the ability
of a set of prior beliefs to account for observations. In the case
of nonparametric EoSs, the evidence can be defined as

Em =

∫
Φm

L(ϕ⃗k)q(ϕ⃗k)dk, (18)

where Φm is the set of samples in the prior that were gener-
ated using a specific theoretical framework m. As suggested
by the definition, the model evidence by itself has little mean-
ing beyond that of a normalizing constant. The goal is often
to have competing frameworks such that we can compute the
model evidence for each one and then take the ratio between
them. This ratio between model evidences is known as the
Bayes factor,

K =

∫
Φm1
L(ϕ⃗k1 )q(ϕ⃗k1 )dk1∫

Φm2
L(ϕ⃗k2 )q(ϕ⃗k2 )dk2

, (19)

where m1 and m2 indicate distinct theoretical frameworks
with different equations of state in their samples (indexed here
by k1 and k2). When the Bayes factor deviates significantly
from unity, it indicates that the data prefer one model and prior
over the other.

B. Likelihood

As stated in Eq. (17), we assume that all measurements we
take into account are independent, and that systematic errors
can be neglected such that the total likelihood is a product of
individual likelihood factors for each measurement. In par-
ticular, we will consider estimates of the nuclear symmetry
energy, the three highest reliably measured pulsar masses,
two NICER simultaneous mass and radius measurements,
and tidal deformability estimates from two gravitational-wave
events. Additionally, we will incorporate a perturbative QCD
weight [66], which accounts for the behavior of the EoS at
very large (∼ 40 nsat) densities from pQCD calculations. In
summary, Eq. (17) can then be written as

L(ϕ⃗k) = LS (ϕ⃗k)LMmax (ϕ⃗k)LM−R(ϕ⃗k)LΛ(ϕ⃗k)wpQCD(ϕ⃗k), (20)

where S denotes the likelihood factor associated with sym-
metry energy measurements, Mmax that associated with high-
mass pulsar measurements, M-R that associated with simulta-
neous mass-radius measurements, and Λ that associated with
tidal deformability measurements. We represent input from
pQCD not as an additional likelihood factor but as a weight,
wpQCD. We make this choice because the uncertainty in the

pQCD input stems from its poorly constrained regime of ap-
plicability and uncertainty around the missing higher-order
term error in truncated results, in contrast to traditional mea-
surements with quantifiable statistical uncertainties that can
be consistently included in a Bayesian framework. Our ap-
proach for incorporating observational and experimental con-
straints on the EoS is based on Refs. [54, 55, 67], while the
use of pQCD input is based on Ref. [66]. We review and dis-
cuss the most important aspects of these approaches as they
pertain to our analysis below, and refer the reader to the cor-
responding original works for further detail.

1. Symmetry energy

In terrestrial experiments, it is possible to probe the T → 0
limit of dense nuclear matter with low-energy collisions of
heavy-ions [116]. However, the nuclei used in these experi-
ments have a charge fraction (the ratio of proton number to
baryon number or in other words electric charge density nQ
over baryon density nB) of YQ = nQ/nB ∼ 0.4 − 0.5. A value
of YQ = 0.5 is known as symmetric nuclear matter, SNM, be-
cause there are an equal number of protons and neutrons in the
system. On the contrary, neutron stars are primarily neutron-
rich, with YQ ∼ 0.001 − 0.2, thus probing the asymmetric nu-
clear matter regime. Pure neutron matter (PNM) is the limit
where YQ = 0.

The densities probed in these low-energy heavy-ion exper-
iments are at or near nsat, and in that regime, experiments and
χEFT calculations can extract properties that are relevant to
the EoS. A nucleus is composed of Z protons and A − Z neu-
trons, where A is the total number of protons and neutrons in
the nucleus. The mass of the nucleus mA that contains A nu-
cleons is always less than the masses of the individual protons,
mp, and neutrons, mn, summed together, i.e.,

mA < Zmp + (A − z)mn, (21)

because a finite amount of energy is released in the formation
of a nucleus. That difference in the rest mass energy per nu-
cleon is known as the binding energy and is defined as (we
remind the reader that the speed of light is c = 1 in this work)

B =
1
A

[
mA −

(
Zmp + (A − z)mn

)]
. (22)

It is often assumed that the mass of the proton and neutron are
identical since their masses differ by just over 1 MeV. Setting
the neutron and proton mass to be the same and calling this
the nucleon mass for simplicity, mp = mn = mN , the above
simplifies to

B =
mA

A
− mN ≡

E
A
. (23)

As defined here, the binding energy does not depend explic-
itly on the mass of the nucleon because the mN dependence in
the first term of the above equation cancels the second term
exactly.
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The binding energy for SNM at nsat is estimated to be B ∼
−16 MeV from previous global analyses5 that extracted the
volume term of the liquid drop model from a large sample of
nuclei reported values of B = 15.77 [130] and B = 16.24
MeV [131]. One can also use χEFT tuned to a large number
of experimentally measured nuclei wherein one obtains B =
−15.86 ± 0.57 MeV [61]. However, in this work we assume
B = −16 MeV is exact.

The next quantity that can be measured from nuclear ex-
periments is known as the symmetry energy, S . At nsat, the
symmetry energy is the difference in total energy between the
SNM and PNM limits i.e.

S (nsat) =
1
A

(EPNM − ESNM) , (24)

or, in terms of energy densities that are more relevant to the
EoS used here, we can write

S (nsat) =
1

nsat
(εPNM − εSNM) , (25)

where we can relate the energy densities to the total energy
via

ε

nB
=

E
A
+ mN . (26)

Of course, neutron stars are not exactly in the limit of PNM
since a small fraction of protons exists is also present. Thus,
for asymmetric nuclear matter (ANM), where the the system
is at finite value of YQ, the symmetry energy can be expanded
as about YQ = 1/2 to obtain

S (nB)
[
1 − 2YQ

]2
+ O

[
1 − 2YQ

]4
=

1
nB

(εANM − εSNM) , (27)

where the factor of 1/2 in the Taylor expansion is reabsorbed
into S (nB). The coefficient of the Taylor expansion, S (nB),
can then be further Taylor expanded about nB = nsat, but in
this paper we will retain only the leading-order term in this
expansion and set S (nB) = S (nsat) in Eq. (26) (see [59] for a
derivation and further details).

We can relate the symmetry energy to the binding energy
by substituting in Eq. (26) into Eq. (27) at nB = nsat for the
εSNM/nsat term to find

S (nsat)
[
1 − 2YQ

]2
∼
εANM

nsat
−

[E
A
+ mN

]
(28)

=
εANM

nsat
− [B + mN] . (29)

In an extreme extension of Taylor expansions, however, we
will evaluate the above expression at very small YQ, because
state-of-the-art χEFT models predict a value for S (nsat) and
indicate that YQ ∼ 0.05 at nsat for β-equilibrated, cold nuclear
matter [132]. Therefore, setting YQ = 0, B = −16 MeV and

5 Uncertainty quantification was not performed in these studies.

mN = 939.6 MeV for the mass of the neutron in the above
equation, we obtain

S (nsat) ∼
εPNM

nsat
− 923.6[MeV]. (30)

Given all of the above, we assume a likelihood factor asso-
ciated with the symmetry energy of the form

LS (ϕ⃗k) = L(S 0|, S k(nsat)) =
1

2π(σS )2 exp
[
−

(S k(nsat) − S 0)2

2(σS )2

]
,

(31)
where S k(nsat) is obtained from each ϕ⃗k using Eq. (30), assum-
ing that εPNM = εk(nsat), and we take the observed value of the
symmetry energy at nuclear saturation density to be S 0 = 32
MeV with a standard deviation of σS = 2 MeV [58, 59].

Future work could consider other available constraints [59,
60] on the symmetry energy. Additionally, one could fold into
the analysis the uncertainty on the value of the binding energy,
the uncertainty on the value of nsat itself, or the systematic
error introduced by neglecting deviations from exact charge
fraction asymmetry (i.e. the small YQ that we set to zero in
this derivation). However, the impact of these uncertainties
are likely small and would mostly affect stars with masses be-
low 1.0 M⊙ [67]. A more promising direction would be to in-
clude the slope of the symmetry energy, which would provide
constraints when nB , nsat. However, the exact value of the
slope of the symmetry energy is poorly constrained with cur-
rent theory and experiments, so we leave this for later work.

