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ABSTRACT

We examine the evolution and influence of viscosity-induced diskoseismic modes in simulated black hole accretion
disks. Understanding the origin and behavior of such oscillations will help us to evaluate their potential role
in producing astronomically observed high-frequency quasi-periodic oscillations in accreting black hole binary
systems. Our simulated disks are geometrically thin with a constant half-thickness of 5% the radius of the innermost
stable circular orbit. A pseudo-Newtonian potential reproduces the relevant effects of general relativity, and an
alpha-model viscosity achieves angular momentum transport and the coupling of orthogonal velocity components
in an otherwise ideal hydrodynamic numerical treatment. We find that our simulated viscous disks characteristically
develop and maintain trapped global mode oscillations with properties similar to those expected of trapped g-modes
and inner p-modes in a narrow range of frequencies just below the maximum radial epicyclic frequency. Although
the modes are driven in the inner portion of the disk, they generate waves that propagate at the trapped-mode
frequencies out to larger disk radii. This finding is contrasted with the results of global magnetohydrodynamic disk
simulations, in which such oscillations are not easily identified. Such examples underscore fundamental physical
differences between accretion systems driven by the magneto-rotational instability and those for which alpha
viscosity serves as a proxy for the physical processes that drive accretion, and we explore potential approaches to
the search for diskoseismic modes in full magnetohydrodynamic disks.
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1. INTRODUCTION

Since the detection of the first high-frequency quasi-
periodic oscillations (HFQPOs) from black hole candidate GRS
1915+105 (Morgan et al. 1997), much effort has been made
to relate such oscillations to natural accretion disk frequencies.
Some early analysis by Nowak et al. (1997) suggested that these
HFQPOs were manifestations of global oscillation modes in
galactic black hole binaries (GBHBs), the theory of which had
been explored extensively by, for example, Okazaki et al. (1987)
and Nowak & Wagoner (1991, 1992, 1993). The discovery by
Strohmayer (2001) of a pair of HFQPOs in GRO J1655−40
with an approximate 3:2 frequency ratio, however, lent sup-
port to an alternative parametric resonance model (Abramowicz
& Kluźniak 2001) in which HFQPOs result from resonance
between orbital and radial epicyclic motions of disk material.
This and similar resonance models have the advantage of natu-
rally generating the small-integer frequency ratios seen in GRO
J1655−40 and some subsequently observed sources (for a sum-
mary of current HFQPO observations, see Remillard & Mc-
Clintock 2006). Still, parametric resonance models have yet to
incorporate convincing physical mechanisms by which to ex-
cite HFQPOs (Rebusco 2008), and it has been noted by Ortega-
Rodrı́guez et al. (2008) that multiple global oscillation modes
of differing mode number produce a 3:2 frequency ratio equally
well. A detailed physical understanding of such oscillations is
crucial since their observed frequencies (∼100 Hz) are com-
parable to orbital frequencies near the innermost stable circu-
lar orbit (ISCO) of stellar-mass black holes. Interpreted cor-
rectly, HFQPOs thus have the potential to tell us much about
the inner portions of accretion disks and the black holes they
orbit.

While numerical simulations have great promise to elucidate
the nature of disk oscillations, they unfortunately have failed
thus far to produce convincing, identifiable HFQPOs. Despite
some preliminary claims of HFQPO generation in relatively
low-resolution simulations by Kato (2004), subsequent numer-
ical magnetohydrodynamic (MHD) studies have shown that
simulated HFQPOs typically are transient (Schnittman et al.
2006), require external driving (Chan et al. 2006), or, in the case
of the first paper in this series, remain completely undetected
(Reynolds & Miller 2008, hereafter Paper I). Interestingly, the
simulations of ideal hydrodynamic disks in Paper I did gener-
ate trapped gravity-driven (i.e., g-mode) global disk oscillations
such as those described in Nowak & Wagoner (1992), but these
oscillations were not seen in their otherwise comparable MHD
disks. In fact, oscillations of the amplitude seen in X-ray obser-
vations or in their hydrodynamic disks would have fallen below
the level of turbulent noise generated in the MHD case, so they
could not determine whether the modes were hidden or actively
damped by turbulence in the manner discussed by Arras et al.
(2006). Regardless, it is clear that the prototypical MHD disks
of Paper I failed to excite to a detectable level either the global
diskoseismic oscillations of Nowak & Wagoner (1993) or the
parametric resonance instability of Abramowicz & Kluźniak
(2001).

In this paper, we describe complementary work to Paper I in
the form of simulations with oscillations induced by the viscous
tapping of orbital energy. While the standard physical model for
black hole accretion is predicated upon the magneto-rotational
instability (MRI; Balbus & Hawley 1991), an intrinsically MHD
process that naturally generates turbulence and the transport
of angular momentum, the traditional alternative to full MHD
simulations has been to mimic the influence of magnetic fields
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through the introduction of an “alpha-model” viscosity (Shakura
& Sunyaev 1973). This approach subsumes all physical details
of accretion into a single dimensionless viscous parameter α
designed to achieve the appropriate global level of angular
momentum transport. This approach is by no means completely
equivalent to a full MHD treatment, as Balbus & Hawley
(1998) and Pessah et al. (2008) note, and there even remain
some basic order-of-magnitude discrepancies between values
of α inferred from observation and those derived from MHD
simulations (King et al. 2007). Still, studying alpha disks
provides us with a method by which to evaluate the influence
of viscosity independent of MRI-driven turbulence and other
typically complex behaviors of fully MHD disks.

Ortega-Rodrı́guez & Wagoner (2000) have provided a linear
analysis of normal modes in viscous, rotating, Newtonian fluids
that is applicable to our simulated viscous accretion disks.
In particular, they show that the presence of viscosity should
cause the fundamental g-modes in rotating disks to grow at
a rate that scales with the characteristic orbital frequency in
the system. In relativistic or pseudo-Newtonian gravitational
potentials, these g-modes are predicted to be nonevanescent at
radii where |ω| < κ , where ω is the wave frequency, and κ is the
radial epicyclic frequency (see Nowak & Wagoner 1991, 1992;
Ortega-Rodrı́guez & Wagoner 2000), or Section 2.2 of Paper I
for the appropriate dispersion relations and derivations). In black
hole accretion disks, this means that the modes are trapped just
under the maximum radial epicyclic frequency κmax. Similarly,
Ortega-Rodrı́guez & Wagoner (2000) find that viscosity also
causes the inner pressure-driven (p-mode) oscillations to grow
for κmax > |ω| > κ , although the successful trapping of such
modes depends strongly upon the nature of the inner boundary
of the disk.

While the viscosity-induced trapped g-mode of Ortega-
Rodrı́guez & Wagoner (2000) has never been identified explic-
itly in simulations, numerical models of viscous hydrodynamic
disks have generated identifiable waves at frequencies compa-
rable to this mode. In an early numerical analysis of axisymmet-
ric, vertically integrated (i.e., one-dimensional) disks, Honma
et al. (1992) found that viscosity above a critical value α ∼ 0.1
caused global disk oscillations near κmax. Likewise, Chen &
Taam (1995) and Milsom & Taam (1996) identified global os-
cillations near κmax in vertically integrated disk simulations for a
range of moderate accretion rates. This work was followed by the
two-dimensional simulations of Milsom & Taam (1997), which
focused on convection in optically thick disks but also found
oscillations near κmax, particularly for low accretion rates and
large viscosities. More recently, Mao et al. (2008) revisited the
vertically integrated models of Milsom & Taam (1996), point-
ing out that waves propagating from the inner portions of the
disk could easily be locally super-Keplerian. All of these stud-
ies associate the observed signals with radial inertial-acoustic
oscillations corresponding to the previously mentioned inner p-
modes. This is a particularly valid interpretation in the case of
vertically integrated disks where motion is constrained to the
radial dimension, but distinguishing between trapped g-modes
and inner p-modes in two-dimensional viscous disks is not as
straightforward as we shall discuss in this work.

Our simulations of viscous accretion disks are intended to
complement this previous work by exploring in more detail how
viscosity can induce diskoseismic modes in accretion disks and
how these modes affect the body of the disk. First, we seek to
discover whether we can produce and identify in our models
any of the viscosity-induced modes of Ortega-Rodrı́guez &

Wagoner (2000). In particular, we are interested in the trapped
global g-modes since they exist in a narrow frequency range
near κmax, the value of which in principle can be used as a
diagnostic of the fundamental physical properties of the black
hole. Since these g-modes are trapped well away from the
inner boundary of the disk, we also expect them to be less
susceptible than inner p-modes to leakage across the ISCO. We
further examine how such modes generate waves that propagate
through the entire body of the disk, far beyond the formal
mode trapping region. Since trapped g-modes were identified
in the hydrodynamic simulations—but not the MHD disks—of
Paper I, we further seek to understand and evaluate the observed
differences between viscous alpha disks and full MHD models.