2. High-mass pulsars

In principle, we could gain information about the EoS from
any neutron star mass measurement. Given a fully parame-
terized model for neutron star birth and accretion and a prior
for the neutron star EoS, we could make population predic-
tions that can be compared to measurements. However, due
to both computational and theoretical challenges, such a com-
plete analysis is not currently feasible. Without any informa-
tion about how stars form and accrete, we can focus instead
on the maximum mass, since any realistic EoS must be able
to support the highest reliably measured masses.

As discussed in Sec. III B, in the slow rotation regime, the
maximum mass is a function only of the EoS. We implement a
likelihood factor for EoS k given a posterior probability distri-
bution for the mass of star j obtained from a radio observation
of a binary pulsar, P(M j|M), that can be written as

L(M j |Mmax,k) =
∫ Mmax,k

0
P(M j|M)dM, (32)

where Mmax,k is the maximum mass predicted by EoS k for
a non-rotating star. We model the posterior probability dis-
tribution for the mass of an observed pulsar with a Gaussian
function, namely

P(M j|M) =
1

2π(σM j )2 exp
[
−

1
2

(M − M j)2

(σM j )2

]
(33)
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where M j is the maximum likelihood estimate for the mass
of a given pulsar, and σM j is the standard deviation for that
observation. The total likelihood associated with heavy pulsar
mass measurements is then

LMmax (ϕ⃗k) =
∏

j

L(M j |Mmax,k). (34)

This form for the likelihood only disfavors EoSs with Mmax,k
less than existing observations. We do not want to disfavor
EoSs with Mmax,k higher than existing observations because
observations may be biased towards lower masses for a variety
of reasons unrelated to the EoS.

We incorporate in our analysis the two highest mass mea-
surements of neutron stars in relativistic binaries, which allow
for measurements of post-Keplerian parameters, such as the
Shapiro delay, pericenter precession, and orbital decay due
to the emission of gravitational radiation (currently the gold
standard for mass measurements of neutron stars [67].) In
particular, we use measurements of MJ1614−2230 = 1.908M⊙
with a σMJ1614−2230 = 0.016M⊙ for PSR J1614-2230 [51, 133]
and MJ0348+0432 = 2.01M⊙ with a σMJ0348+0432 = 0.04M⊙
for PSR J0348+0432 [52]. There is a third pulsar, PSR
J0740+6620, with a measured mass of MJ0740+6620 = 2.07 M⊙
with a σMJ0740+6620 = 0.08 M⊙ [53, 134] that we will also
include in the next sub-subsection as a joint mass-radius
measurement. We also note that the mass measurement for
PSR J1614−2230 was recently updated and reported to be
MJ1614−2230 = 1.937M⊙ with a σMJ1614−2230 = 0.014M⊙ [129],
but we do not expect this update to affect our results signifi-
cantly. In Section IV B 6 we explain why we leave out of our
analysis the even-higher neutron star masses that have some-
times been suggested in the literature.

Lastly, we note that the likelihood-based approach used
here (emphasized in Ref. [67]) is preferable in a Bayesian
analysis compared to imposing a lower bound on the max-
imum mass for two reasons. First, a hard bound does not
account for uncertainties in the mass measurements. As
Ref. [67] illustrates, if we consider the mass estimate for PSR
J0740+6620, MJ0740+6620 = 2.07 ± 0.08 M⊙, a 1-σ maximum
mass cut at Mmax ≥ 2.04 M⊙ predicts that EoSs with maxi-
mum masses of 2.04 M⊙ and 2.14 M⊙ are equally viable, when
in reality, assuming Gaussian statistical uncertainties, the lat-
ter is substantially more consistent with observations. Second,
a hard bound does not allow for the incorporation of infor-
mation from multiple measurements. Thus, although widely
practiced in the literature, imposing maximum mass cuts is
statistically inconsistent and discards important information.

3. NICER

Still assuming slow rotation, the M − R curve for an EoS
specifies a prediction for the radius given a stellar mass which
is only a function of the EoS itself. Thus, given a joint M − R
posterior, we can integrate over central densities and the full
M − R sequence predicted by EoS k to obtain the likelihood

factor associated with an independent radius measurement l,

L(Rl |Rk) =
∫

q(M)Ll(M,Rk(M))dM, (35)

where Ll(M,R) is the likelihood of a mass M and a radius
R given measurement l, Rk(M) is the circumferential radius
for a star with gravitational mass M given EoS k, and q(M)
is the prior on the mass. The total likelihood associated with
simultaneous mass and radius measurements is then

LM−R(ϕ⃗k) =
∏

l

L(Rl |Rk). (36)

This particular form for the likelihood is equivalent to inte-
grating the full mass and radius likelihood over the full M −R
sequence predicted by an EoS. It accounts for measurement
uncertainties and possible correlations between radius and
mass,6 as well as the entire M − R sequence, not just an in-
dividual Rk(M).

We calculate q(M) for each EoS from a prior in central
density, ρc, which is quadratic between the central density
of a 1 M⊙ star, which we denote ρmin, and that of a maxi-
mally massive star, ρmax. That is, we sample uniformly be-
tween 0 ≤ x ≤ 1 for ρc = ρmin + x2(ρmax − ρmin). We use
a quadratic prior to avoid giving greater prior weight to more
massive stars, since the central density changes more rapidly
near the maximum mass [55]. Outside the interval [ρmin, ρmax]
the prior probability is zero. We also assign zero prior proba-
bility for any ρc resulting in an unstable star, such that if two or
more stable branches are connected by an unstable branch, the
unstable branch does not contribute to the likelihood. There-
fore, we can rewrite Eq. (36) as

L(Rl |Rk) =
∫ ρmax

ρmin

q(ρc)Ll(M | ρc,Rk(M | ρc))dρc. (37)

We adopt as constraints on the radius the posteriors ob-
tained from NICER measurements for PSR J0030-0451 [54]
and PSR J0740+6620 [55] (again, see, respectively, [56] and
[57] for independent analyses of these two pulsars from a sep-
arate group within the NICER collaboration). Though other
neutron star radii estimates are available, there are poten-
tially significant systematic errors that have not been resolved
[137, 138]. In contrast, NICER posteriors rely on fits of rotat-
ing hot spot patterns for which studies using synthetic wave-
forms found no significant mass or radius bias in statistically
good fits [135, 136]. Lastly, we highlight that NICER pos-
teriors for both pulsars are non-trivial shapes on the M − R
plane and display significant correlations between mass and
radius, further emphasizing the importance of this particular
approach to calculating the likelihood.

6 Correlations between mass and radius are system dependent and may or
may not be present, see Refs. [135, 136] for more details.
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4. Gravitational waves

As discussed in Sec. III B, for each EoS k, we can calculate
the Λ − M curve, such that for a star of gravitational mass M
and equatorial radius R, the tidal deformability is

Λk =
2
3

k2

( Rc
GM

)5

, (38)

where k2 is the tidal love number, which depends intrinsically
on the EoS [139, 140].

In practice, it is more constraining to incorporate input from
gravitational-wave observations using information from the
binary tidal deformability, which can be measured to higher
accuracy. In the Taylor family of post-Newtonian waveforms,

given a binary neutron star system of stars with masses M1
and M2 ≤ M1 with tidal deformabilities Λ1 and Λ2, the most
easily measurable quantity is [141]

Λ̃ =
16
13

(M1 + 12M2)M2
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 . (39)

Similarly, it can be difficult to extract individual masses
from gravitational-wave events, but the chirp mass, Mch =

(M1M2)3/5/(M1+M2)1/5, can be measured with high precision
since it relates directly to the gravitational-wave frequency
during the inspiral phase.

Assuming a gravitational-wave event n results in a full pos-
terior in (M1,M2, Λ̃) space, our procedure for incorporating it
is as follows. The total likelihood factor has the form

LΛ̃ =
∏

n

L(Λ̃n | Λ̃k) =
∏

n

∫
dM1q(M1)

∫
q(M2 |Mch,n,M1)Ln(M1,M2, Λ̃k)dMch,n , (40)

where q(M2 |Mch,M1) is the prior probability density for M2
at the value of M2 implied by Mch and M1, and the integral
is over the probability distribution for Mch obtained from the
gravitational-wave analysis. Since there is a limited width for
Mch which is dependent both on the EoS and the prior for the
masses, our implementation is as follows. For a binary event
involving two masses M1 ≥ M2, we select the central density
of a 1 M⊙ star for the lower-mass star, ρc,2 = ρmin. Then, we
calculate the value of M1 implied by Mch, which we know to
the precision that we know the chirp mass. There is a range

in ρc,1 that, given the value of M2 implied by ρc,2, leads to
Mch within the 68% credible region inferred for event n. That
is the range we integrate over for ρc,1, using the same prior
(quadratic between ρmin and ρmax) that we use for radial con-
straints from NICER. We then select a new ρc,2, also follow-
ing the quadratic prior, and repeat the same process for ρc,1
that we just outlined. We continue to increase ρc,2 up to the
density at which Mch implies M1 = M2. That means we can
rewrite Eq. (40) for a single event n in terms of the central
densities of the two objects,

L(Λ̃n | Λ̃k) =
∫

dρc,1q(ρc,1)
∫

q(ρc,2 | (Mch,n,M1 | ρc,1))Ln(M1 | ρc,1,M2 | ρc,2, Λ̃k |M1,M2)dρc,2 (41)

where q(ρc,2 | (Mch,n,M1 | ρc,1)) = 0 outside of the 68% cred-
ible region for Mch,n. We highlight that even though Mch is
typically measured to high precision, it is not statistically con-
sistent to write the integral over ρc,2 as a delta function. That
is because the range of M1 allowed for a given M2 and Mch
depends on both the EoS and the prior for the central densi-
ties. Consequently, it will vary between individual EoSs and
must be calculated separately for each EoS [67].

We include in our analysis binary tidal deformability esti-
mates from GW170817 [47–49] and GW190425 [50]. We use
the publicly available posteriors over the full model parame-
ter space [142, 143] as input for a kernel density estimate of
the marginalized posterior for M1 and Λ̃. Since the combined
mass in GW190425 is high enough that one of the objects
might have been a black hole, we check whether for the EoS
and central density under consideration the higher-mass object
is a neutron star. If so, we compute the tidal deformabilities of
both stars, using the same EoS, following the procedure out-

lined in Ref. [139, 140]. However, if the EoS predicts a black
hole at the central density under consideration for the higher-
mass object, we set its tidal deformability to zero. Lastly, we
note that some EoSs predict more than one stable branch in
the M − R sequence, and that we assign a prior probability
of zero to all central densities corresponding to an unstable
branch for a given EoS.

5. Perturbative QCD

Because of asymptotic freedom, QCD can be treated pertur-
batively at high densities (∼40 nsat ) [144]. It has recently been
argued that perturbative QCD offers nontrivial constraints to
the neutron star EoS when state-of-the-art N3LO perturbative
results [13, 145] are extended to neutron star densities using
stability, causality, and consistency arguments [66, 89]. The
formalism was initially introduced in Ref. [89]. We briefly
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review its key components here, but refer the reader to the
original work for additional details.

Suppose an EoS can be characterized by a correlated set of
values β⃗ ≡ {p(µ), n(µ), µ}, where p is the pressure, n is the
number density, and µ is the chemical potential. Also sup-
pose that we have knowledge of the EoS at some low-density
limiting value, µlow, and a high-density limiting value, µhigh,
meaning that we know

β⃗low = {plow, nlow, µlow} ≡ {p(µlow), n(µlow), µlow}, (42)

β⃗high = {phigh, nhigh, µhigh} ≡ {p(µhigh), n(µhigh), µhigh}.(43)

There are an infinite number of EoS that can connect β⃗low

and β⃗high, but any such EoS must respect thermodynamic sta-
bility, causality, and consistency. Thermodynamic stability
implies that the the grand-canonical potential from which the
EoS is derived (Ω) is concave with respect to µ, meaning that
∂2
µΩ ≤ 0. At T = 0, we also have

Ω(µ) = −p(µ), (44)

n =
∂p
∂µ
. (45)

Therefore, stability results in a constraint on the slope of n(µ),

∂n
∂µ
≥ 0. (46)

Moreover, the causality requirement constrains c2
s ≤ 1, which,

at T = 0, relates to n(µ) and ∂µn such that

c−2
s =

µ

n
∂n
∂µ
≥ 1. (47)

Combining stability and causality, we have that at each point
in µ−n space the slope of the curve passing through that point
corresponding to a maximally stiff (c2

s = 1) EoS is ∂n/∂µ =
n/µ.

Finally, because we must also ensure that at (µlow, nlow) the
pressure is plow and, similarly, that at (µhigh, nhigh) the pressure
is phigh, it must also be true that∫ µhigh

µlow

n(µ)dµ = phigh − plow = ∆p. (48)

We can derive constraints on ∆p based on stability and causal-
ity constraints on n(µ). We can place a lower bound on ∆p
by asking which curve connecting (µlow, nlow) to (µhigh, nhigh)
minimizes the integral in Eq. (48) while still respecting sta-
bility and causality. We will call ∆pmin. Equivalently, we
can construct the curve which maximizes the integral in
Eq. 48 and still respects stability and causality, and denote
that ∆pmax. Assuming c2

s is bounded only by the causal limit,
we have [89]

∆pmin =
1
2

µ2
high

µlow
− µlow

 nlow (49)

∆pmax =
1
2

µhigh −
µ2

low

µhigh

 nhigh. (50)

All these constraints combined imply that for any β⃗high and for
a fixed (µlow, nlow), plow must be between [phigh−∆pmin, phigh−

∆pmax].
These guidelines for connecting two arbitrary regimes via

an EoS which respects stability, causality, and consistency can
be used to extrapolate pQCD results to densities relevant to
neutron stars. That is because, if we know β⃗high = β⃗pQCD, we
can check if an EoS for which we only have knowledge up to
a lower matching density nlow = nmatch can be connected to
β⃗pQCD through a causal and stable EoS.

Our knowledge from pQCD is derived from current state-
of-the-art calculations in Refs. [146, 147], which report a par-
tial next-to-next-to-next-to leading order (N3LO) calculation
of the zero-temperature, high-density QCD grand-canonical
potential. Because these results arise from a series expansion
in the QCD coupling constant and are then truncated at a finite
(albeit high) order, we have to estimate the error introduced by
the missing higher order (MHO) terms. In the case of QCD,
the MHO error depends on a residual, unphysical renormal-
ization scale, Λ̄ ∝ µ, which is underdetermined. Instead,
the standard approach is to vary Λ̄ around a fiducial scale
by some fixed factor. We follow Ref. [66], which adopted a
scale-averaging approach. That means that pQCD results are
given as a family of independent predictions β⃗pQCD(X), where
X ≡ 3Λ̄/2µhigh. We set µhigh = 2.6 GeV based on Ref. [148],
which points out that the uncertainty estimation for pQCD cal-
culations at this value is similar to that of χEFT at 1.1 nsat
(about ±24% variation around the mean value [66]). We con-
sider X ∈ [1/2, 2], the same range that was implemented in
Ref. [66] and that has been suggested by phenomenological
models [149–152] as well as the large-flavor limit of QCD
[153].

Now that we have defined the theoretical input from high
densities, we need to discuss how we define the low-density
input from GP and mGP EoSs. For any neutron star EoS that
we generate with the GP or the mGP, ϕ⃗k, we have to check
that it can be connected to β⃗pQCD(X), for a given X, from
β⃗low = {pk(nmatch), nmatch, µk(nmatch)}. In practice, we check
that pk(nmatch) leads to ∆p ∈ [∆pmin,∆pmax], given phigh from
β⃗pQCD(X). Since the relevant scale for the neutron star EoS is
the central density of a maximally massive star, nmax

B , we set
nmatch = nmax

B,k , which varies for each EoS. For the renormal-
ization scale parameter, we follow Ref. [66], and sample 1000
values of X ∈ [1/2, 2], evenly spaced in log(X). Hence, the
pQCD weight associated with EoS k is

wpQCD(ϕ⃗k) =
1

1000

1000∑
i=1

1X(ϕ⃗k), (51)

where 1X(ϕ⃗k) is the indicator function

1X(ϕ⃗k) =

1, if ∆pk ∈ [∆pmin,∆pmax]
0, otherwise

, (52)

and ∆pk = ppQCD(X) − pk(nmax
B,k ). Recall that ∆pmin and ∆pmax
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can be obtained from Eqs. (49, 50), using

µhigh = 2.6 GeV,
µlow = µk(nmax

B,k ),
nhigh = npQCD(µ = 2.6 GeV, X),
nlow = nmax

B,k .