In Section 2, we outline the computational framework used
and describe our simulated disk models. In Section 3, we present
the results of our simulations and discuss our identification of
trapped diskoseismic modes and the effects of these modes on
viscous disks. We place our findings in a broader context in
Section 4, comparing our results to previous work, and present
our conclusions in Section 5.

2. MODELING VISCOUS DISKS

2.1. Numerical Methods

To simulate the evolution of viscous accreting systems, we
have adapted the ZEUS-MP code (ver. 2), the basic workings
of which are described in Stone & Norman (1992a, 1992b),
Stone et al. (1992), and more recently in Hayes et al. (2006).
This code employs an Eulerian finite difference scheme to solve
to second-order accuracy the equations of ideal compressible
fluid dynamics. For our purposes, we run ZEUS-MP in pure
hydrodynamic mode using cylindrical coordinates (r, z, φ). The
calculation is “2.5 dimensional,” meaning that it enforces com-
plete azimuthal symmetry while allowing a nonzero azimuthal
velocity. Our simulations feature a gamma-law gas equation of
state (p ∝ ργ ) with a constant γ = 5/3. Zero-gradient outflow
boundary conditions are enforced at each time step in both the
r and z directions. Additionally, we employ a protection routine
to impose a density floor ρmin at a value 10−7 times that of the
initial disk midplane density.

We have modified ZEUS-MP to incorporate additional
physics relevant to the simulation of accretion disks. While
ZEUS-MP allows the inclusion of point-mass gravity, we have
adjusted this to reflect a pseudo-Newtonian gravitational poten-
tial, such as that developed by Paczynski & Wiita (1980). In this
potential,

Φ = − GM

R − 2rg

, rg ≡ GM

c2
, (1)

where R = √
r2 + z2 is the spherical radius. This approach ac-

curately reproduces the positions of the ISCO at r = 6rg and
marginally bound orbit at r = 4rg for a Schwarzschild black
hole. Additionally, we have added to ZEUS-MP the aforemen-
tioned “α-model” (Shakura & Sunyaev 1973) prescription for
viscosity in what is otherwise an ideal hydrodynamic system.
This modification consists of introducing a kinematic viscosity
of the form

ν = αcsH, (2)

where α is a dimensionless constant, cs is the local sound speed,
and H ∼ csr/vφ is the scale height of the disk, which we can
express in terms of the sound speed, cylindrical radius, and
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azimuthal disk velocity (vφ). This model viscosity is applied
as a correction to the force update in ZEUS-MP and directly
updates the velocity components exclusively according to

∂(ρ�v)

∂t
= ∇ · σ, (3)

where the components of the viscous stress tensor σ are given
in Landau & Lifshitz (1959), for example. Since we include
viscosity only as a means to couple velocity components and
to transport angular momentum, we assume that the dissipated
heat is radiated away instantaneously and thus remove it from
the system. For numerical stability, the viscosity update must
take place over a timescale less than or equal to the viscous time
step, given by

Δtvisc = Cvisc min

(
Δx2

i

ν

)
, (4)

where Cvisc is a stability constant (Cvisc ∼ 0.1) and Δxi is the
computational zone length in the ith dimension. In practice, this
criterion is met by subcycling the force update at a time step

Δtsub = ΔtCour

N
� Δtvisc, (5)

where ΔtCour is the standard Courant–Friedrichs–Levy time step
(described in the context of ZEUS-MP by Hayes et al. 2006)
and N is the smallest positive integer to satisfy this condition.

2.2. Simulated Disk Parameters

The basic initialization template for our simulated accretion
disks is identical to that of the two-dimensional hydrodynamic
disks discussed in Paper I. Additionally, we conduct two “test”
simulations (described at the end of this section) to confirm that
our results do not depend in an unphysical way upon the details
of the initial conditions and computational grid size. Since we
do not simulate scale-dependent processes such as radiative
cooling, our disks are fundamentally scale free and we discuss
them in natural units.

Our simulated disk density and pressure profiles are given by

ρ(r, z) = ρ0 exp

(
− z2

2h2
1

)
, (6)

and

p(r, z) = GMh2
2

(R − 2rg)2R
ρ(r, z), (7)

where r is the cylindrical radius, z is the vertical height above the
disk midplane, and R = √

r2 + z2 is again the spherical radius.
The initial midplane value ρ0 is independent of radius, as are
the scale heights h1 and h2. The disk is geometrically thin with
a value of h2 = 0.3rg , leading to a ratio of h2/rISCO = 0.05 at
the ISCO. We set h1 = 1.2h2 so that the disk is ∼20% too cold
to maintain vertical hydrostatic equilibrium. As a result of this
setup, the initial disk collapses and oscillates before relaxing
into an approximate steady state. The initial velocity profile is
entirely azimuthal with

vφ =
√

GMr

r − 2rg

, vr = vz = 0, (8)

for r � rISCO. This corresponds to pure Keplerian motion in the
disk midplane.

In all simulations, the computational grid spans a radial range
of r ∈ (4rg, 28rg) and a vertical range of z ∈ (−1.5rg, 1.5rg).
The grid is populated by zones of uniform size Δr ≈ 2.3 ×
10−2rg and Δz ≈ 1.2 × 10−2rg , leading to a cell aspect ratio
of 2:1. This resolution provides ∼25 vertical zones per pressure
scale height h2 and is thus sufficient to capture waves with
wavelengths ∼4 times smaller than the scale height. The total
duration of each simulation is ∼200TISCO, where

TISCO ≈ 61.6GM/c3 (9)

is the orbital period at the ISCO.
The only input parameter adjusted across our models is the

value of the dimensionless viscosity parameter α. As sum-
marized in King et al. (2007), evidence suggests that ob-
served astrophysical accreting systems feature α ∼ 0.1–0.4.
Rather than restrict ourselves to this relatively narrow range
of values, however, we instead examine an ensemble of sim-
ulated disks ranging from realistic values to completely in-
viscid disks. Specifically, we choose model disks with α =
{0.1, 0.075, 0.05, 0.025, 0.01, 0.0}. This enables us to explore
how viscosity leads to the development and propagation of
diskoseismic modes and how this behavior depends upon the
strength of the viscosity. Since the value of α is the single cri-
terion by which we distinguish our disk models, we refer to
them by this value prepended with an “A” (e.g., model “A0.05”
features α = 0.05).

Additionally, we briefly describe two “test” models designed
to confirm that the behaviors of our disks are not unduly
influenced by our specific simulation parameters. In the model
labeled “EQ0.1,” we modify the basic disk template so that
h1 = h2 and move the inner edge of the disk to a distance r ∼
1.33rISCO. Since this disk is in vertical equilibrium and the inner
edge of the disk is comfortably outside of the ISCO, this model
helps us to gauge how our results depend upon the details of
the initial disk perturbation. Another model labeled “GRD0.1”
features a grid that spans a radial range of r ∈ (3.75rg, 28rg) and
a vertical range of z ∈ (−1.52rg, 1.52rg). This model helps us to
identify physically interesting disk behaviors and to isolate them
from potentially unphysical oscillations caused by interactions
with the inner radial computational grid boundary. As their
names suggest, both test models feature α = 0.1.

3. SIMULATION RESULTS

We now discuss the evolution and analysis of our simulated
disks. While our models diverge as viscous effects become im-
portant, each disk is initially perturbed in the same way, and
their early behaviors are quite similar. As described in Paper I,
the initial disk setup is out of vertical equilibrium and so falls, re-
bounds, and eventually settles into an approximate steady state.
We evaluate the decay of the initial disk fluctuations by com-
puting the quantity K = ∫

D ρv2
z dV , which is a measure of the

energy in vertical disk oscillations. Figure 1 shows for models
A0, A0.1, A0.05, and A0.01 the evolution of K in time where the
integration domain D covers the radial segment r ∈ (7rg, 14rg),
away from the radial disk boundaries. Although some of the in-
termediate viscosities are omitted from Figure 1 to reduce visual
clutter, the models shown bracket their behaviors. We will dis-
cuss this figure in more detail in the following sections, but we
note here that our different models feature very distinct evolu-
tionary profiles in K. This is hardly surprising since the viscous
runs damp out some of the energy associated with the initial disk
perturbation while also potentially introducing vertical oscilla-
tions through the mechanism of Ortega-Rodrı́guez & Wagoner
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Figure 1. Change of the quantity K = ∫
D ρv2

z dV with time, normalized to
its maximum value. The integration domain D is the section r ∈ (7rg, 14rg).
Shown are models A0 (solid), A0.1 (dotted), A0.05 (dashed), and A0.01 (dot-
dashed). The long-term downward trend in A0 shows that the g-modes in this
model are gradually losing energy that had been provided by the initial disk
perturbation. The viscous models, on the other hand, rapidly lose this initial
energy. The evolution of model A0.1, in particular, clearly shows that vertical
energy is actively replenished in viscous disks.