Effectively, wpQCD(ϕ⃗k) captures how often, out of the 1000
values for X, ϕ⃗k can be connected to β⃗pQCD(X) with an EoS
that respects thermodynamic stability, causality, and consis-
tency. This procedure defines a likelihood function associ-
ated with input from pQCD, which suppresses EoSs that are
in tension with pQCD results by a factor proportional to the
“strength” of the disagreement.

6. Observational measurements not included in our analysis

We make the choice here to not include in our analy-
sis other recent claims of very heavy or very light neu-
tron stars. For example, there have been recent claims of
pulsars heavier than the ones considered here, namely PSR
J1810+1744 at 2.13 ± 0.04 M⊙ [154] and PSR J0952-0607 at
2.35 ± 0.17 M⊙ [155], but possible systematic errors for these
measurements are not as well-understood as those involved
in Shapiro time-delay-based measurements, such as those for
PSR J0740+6620 and PSR J1614−2230. Specifically, the fit
residuals in Ref. [154] for the properties of the companion to
spider-pulsar PSR J1810+1744 are clearly not a random scat-
ter (see Fig. 1 in Ref. [154]), which suggests that the fit values
and inferred mass are subject to systematic errors we do not
currently understand. The picture is more promising for the
inferred mass of PSR J0952-0607, where at least the residuals
do not seem to indicate problems with the fit (see Fig. 1 in
Ref. [155]). But there is still the question about whether the
good fit indicates that the system is well-understood from a
theoretical perspective, and whether the inferred mass is not
just precise, but also accurate.

In a separate measurement, the central compact object of
the supernova remnant HESS J1731-347 was recently esti-
mated to have a mass of 0.77+0.20

−0.17 M⊙ and radius of 10.4+0.86
−0.78

km [156], possibly making it the lightest neutron star ever ob-
served. Here, the low estimated mass stems from the use of a
low distance to the source combined with the assumption that
the surface radiates uniformly, which tends to favor a carbon
atmosphere over a hydrogen or helium atmosphere. Moreover,
in the fitting it was assumed that surface magnetic fields can
be ignored. However, nonuniform emission is consistent with
data on several similar sources [157], making hydrogen and
helium atmospheres possible and making it plausible that the
neutron star in HESS J1731−347 could have a standard mass,
well above one solar mass [116]. Thus, to remain conserva-
tive on the data we use in this work, we do not consider PSR
J1810+1744, PSR J0952-0607, and the center compact object
in HESS J1731-347 in our analysis.

C. Model evidence

We have two distinct set of prior beliefs, or models, for the
EoS. We combine samples from these two models into one
prior, which we introduced in Sec. III C as Φ, and which can
be represented as the union of samples from the mGP and the
benchmark GP, Φ = ΦmGP ∪ Φbenchmark GP.

We defined the evidence (E) in Sec. IV A, where the integral
in Eq. (18) is over all possible samples that can be generated
from a model. In practice, we only have access to a finite
number of samples, and E is approximated as

Em ≈

Nm∑
i

L(ϕ⃗k)q(ϕ⃗k), ϕ⃗k ∈ Φm, (53)

where Nm is the number of samples from model m =

{benchmark GP, mGP}, including the samples in Φm ∩ Φ× for
which L(ϕ⃗k) = 0. Therefore, a key assumption is that we
sample enough EoSs to correctly approximate E. This aspect
further emphasizes the importance of the prior sample size
checks we introduced in Sec. III C – if we do not have enough
samples in the regions where L(ϕ⃗k) is non-negligible, we can-
not correctly approximate E.

Another assumption we make is that each EoS has an equal
prior probability. This implies that Eq. (53) is now

Em ≈
1

Nm

Nm∑
i

L(ϕ⃗k), ϕ⃗k ∈ Φm . (54)

That is, the evidence becomes a simple average over the likeli-
hoods of all the EoSs from model m = {benchmark GP, mGP}.

A reasonable objection to this assumption is to question
whether the different hyperparameters in each framework
should have been included explicitly as hyperpriors. In gen-
eral, we expect that with an increased number of parameters
we also increase our chances of describing the data, but also
that simplicity should be rewarded over complexity. Here,
the mGP is more complex than the benchmark GP, so why
is there not a penalty in the calculation of the model evidence
for mGP EoSs? Actually, the penalty exists, and it is included
implicitly. To understand this argument, recall the discussion
in Sec. III regarding assumptions that are implied in a non-
parametric framework. We stated that our effective parame-
ters are the value of the speed of sound at each sampled value
of pressure, c2

s(pi), and that the method and the hyperparam-
eters we choose for generating c2

s(pi) dictate both the prior
distribution and the correlations across the effective parame-
ter space. That means that the mGP covers a bigger space in
terms of the possible functional forms for c2

s(pi), which results
in more bad predictions (L(ϕ⃗k) ≈ 0) compared to the simpler
benchmark GP. Therefore, in order to be competitive with the
benchmark GP and make up for a larger number of bad pre-
dictions, the mGP must be more accurate in describing the
data than the benchmark GP. We do not need to include the
different hyperpriors in Eq. (53) because (i) the benchmark
GP and mGP hyperparameters are not the parameters being
estimated, and (ii) the mGP model is implicitly penalized for
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its increased functional complexity in the effective parameter
space because it covers a larger volume in that space where
L(ϕ⃗k) ≈ 0 compared to the benchmark GP.

V. BAYESIAN ANALYSIS OF NONTRIVIAL FEATURES IN
THE SPEED OF SOUND INSIDE NEUTRON STARS

Now that we have established methods for generating EoSs
that display long (benchmark GP) and multi-scale (mGP) cor-
relations in c2

s(nB), we can implement the constraints dis-
cussed in Sec. IV and begin to answer specific physics ques-
tions from a Bayesian perspective.

We will begin with an important sanity check – does our
new framework provide reasonable agreement with data, even
when multi-scale correlations and nontrivial features appear in
c2

s(nB)? Following a discussion of the mass-radius posteriors,
we can explore other questions such as: are the EoS posteriors
sensitive to the structure in c2

s(nB)? What is the maximum
central density of a neutron star? Do new pQCD constraints
have a strong influence on our analysis? Is a peak in c2

s(nB)
indicated by existing constraints? Finally, is the GP or the
mGP framework favored by the data?

To better understand our results, we use a plotting method
for our priors and posteriors that, to our knowledge, has not
been used to infer properties of the EoS in the literature. Let
us first describe our approach for plotting the prior, because
there are subtle differences between its plotting method and
that of the posterior. We bin our 2-dimensional (variables X
and Y e.g. mass and radius or c2

s and nB/nsat) prior in bins of
a certain width ∆X, ∆Y . We denote a particular bin as a pair
(Xi,Yi), such that a point (x, y) is in bin i if Xi ≤ x < Xi + ∆X
and Yi ≤ y < Yi+∆Y . A given EoS k is characterized on the X-
Y plane by a set of l total pairs of points {(x1

k , y
1
k), . . . , (xl

k, y
l
k)},

which produce a curve that passes through Nk of these bins.
Every time the EoS passes through a bin i, we count that as
a hit: hk(Xi,Yi) = 1. Otherwise, if the EoS does not pass
through that location, we assign hk(Xi,Yi) = 0. We sum over
all hits within a bin (i.e. count all the EoS that pass through
it) to obtain the total hits for that specific bin, Hprior(Xi,Yi),
where

Hprior(Xi,Yi) =
NEoS∑

k

hk(Xi,Yi), (55)

and

hk(Xi,Yi) =


1, if Xi ≤ xl∗

k < Xi + ∆X ∧ Yi ≤ yl∗
k < Yi + ∆Y,

l∗ ∈ {0, . . . , l}
0, otherwise.

(56)
To normalize the hits within a bin we determine the total num-
ber of hits across all of our EoS samples across all bins:

Htot =
∑

i

Hprior(Xi,Yi) , (57)

such that our normalized distribution for the prior within a

given bin (Xi,Yi) is

Nprior(Xi,Yi) =
Hprior(Xi,Yi)
Htot

. (58)

Our plotting method is similar for the posterior. However,
because the posterior probability is proportional to the prior
probability multiplied by the likelihood, we have to include
the likelihood, L(ϕ⃗k), of each EoS when calculating the hits
of the bin. More concretely,

Hposterior(Xi,Yi) =
NEoS∑

k

L(ϕ⃗k)hk(Xi,Yi), (59)

and Nposterior has the same form as Eq. (58),

Nposterior(Xi,Yi) =
Hposterior(Xi,Yi)

Htot
(60)

but we use the posterior values instead of prior values to cal-
culateHtot.