(A color version of this figure is available in the online journal.)

(2000). Rather than tailor our analysis of each individual model
to that model’s behavior in K, we conservatively restrict our
discussion of all models to times after trelax ∼ 6 × 103GM/c3,
corresponding to the approximate exponential decay time of K
in the inviscid model A0. In Paper I, this decay timescale was
seen to increase with higher grid resolution, suggesting that nu-
merical dissipation was responsible for damping out these initial
oscillations.

3.1. Inviscid Disks

Let us first review briefly the relevant characteristics of A0,
the inviscid model similar to some of those described extensively
in Paper I. Since we are most interested in physical processes
that select specific frequencies, our primary method of analysis
is to compute and examine the power spectral density (PSD),
defined as P (ν) = η|f̄ (ν)|2, where η is a normalization constant
and f̄ (ν) is the Fourier transform

f̄ (ν) =
∫

f (t)e−2πiνt dt (10)

of a given time sequence f (t). Note that the PSDs in this paper
are taken to be functions of the frequency ν instead of the angular
frequency ω = 2πν. Figure 2 shows the midplane (i.e., z = 0)
PSDs of the radial and vertical velocities, pressure, and density
in A0. The absolute scales are arbitrary, but one can easily see
in all four quantities an enhancement approximately bounded
on the right by the radial epicyclic frequency. Furthermore,
the strongest enhancements lie just below the maximum radial
epicyclic frequency, which, in the Paczynski–Wiita potential, is
located at νmax = ωmax/2π ≈ 5.5 × 10−3c3/GM at a radius of
rmax ≈ 7.5GM/c2. As Paper I points out, these features have all
of the expected characteristics of the trapped g-modes described
by Nowak & Wagoner (1992). As noted, the evolution of K in
Figure 1 illustrates that the energy in this trapped mode decays
over time, having been introduced exclusively through the initial
disk perturbation.

Additionally, we note some leakage of the g-mode signal both
radially inward and outward from rmax. Most of the leakage that

crosses the ISCO is expected to exit the grid, and the leakage
radially outward from rmax is at least an order of magnitude less
in strength than the trapped g-mode magnitude for all quantities.
We also note the presence of some broadband noise near the
outermost disk radii. This signal is caused by disk interactions
with the outer grid boundary, as the resolution tests in Paper
I revealed, and similar features are seen in our simulations of
viscous disks.

3.2. Viscous Disks

Considering now viscous disks, we will focus primarily
on A0.1 for which the α value corresponds most closely to
disk viscosities inferred from observations (King et al. 2007).
Figure 3 shows the midplane PSDs for the radial and vertical
velocities, pressure, and density in A0.1. While the color bars in
both Figures 2 and 3 have arbitrary units, they are the same for
both figures to facilitate cross-comparison of quantities between
the two models. First, we note that there is extensive broadband
noise present, particularly for the density and pressure, in
Figure 3. That this noise is most pronounced at lower frequencies
is consistent with the prediction by Paper I that secular variation
in the disk caused by the gradual loss of material through the
radial outflow boundaries produces a signal that scales with
1/ω2. We have attempted to remove some of this noise from
the density and pressure PSDs using a technique described in
Paper I. In this approach, we divide these time series by an
exponential decay function, choosing the time constant from a
least-square fit to the data. In A0.1, this secular trend amounts to
a loss of only a few percent of the initial total disk mass during
the period of analysis (i.e., t > trelax), but Figure 3 illustrates
that a strong residual trend remains. Fortunately, the velocity
PSDs are affected by this variation only indirectly and, as such,
require no secular correction.

The physically significant signal we see in A0.1 consists of a
set of features located near ν ∼ 5 × 10−3c3/GM that extends
radially (i.e., vertically in Figure 3), occupying up to half of
the disk radius. Identifiable in all four quantities, this set of
features is seen at a frequency range very near the maximum
radial epicyclic frequency of the system at νmax. Although there
is some variation in the signal profile for the four quantities
shown in Figure 3, all signals characteristically feature one or
two prominent broad “spikes” near νmax with multiple weaker
peaks at adjacent lower frequencies. The spikes in the velocity
PSDs are seen down to the inner radius of the computational
grid (r = 4GM/c2), while those for the pressure and density
are difficult to identify inward of the broadband noise bands
near r ∼ 7.2GM/c2.

To explore the radial dependence of spectral power in more
detail, we show in Figure 4 a set of PSDs of the radial velocity
in A0.1 linearly added in radius bins of width Δr = 1GM/c2.
The vertical bar indicates the position of νmax in each plot. At
the smallest radii (r = 6–7GM/c2), there is sufficient noise in
the bin to preclude simple identification of the aforementioned
spikes. While the background noise is slightly diminished at r =
7–9GM/c2, the spikes are only easily seen by r � 9GM/c2.
Interestingly, the spikes maintain a power level that is constant
to within a factor of two from r = 9 to 15GM/c2, and they
are seen to peak at or just below νmax at these radii. In the last
three radius bins, we see that the amplitude of the signal finally
diminishes as lower frequency noise begins to creep in at outer
disk radii.

Although PSDs are invaluable for locating such features, we
must appeal to alternate methods to determine the radius range
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Figure 2. Midplane PSDs of radial velocity (top left), vertical velocity (top right), density (bottom left), and pressure (bottom right) for model A0. Also shown are the
radial epicyclic frequency (solid) and orbital frequency (dashed) for comparison. The logarithmic color bars are in arbitrary units and span 5 orders of magnitude. The
signal bounded on the right by the radial epicyclic frequency has the properties of a trapped g-mode, as described in Paper I.

(A color version of this figure is available in the online journal.)

from which these spikes emanate. Figure 5 shows for model
A0.1 as a function of both time and radius the deviation in
midplane radial velocity, defined as Δvr ≡ vr − v̄r . Shown
as a bi-colored dashed line is a characteristic outward wave
propagation path, derived from the local sound speeds averaged
over the entire simulation time. In this plot, we see that multiple
streams form a combtooth pattern that, for t > trelax, originates at
the plateau near r ∼ 7.5GM/c2, runs approximately parallel to
the dashed line, and finally fades from view by r ∼ 18GM/c2.
That the pattern runs roughly parallel to the dashed line suggests
that these are waves moving radially outward from their point
of origin in the inner disk. Where these waves vanish near
the top of Figure 5 is near where Figures 3 and 4 suggest
that a signal associated with the outer grid boundary begins
to manifest itself (such features were also noted in Paper I).
To avoid contamination from such boundary effects, we restrict
our analysis to radii inward of r ∼ 18GM/c2, a range that still
encompasses a large portion of the disk external to rISCO and
rmax.

We propose that the spikes and associated signals seen in
Figures 3–5 are the natural result of viscosity-induced trapped
oscillation modes, such as those described by Ortega-Rodrı́guez
& Wagoner (2000). In this framework, viscosity provides a
mechanism by which the rotational velocity of the disk can
be tapped by the orthogonal velocity components, leading to a
driven, trapped mode (or modes). The narrow frequency range
of the spikes, located most prominently at or just below νmax,

is what would be expected from a trapped g-mode, although
in practice distinguishing between inner p- and g-modes is not
trivial. For example, viscous disks characteristically share power
locally between orthogonal velocity components, so one cannot
simply assume that the presence of a signal in vz indicates a g-
mode. Figures 3 and 4 in principle could be used to identify the
exact radial range for these modes, but broadband noise at the
radii of interest (r ∼ 6–9GM/c2) makes it difficult to cleanly
separate the two distinct mode trapping regions. Moreover, it
is clear from comparing Figures 3 and 5, for example, that one
cannot rely upon PSDs to distinguish proper trapped modes from
induced wave motions. In fact, our only strong constraint on the
location of these modes comes from Figure 5, which shows that
the modes themselves are not present exterior to rmax. Given that
trapped p- and g-modes are apparently indistinguishable in our
simulations, we will thus refer to these features generically as
“trapped modes” for the remainder of this discussion.