The procedure described above for representing prior and
posterior distributions is equivalent to showing the prior as a
normalized 2-D histogram, and the posterior as a weighted,
normalized 2-D histogram. We will refer to these plotting
methods as the binned joint prior/posterior probability density.
Representing probability densities in this way is advantageous
as long as the bin sizes are chosen appropriately, because we
do not have to rely on kernel density estimates that can smear
out important information. Kernel density estimates also per-
form poorly near sharp boundaries, and may predict a finite
probability density in regimes where data do not exist, or, in
cases where such constraints exist, beyond physical bound-
aries (i. e. c2

s < 0 or c2
s > 1). The only aspect that requires

care when applying this method is the interplay between the
size of the bins, (∆X,∆Y), and the number of samples. Using
a fine grid with too few samples can result in bin heights that
fluctuate significantly between neighboring points. Similarly,
using a grid that is too coarse when there are an adequate num-
ber of samples risks smearing out important features in the
distribution, as can be the case with kernel density estimates.

A. Are mass-radius posteriors sensitive to structure in c2
s(nB)?

In order to fully explore the phase space of the EoS of neu-
tron stars, it is important to have a broad prior in the mass-
radius relation. In the left panels of Fig. 4, we show the stable
branches of the mass-radius prior for the benchmark GP (top)
and the mGP (bottom) using the plotting method described
in Eqs. (55-57). Here, we only plot the priors corresponding
to samples in the set that meets the basic checks we outlined
in Sec. III C (Φ✓). We find that both priors produce a simi-
larly diverse set of mass-radius curves, with the highest prior
regimes passing through R = 10 − 14 km and up to masses
M ∼ 2M⊙ − 2.2M⊙. We also see that both priors allow for
maximum masses up to M ∼ 3.5M⊙, although the prior disfa-
vors M ≳ 2.2M⊙. White regions in Fig. 4 indicate that no sam-
ples in Φ✓ reach that region in the M − R plane. The bottom
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FIG. 4. Mass-radius prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS. Both the prior and posterior
probability distributions are produced by binning the EoS by mass and radius and then normalizing the heights of the bins such that their sum
is equal to one. For the posteriors, each EoS is weighted by the corresponding likelihood. Also shown in the posterior plots are the 90% and
68% credible regions for the radius at a given mass for 1.1 ≤ M ≤ 3.5 M⊙ . Observe that the joint posteriors are similar when using the GP or
mGP models, with masses larger than 2.7M⊙ and radii larger than 14 km disfavored.

right-hand side of the left panels in Fig. 4 – the large-radius,
low-mass regime – is primarily ruled out by constraints on the
symmetry energy, which predict a soft EoS in that regime. The
top left-hand side of the left panels in Fig. 4 – the small-radius,
high-mass regime – is ruled out mostly because it is beyond
the point of stability for the M − R sequences that reach such
high masses. Comparing our priors for the benchmark GP and
the mGP, we find they are nearly identical, despite the signifi-

cant differences in how the EoS are constructed.

After applying the constraints outlined in Sec. IV, we then
produce our posteriors, which are shown on the right panels
of Fig. 4. We use the plotting technique described in Eqs. (55-
57) to present the 2-dimensional posterior distribution for the
benchmark GP (top panels) and the mGP (bottom panel) mod-
els. In addition, we present 68% and 90% credibility bands,
which are constructed as follows. We slice the 2-dimensional
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plane in lines of constant mass. On each slice, we then com-
pute 68% and 90% credibility band in radius. We then con-
nect the edges of each of these credibility bands to construct a
2-dimensional credibility region. We shall refer to these inter-
vals as “constant-mass-hypersurface” credible regions, noting
that similar methods can also be applied to c2

s–nB joint posteri-
ors (as we will do in the next section). We find that in terms of
the credibility bands, as well as the joint posteriors, the results
for the benchmark GP and the mGP are nearly identical.

We highlight the importance of showing both the credi-
ble bands and the joint posterior, since they provide differ-
ent insight into the M − R posterior. The credible bands and
the joint posterior appear very similar up to approximately
M ∼ 2M⊙ − 2.2M⊙. Beyond that point, it is clear that the
joint posterior indicates that heavier neutron stars begin to
have smaller likelihoods, which cannot be seen from the cred-
ible bands. This is an artifact of slicing the 2-dimensional
posterior in constant mass. For a given constant mass, say
M = 3M⊙, the highest posterior region is between ∼ 13.5 km
and 14.5 km, but this does not mean that posterior in this re-
gion is large relative to other regions in the M-R plane (such
as e.g. near (M,R) = (1.7M⊙, 13km). Credible regions con-
structed with this hypersurface method, commonly employed
e.g. by the NICER collaboration [55], need to be interpreted
carefully7.

Observe that both benchmark GP and mGP EoSs sup-
port neutron star masses up to M ∼ 2.7M⊙ (albeit with a
smaller likelihood), but neutron stars with higher masses are
extremely disfavored. Observe also that, from the credible
bands alone, one would reasonably assume that all neutron
stars heavier than M ∼ 2.7M⊙ must have larger radii at high
masses. However, from the joint posterior, it is clear that a
number of mass-radius curves for heavy neutron stars may ei-
ther be nearly straight or even bend slightly to the left. In any
case, we see that, although specific M–R curves may be af-
fected by structure in the speed of sound, the latter does not
affect the M–R posteriors, given currently available observa-
tions.

B. Are EoS posteriors sensitive to structure in c2
s?

Next, we test if the different prior assumptions made about
correlations across densities in the benchmark GP versus the
mGP model lead to any significant differences in the posterior
for c2

s(nB). Recall that the benchmark GP produces smooth c2
s

curves with uniform correlations across densities, whereas the
mGP display sharp features in c2

s and multi-scale correlations
across densities (refer also to Figs. 1 and 3).

In Fig. 5, we show the priors (left panels) and the posteri-
ors (right panels) for c2

s as a function of nB in units of nsat, up
to nmax

B for each EoS. Again, benchmark GP and mGP results
are shown on the top and bottom panels, respectively. The pri-
ors are shown using the binning outlined in Eqs. (55-57). The

7 In passing, observe that fixing radius instead of mass to compute credible
regions would lead to similar problems.

posteriors are shown both in terms of the binned joint pos-
teriors, as well as the constant-speed-of-sound-hypersurface,
68% and 90% credible bands. In these plots, we only show c2

s
up to the maximum central baryon density for a stable star in
the slow-rotation regime, nmax

B . Most EoSs lead to nmax
B around

4-7 nsat with a handful that extend up to 8 nsat. Thus, we plot
only up to nB = 8.0 nsat. We will discuss the posterior for nmax

B
separately in Fig. 6. We note that Fig. 5 only includes EoSs
in Φ✓ (the set of EoSs that pass the constraints discussed in
Sec. III), which clearly affects the priors. This selection leads
to c2

s(nB) functional forms that favor high values (c2
s ≥ 1/3) at

large densities (nB ≥ 2 nsat).
Let us first discuss the priors. Observe that the highest prob-

ability regions look nearly identical between the benchmark
GP and mGP models when we only consider EoS in Φ✓. In
both cases, at very low densities (nB ≤ nsat), there is a strong
preference for a nearly vanishing c2

s . This result is unsurpris-
ing because we use the same crust at low densities for both
models and also impose that no modifications are introduced
in c2

s below nB < 1.1nsat for mGP EoS. Progressing to interme-
diate densities (nsat ≤ nB ≤ 3nsat), we find a general trend in
both priors to larger c2

s , but this trend has a rather wide spread,
allowing for diverse behavior in c2

s , hence the lower probabil-
ity within the credible bands. At densities above 3nsat, we find
a general trend upward in c2

s , but again with an even larger
spread.

One key difference, however, does exist between the bench-
mark GP and mGP priors. The benchmark GP EoSs in Φ✓ do
not contain any samples that have a low c2

s at large nB (notice
the large white region in the bottom, left corner of the top, left
panel in Fig. 5). On the other hand, the same region in the
mGP prior has a nonzero prior probability density. The key
difference is that the benchmark GPs are smooth and domain
points are correlated over a long range in density. Therefore,
the speed of sound functional forms from the benchmark GP
cannot easily fluctuate downward to this region (especially
since they need to support neutron stars with M ≥ 1.8M⊙).
In contrast, functional forms from the mGP model can have
large fluctuations to large c2

s , followed by low regions of c2
s .

In this way, it is clear that the mGP model allows us to explore
a larger regime in EoS parameter space.

Next, let us discuss the binned joint nB − c2
s posteriors,

and the constant-speed-of-sound-hypersurface, 90% and 68%
credible regions, shown in the right panels of Fig. 5. The pos-
teriors and credible bands are similar between the benchmark
GP and the mGP, but they are not identical. We find that, at
the 90% level, the mGP posterior is wider than the GP one
for all densities above nsat. Notably, the mGP posterior allows
for slightly stiffer EoSs in the regime 1.5 ≲ nB ≲ 3.0 nsat,
and slightly softer EoSs above 3.0 nsat. For instance, at twice
nuclear saturation density, we extract c2

s = 0.29+0.27
−0.11 using

EoSs from the GP posterior, and c2
s = 0.29+0.34

−0.14 using the
mGP posterior. At four times nuclear saturation density, the
GP EoS range is c2

s = 0.63+0.27
−0.23, while the mGP EoSs al-

lows for c2
s = 0.59+0.31

−0.34. Thus, we find that the GP leads to
slightly stiffer EoSs and has slightly narrower posterior cred-
ible bands. As we will discuss later in Fig. 6, very few EoSs
reach beyond nB > 6 nsat, so the statistics in that regime are
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FIG. 5. EoS prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS. The EoS are represented by the
speed of sound squared in units of c2 as a function of baryon number density in units of nsat. The prior and posterior probability distributions
are produced by binning the EoS by the speed of sound and number density and then normalizing the heights of the bins such that their sum is
equal to one. For the posteriors, each EoS is weighed by the corresponding likelihood. Also shown in the posterior plots are the 90% and 68%
credible regions for the speed of sound squared at a given density for 0.5 ≤ nB ≤ 8.0 nsat. The posterior probability that the central density for
a maximally massive star is greater than ∼ 6.0 nsat is negligible in both cases. We note that densities are low in the regime between 2-6 nsat

because of the wide spread in the allowed behavior for c2
s . Observe that at the 90% level, the mGP posterior is wider than the GP one for all

densities above nsat.

not sufficient to draw conclusions about differences between
the two frameworks. This is evident from the highly oscilla-
tory behavior of the mGP credible bands in that region.

We can draw further conclusions from the binned joint

probability density posteriors. In both posteriors, there is a
strong preference (blue regions) for a sharp rise in the speed
of sound between nB ∼ (1–2)nsat. Furthermore, at densities
larger than nB > 2nsat, large c2

s is favored, well beyond the
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FIG. 6. The estimated prior (solid lines) and estimated posterior (dot-
dashed, filled lines) probability density distributions for the maximal
central density of a stable, nonrotating star in units of nsat for EoSs
from the benchmark GP (green) and mGP (blue). The priors for GP
and mGP produce nearly identical PDFs for nmax

B such that the lines
are indistinguishable from each other. The vast majority of EoSs
from the posterior predict a maximal central density between ∼ 4− 8
nsat.

conformal limit of c2
s = 1/3. However, c2

s(nB) is significantly
less constrained in that regime. Lastly, we also see from the
binned joint posteriors that a large fraction of EoSs must reach
their maximum central densities around nB ∼ 5nsat, because
the density decreases significantly beyond that point.

While the relative differences in the posteriors are not huge
between the GP and mGP models, the point still holds that
when the c2

s is allowed to display sharp features, the posteri-
ors are wider than when a smooth EoS is presumed. This is
because implicitly imposing smoothness in the EoS through
benchmark EoSs translates to a prior that disallows low speeds
of sound at high densities. We, therefore, argue that such
sharp features should be adequately represented in priors for
the extraction of the EoS in neutron star regimes. Further-
more, it is clear that if one is especially interested in studying
whether low values of c2

s at high densities are allowed by Na-
ture, it is even more important to allow for sharp features in
c2

s .

C. Are maximum central density posteriors sensitive to
structure in c2

s(nB)?

We will now discuss the priors and posteriors for the maxi-
mal central baryon density reached by a stable neutron star in
the slow rotation regime, nmax

B . From Fig. 5, we already saw
hints that nmax

B must peak around nB ∼ 5nsat because the pos-
terior probability densities have very low likelihoods at den-
sities higher than that. To study this systematically, we have
plotted the range of nmax

B for both our priors and posteriors in

Fig. 6 using a kernel density estimate8.

Observe that the nmax
B priors for the benchmark GP (blue

line) and mGP (green line) are essentially identical and mostly
overlapping, ranging between nmax

B = 2 − 10nsat (again, re-
call that our priors shown here represent only the samples in
Φ✓). However, there is a significant change in the posterior
probability density for both the benchmark GP and the mGP
compared to their priors. Both posteriors are sharply peaked
at nmax

B = 5−6nsat with a range between nmax
B = 4−8nsat (with

essentially no EoSs that produce nmax
B > 8nsat). The posterior

for the mGP modle peaks at a slightly smaller nmax
B than that

of the GP model, but the difference between the two distribu-
tions is very small. These results are consistent with what is
shown in Fig. 5, where the probabilities are compatible with
zero for nB ≥ nsat.

FIG. 7. Top: bar chart of the percentage of EoSs that are consis-
tent (wpQCD = 1), in tension (0 < wpQCD < 1), and not consistent
(wpQCD = 0) with pQCD input based on the formalism in Ref. [66].
Bottom: histogram of the wpQCD for the 4,592 EoSs (∼ 3.5% of the
total number of samples) in the combined benchmark GP and mGP
prior that are in tension with pQCD input. The impact of pQCD
input when nmax

B,k is used as the matching density is negligible (see
Sec. IV B 5 for definitions).

8 For this observable, the probability densities vary smoothly with nmax
B , and

hence, the use of kernel density estimates instead of the binning method
we discussed earlier is safe.
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FIG. 8. Left: histograms of the prior distributions for the GP and mGP EoS of the value of the baryon density nB in units of nsat at the global
speed of sound maximum for a stable nonrotating neutron star. The increased flexibility of mGP EoS allows for a global c2

s maximum to occur
at lower densities compared to the GP EoS. Right: the estimated prior probability density distributions corresponding to the histograms on the
left (solid curves) and estimated posterior probability density distribution after constraints on the symmetry energy, mass, radius, binary tidal
deformability are imposed along with pQCD input (dot-dashed curves). Data and theoretical constraints do not rule out a global c2

s maximum
at densities below 3 nsat, but are also not yet informative enough to favor or disfavor it over a global c2

s maximum above 3 nsat.

D. What is the impact of pQCD constraints?

As discussed in Sec. IV B 5, in order to include pQCD con-
straints, one must choose a matching density, nmatching. This
matching density reflects how pQCD results are being prop-
agated via stability, causality, and consistency constraints. In
this work, we used nmatching = nmax

B,k , the maximal central den-
sity predicted by EoS k for a stable, non-rotating neutron star.
Although nmax

B,k changes for each EoS, we saw in Sec. V C
and Fig. 6 that the posterior probability density for nmax

B drops
sharply above ∼ 6 nsat and is negligible beyond 8 nsat.

In Fig. 7, we quantify how pQCD constraints affected our
inference of the EoS. In the bar chart, we show the proportion
of EoSs in our prior that are consistent (wpQCD = 1 exactly),
in tension (0 < wpQCD < 1), and inconsistent (wpQCD = 0
exactly) with pQCD input (see Eq. (51) for the definition of
wpQCD). A vast majority of the EoSs in the prior (∼ 96.5%)
are consistent with pQCD results, ∼ 3.5% are in tension, and
only 0.0083% (11 total) EoSs are inconsistent with pQCD re-
sults. Because pQCD only completely excludes a very small
fraction of EoSs, these constraints cannot contribute strongly
to the M −R and c2

s(nB) posteriors, shown in the previous sec-
tion.

We observe, however, that a non-negligible population (∼
3.5%) that is in tension with pQCD results indeed exists. In
the inset of Fig. 7, we show a histogram for wpQCD only for
the samples that were found to be in tension with pQCD. Re-
call that wpQCD is proportional to the strength of the disagree-
ment between a given EoS and pQCD results over the range
of Λ̄ we sampled. Thus, we can quantify the impact of these
samples on the posterior probability by looking at their wpQCD
distribution. As shown Fig. 7, the median of the distribution is

∼ 0.95, meaning that more than half of the samples in tension
with pQCD are only marginally suppressed.

The results shown here suggest that the impact of pQCD
input on the inference of the neutron star EoS is minimal.
Given that the opposite has been reported in the literature re-
cently [15, 66, 158], we would like to address why that is the
case. Let us recall Sec. IV B 5, where we discussed the as-
sumptions associated with including pQCD input in the anal-
ysis. We assume we know the EoS at a low-density limit (see
Eqs. (42,43)), each determined by a set of three values that
fix the EoS in those limits. These values correspond to the
number density (n), the chemical potential (µ), and the pres-
sure (p) at each limit. In the low density regime, we get µlow
and plow from the EoS, but we need to make a choice for nlow.
This choice is important because nlow = nmatching, meaning that
pQCD results will be propagated down to nlow. This choice
is in principle arbitrary, but given that the largest scale rele-
vant to the neutron star EoS is nmax

B , it is reasonable to impose
nlow = nmax

B for each EoS. This is the choice that we make in
this work and the choice that was made in Ref. [159], which
also reported that pQCD only affected a very small number
of EoSs in the prior. Works that found a robust softening
of the EoS at high densities, leading to a peak in the c2

s(nB)
posterior, used nmatching = 10 nsat, where pQCD is more con-
straining because it is closer to µhigh = 2.6 GeV. However,
as shown in Fig. 6, the nmax

B posterior is essentially zero for
nmax

B > 7 nsat. That means that in Refs. [15, 66, 158] pQCD
constraints are being imposed far beyond the densities where
most realistic EoSs predict a stable neutron star. There are
no constraints from astronomical observations in those densi-
ties, so the impact of pQCD on the posterior will depend on
prior-imposed assumptions about the correlations in c2

s(nB) in
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the regime above nmax
B . We note here, as Refs. [160, 161] also

noted, that such results are very sensitive to the prior.
Imposing pQCD constraints at nmax

B with X = [1/2, 2] re-
sults in only 3.5% (∼ 4, 500/100, 000) of the EoSs being af-
fected. Only 11 are completely ruled out. Figure 7 shows
a histogram of the pQCD weights assigned to EoS that were
suppressed by pQCD, and we see that the vast majority of the
EoS affected were only marginally suppressed. With these
results, we conclude that our posteriors are dominated by as-
trophysical observations, which is why we do not see a soften-
ing of the EoS at larger densities. Nonetheless, pQCD offers
nontrivial constraints even when incorporated exclusively at
densities where an EoS predicts neutron stars exist. Lastly,
we point out that our findings are in agreement with those of
Ref.[159], which found that pQCD affects the EoS mainly be-
yond the densities realized in neutrons stars.

E. Does c2
s(nB) display a peak within neutron star densities?

Given that mGP EoSs lead to reasonable mass-radius and
c2

s(nB) posteriors, we can now begin to explore the existence
of structure in c2

s(nB). One way to study the latter is to look
for a bump (i.e. c2

s(nB) rises and reaches a global maximum at
some nB < nmax

B before decreasing again) that would signify
a crossover phase transition. This type of structure is being
actively discussed in the literature [15, 17, 18, 66, 158, 162,
163], as a signature of quark matter in the core of massive neu-
tron stars. Such structure has become especially relevant after
studies that use pQCD constraints applied beyond densities
realized in most realistic neutron star EoSs found a posterior
for c2

s(nB) that displays a peak within neutron star densities
[15, 66].

One caveat here is that, as seen in Fig. 1, c2
s(nB) can oscil-

late or contain first-order phase transitions. Thus, the absence
of a global maximum in c2

s(nB) before nmax
B does not imply

that a phase transition does not occur within neutron star den-
sities simply because local maxima could occur. Similarly,
the presence of a global maximum in c2

s(nB) before nmax
B does

not confirm a transition to quark matter occurs in the core of
massive neutron stars. That is because, as shown in Fig. 1, the
onset of degrees of freedom other than quarks, such as heavy
resonances or hyperons, can also cause the EoS to soften in a
similar way. With this caveat in mind, we define the density
at which the maximum in c2

s is reached as nB(c2
s,max), or nB at

maximum c2
s .

The left panel of Fig. 8 shows the prior for nB(c2
s,max) for

both the benchmark GP and mGP models. The maximum
value of c2

s can occur at any density up to nB ≤ 10nsat, as seen
for both priors. However, already at the level of the prior,
we do see differences between the two models. The bench-
mark GP model prior has a peak at approximately the same
density as the nmax

B posterior shown in Fig. 6. This feature
indicates that benchmark GP samples mostly reach a global
maximum in c2

s at or near their maximal baryon density, i.e.,
nB(c2

s,max) ≈ nmax
B . This result is compatible with the bench-

mark GP assumption that the low density (below ∼ 1.1nsat)
and high-density (above ∼ 1.1nsat) regions display correla-

tions of length ℓ = 1 in units of log10 erg cm−3. The EoS
in the low density regime must be smooth and soft to be in
agreement with symmetry energy estimates, while astronom-
ical observations require an EoS stiff enough to support 2 M⊙
stars but not too stiff in the regime below 3 nsat because of
tidal deformability constraints around 1.4 M⊙ stars. This tran-
sition from soft to stiff, by construction, happens over a range
in pressure corresponding to the hyperparameter ℓ. Since we
imposed a reasonably large value for ℓ, bumps are less likely
in the benchmark GP model. In contrast, the mGP model has a
prior that is relatively uniform in the range between 1.1−8 nsat,
rather than peaked at densities above 3 nsat, as in the bench-
mark GP case. That implies that some of these EoSs have
a low density bump in c2

s . In this case, the assumption that
the low- and high-density regimes are correlated over a long
range in pressure is relaxed, allowing for low density bumps
to appear.

In the right panel of Fig. 8, we show the posterior for the
density at which the speed of sound is maximum (computed
from a kernel density estimate), together with the prior, for
both the benchmark GP (blue) and mGP models (green). The
posteriors present interesting features and striking differences
between both models. The benchmark GP model leads to a
posterior with a maximum consistent with its prior, and thus,
consistent with the maximum density nmax

B . However, the
mGP posterior distribution for nB at the global c2

s maximum is
bimodal, with peaks at ∼ 2 nsat and ∼ 5 nsat. The peak of the
mGP posterior distribution centered at nB ∼ 5 nsat is somewhat
larger than the peak at nB ∼ 2 nsat. Nonetheless, the peak at
nB ∼ 2 nsat is still quite significant and it is clearly a result of
the extra structure built into the mGP model. We note that this
low nB bump is consistent with recent preliminary findings
from heavy-ion collisions [164] and may be an indication of
a crossover phase transition (a possible explanation is quarky-
onic matter, see, e.g., Ref. [23]). We should be careful in our
interpretation of these results, however, since the posterior is
bimodal, and a monotonically increasing c2

s cannot be ruled
out. It remains to be seen if the low density peak in the pos-
terior for nB(c2

s,max) will be further enhanced or suppressed by
future astrophysical observations of neutron stars.

We now investigate the differences between the two dis-
tinct peaks in the mGP posterior shown in Fig. 8 by dividing
the mGP EoS into two groups: one with nB(c2

s,max) < 3nsat

and one with nB(c2
s,max) > 3nsat. In Fig. 9, we show the mGP

posterior for c2
s(nB) in the first grou (left panel) and in the sec-

ond group (right panel), using the binned probability densities
from Eqs. (55-57), together with the constant-speed-of-sound
hypersurface, 90% and 68% credible regions.

The resulting posteriors are qualitatively different between
the two groups. Qualitatively, we see a much sharper increase
in c2

s at low densities for the nB(c2
s,max) < 3nsat group in the left

panel. In that case, we see that c2
s may have a peak, followed

by a decrease, or it may plateau, at larger nB. Interestingly, the
nB(c2

s,max) < 3nsat group allows for the possibility of a soften-
ing in the EoS at large densities that is not seen in the other
group. The nB(c2

s,max) > 3nsat group on the right panel ap-
pears to have a monotonically increasing posterior that ends
at a large c2

s at large nB. This group more closely resembles a
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FIG. 9. EoS posteriors for the case when a global maximum in the speed of sound is present below (left) and above (right) 3 nsat for mGP EoS.
The EoS are represented by the speed of sound squared in units of c2 as a function of baryon number density in units of nsat. The posterior
probability distributions are produced by binning the EoS by the speed of sound and number density, weighing each EoS by the corresponding
likelihood, then normalizing the heights of the bins such that the sum of all bin heights is equal to one. Also shown in the posterior plots are
the 90% and 68% credible regions for the speed of sound squared at a given density for 0.5 ≤ nB ≤ 6.0 nsat. The posterior probability that the
central density for a maximally massive star is greater than ∼ 6.0 nsat is negligible in both cases.

nucleonic-only EoS. Another interesting difference is that, un-
like the nB(c2

s,max) < 3nsat group, the nB(c2
s,max) > 3nsat group

has a tight c2
s distribution at large nB, which drives c2

s to large
values.

We can quantify these differences. In the left panel at 2 nsat,
the nB(c2

s,max) < 3nsat group allows for c2
s as high as ∼ 0.80

at 90% credibility and ∼ 0.55 at 68% credibility. In contrast,
the second group predicts much smaller c2

s for nB = 2 nsat,
∼ 0.45 and ∼ 0.35 at 90% and 68% credibility, respectively.
At densities above 3 nsat, the nB(c2

s,max) < 3nsat group contin-
ues to allow for a wide range of c2

s , displaying c2
s values as

low as ∼ 0.2 at 90% credibility, and as high as ∼ 0.8 at 90%
credibility at 5 nsat. At 68% credibility, the lower and upper
bands are at roughly c2

s ≈ 0.3 and c2
s ≈ 0.7, respectively, at 5

nsat. In contrast, at 5 nsat, the ranges for the nB(c2
s,max) > 3nsat

group are approximately and [0.5, 0.8] at 68% credibility and
[0.3, 0.9] at 90% credibility. Overall, if a global maximum
occurs below 3 nsat, our results indicate that we can expect an
EoS that is stiffer at low densities and softer at high densities.
On the other hand, if a global maximum occurs above 3 nsat,
the c2

s posterior suggests that the EoS is stiffer and above the
conformal value of 1/3 for all nB > 3 nsat.

Recalling an earlier discussion about what the absence of a
clear peak-like structure in c2

s means, we emphasize that the
EoS in both posteriors shown in Fig. 9 were generated us-
ing the mGP framework. Therefore, all these samples contain
nontrivial features. Thus, it is possible that nB(c2

s,max) > 3nsat

group may have a small bump in c2
s at low densities but then

the EoS continues to come stiffer, ending at an even larger c2
s

near nmax
B .

F. Are there nontrivial features in c2
s(nB)?

We have established that different assumptions about the
scale of correlations across densities in the speed of sound
functional does not lead to significantly different predictions
for the mass-radius relation or c2

s(nB) given current con-
straints. On the other hand, introducing multi-scale correla-
tions via the mGP model had a significant impact on the pos-
terior for the value of nB at the maximum c2

s . What we learn
from this is that both the benchmark GP and the mGP mod-
els can describe astronomical observations, while respecting
symmetry energy and pQCD constraints. We can now ask if
the data prefers one of the two models.

As discussed in Sec. IV A, the model evidence quantifies
the level of support of the data for a given model, and the
ratio between the evidence for two different models, the Bayes
factor, quantifies if one of the models is preferred over the
other by the data. Using Eq. (53), we separate the benchmark
GP and the mGP samples and compute the evidence for each.
We find a Bayes factor of 9

9 In a previous note [165], we reported a Bayes factor of K=1.126, which was
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K =
EbenchmarkGP

EmGP
= 1.480. (61)

This value is not a significant deviation from unity, which
means that current constraints do not favor either model.
The physical interpretation is that multi-scale correlations and
nontrivial features in c2

s(nB) are not ruled out by current con-
straints, but neither are they required.

VI. CONCLUSIONS AND DISCUSSION

Nuclear physics models with phase transitions and exotic
degrees of freedom contain multiscale features that present
as non-trivial structure in c2

s . In this work, we developed
a new framework, which we named modified Gaussian pro-
cesses (mGP), as a novel approach to producing functional
forms of the EoS for the cold, catalyzed nuclear matter in neu-
tron stars that contain long-, medium-, and short-range corre-
lations. These EoSs can be generated with high computational
efficiency and contain features that are indicative of the emer-
gence of exotic degrees of freedom.

We compared our new mGP EoS model to a benchmark GP
model that contains only long-range correlations (i.e., does
not contain any short- or medium-range correlations), using
a Bayesian analysis that incorporated astrophysical data, low-
energy nuclear physics constraints, and input from pQCD cal-
culations. From our Bayesian analysis, we found that both the
benchmark GP and mGP models provide nearly equivalent re-
sults for the mass-radius, c2

s(nB), and maximum central den-
sity posteriors. In fact, the Bayesian evidence for both models
is nearly the same, leading to a Bayes factor of 1.5 between
them. Thus, it is clear that we cannot rule out nontrivial fea-
tures in the speed of sound from the data, and also that these
features are as valid as a smooth EoSs, given current data.

Given the very similar posteriors for both the benchmark
GP and the mGP models, one may wonder if there are any dif-
ferences between the two. We found that the main difference
between the two models is that mGP model allows for EoSs
that have bump in c2

s at low densities. In fact, the posterior
of the nB at which the maximum of c2

s occurs leads to a bino-
mial distribution with peaks at nB ∼ 2nsat and nB ∼ 5nsat. In
contrast, the benchmark model only produces a definite peak
at nB ∼ 5nsat. Thus, we must conclude that the benchmark
model is not adequately exploring the possibility of a bump
in c2

s at low densities, due to long correlation lengths. We
argue that it is important to explore the possibility of peaks

obtained using a normalization factor (Nm in Eq. 53) that reflected the size
of the subset of the priors for each model that passed the checks (using the
notation introduced in Secs. III C and IV C, these sets are Φbenchmark GP ∧

Φ✓ and ΦmGP ∧ Φ✓). This choice essentially ensured a Bayes factor of
∼ 1, because both priors have information about astrophysical constraints
(Ref. [160] also pointed this out). Here, Nm corresponds to the full prior
sample size (using the notation introduced in Secs. III C and IV C, these
sets are Φbenchmark GP and ΦmGP).

around nB ∼ 2nsat because a global maximum at such den-
sities is compatible with the onset of exotic phases [162] in
the core of neutron stars and, in this analysis, its existence is
completely driven by astrophysical data.

Another question is: are sharp features in c2
s potentially

excluded due to the pQCD constraints at high nB? Similar
to what was done in [159], we applied the constraints at the
maximum central density that is peaked between 5 − 6 nsat
for both models. We find that these pQCD constraints only
have a small effect on our results, with no visible effect on our
posteriors. Only 0.0083% of all EoSs in our study were in-
consistent with the pQCD constraints entirely, and only 3.5%
were in some degree of tension. Tension can occur because
of uncertainty in an undetermined scale that arises from the
contribution of missing higher order terms. One sets a range
of values to that scale and some of those values may exclude
an EoS whereas others may not. We plan to further explore
the consequences of these pQCD constraints in a follow-up
analysis.

Other approaches have been used to tackle similar questions
as studied here, such as a deep neural network [115] or linear
segments in c2

s [166]. It would be relevant to directly compare
these different methods to our mGP model in future work to
study their ability to reproduce specific features in c2

s from
nuclear physics models. Additionally, other groups have de-
veloped new techniques to extract features indicative of phase
transitions from functional forms of the EoS in Ref. [160].
One could use mGPs that place phase transitions in by hand
with precise knowledge of their location to perform closure
tests with such an approach.

Overall, the results presented here suggest that current con-
straints are not enough to rule definitively in favor of or
against phase transitions to exotic degrees of freedom in the
core of neutron stars, and that unambiguous signatures of
structure in the EoS still require investigation. A clear ruling
regarding the existence of exotic matter in the core of neu-
tron stars will require more precise input from astronomical
observations, laboratory measurements, and input from effec-
tive theories and QCD at high densities [167]. Fortunately,
more data is anticipated from the NICER collaboration both in
terms of better statistics on existing measurements, and radii
from new neutron stars. Additionally, LIGO/Virgo/KAGRA’s
fourth observing run started in May 2023 with better sensitiv-
ity than during the third observing run, such that more neutron
star mergers that will provide Λ constraints are anticipated
[168] and the binary love relation may provide further insight
into structure in c2

s [87]. Finally, more nuclear physics data is
anticipated from the Facility for Rare Isotope Beams that will
help constrain the low density regime of the EoS, and from
low-energy heavy-ion collisions that will probe the large den-
sity, low-temperature region of the QCD phase diagram [169].
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