A combined analysis of Figures 3–5 clearly illustrates that
the influence of these trapped modes in A0.1 is not restricted to
that portion of the disk within the trapped region. Figures 3 and
4, for example, demonstrate that the disk contains significant
power near νmax for r � rmax. Figure 5 shows that this power
exterior to rmax is in the form of outward propagating waves.
That these waves are related to the trapped modes is evident
from their discrete frequencies, which are identical to those of
the trapped modes. Still, it is challenging to identify exactly how
the modes transfer their energy to these waves since both trapped
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Figure 3. Midplane PSDs of radial velocity (top left), vertical velocity (top right), (decay-corrected) density (bottom left), and (decay-corrected) pressure (bottom
right) for model A0.1. Also shown are the radial epicyclic frequency (solid) and orbital frequency (dashed) for comparison. The logarithmic color bars span 5 orders
of magnitude and are identical to those used in Figure 2 to facilitate cross-comparison. The set of vertical spikes just below the maximum radial epicyclic frequency
indicate the presence of trapped modes that generate waves that pervade the disk.

(A color version of this figure is available in the online journal.)

g-modes and inner p-modes are formally evanescent at fre-
quencies greater than the radial epicyclic frequency. Moreover,
there is no obvious indication that the signal loses power across
the radial epicyclic boundary, as might be expected for mode
leakage. One simple plausible explanation is that the modes
excite radial waves, which are nonvanishing for all frequen-
cies greater than the radial epicyclic frequency (see Lubow &
Pringle 1993, for example). One could imagine predominantly
vertical trapped g-modes, for example, exciting through viscous
action radial waves that then propagate freely outside of the
radial epicyclic boundary. Another possible explanation is that
the trapped-modes tunnel through the finite evanescent region,
which is bounded by the radial epicyclic and orbital frequencies
in the case of the axisymmetric fundamental p-mode. Assum-
ing that such waves do not decay appreciably in the evanescent
zone, they could emerge as radial p-modes in regions of the
outer disk for which the local orbital frequency is less than
the original trapped-mode frequency. Whatever the mechanism,
the ultimate result is that these waves retain the frequency sig-
nature of the trapped modes as they move through the disk.
Eventually, these waves become lost in the artificial noise gen-
erated by the outer grid boundary, but not before intersecting a
significant fraction of the disk body.

Before moving on to our discussion of other disk models,
it is worth discussing the slight indications of a signal visible
near νmax for r < rISCO in the velocity PSDs in Figure 3. This

represents leakage of the trapped modes down through the ISCO
into a narrow accretion stream that leaves the grid, similar to
that noted in Paper I. There is no such leaked signal visible
in the density or pressure PSDs because these quantities are
significantly reduced in magnitude radially inward from rmax
through rISCO. The midplane density, for example, is over 2
orders of magnitude smaller in the accretion stream than at
r � rmax. Any signal proportional to the local density would
thus have 4 orders of magnitude less power in the PSD at the
innermost radii than at r � rmax. This typically pushes such a
signal below the range of our color bar, and we have confirmed
that such signals are indeed present, but weak.

The presence and influence of trapped modes are not exclusive
to model A0.1, but are seen for other viscosities as well. Figure 6
shows the radial velocity PSDs and Figure 7 the vertical velocity
PSDs for A0.1, A0, and the four intermediate viscous disk
models. The color bars in Figures 6 and 7 are each normalized so
that we can correctly cross-compare magnitudes across different
models in each figure. First, the basic trapped-mode features are
present in both velocity components for viscous models with
α � 0.075. While the exact positions and number of detectable
spikes differ in detail between A0.1 and A0.075, the proximity
of these spikes to νmax still reflects the basic orbital parameters
of our model disks. Moving to lower viscosities, model A0.05
shows an identifiable signal in vertical velocity that appears to be
spatially bounded by the radial epicyclic frequency. There is no
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Figure 4. Linear superposition of the midplane PSDs of radial velocity in model A0.1 for a set of discrete radial bins. The thick vertical line represents the position of
the maximum radial epicyclic frequency, νmax. The peaks near νmax, which are present throughout the radial range r = 9–16GM/c2, indicate the trapped modes and
the waves they produce.

(A color version of this figure is available in the online journal.)

analogous signal in radial velocity, however, even if we examine
a range in power below that shown in Figure 6. Similarly,
model A0.025 shows the hint of a signal in vertical velocity
for r < rmax, but absolutely no signal in the radial velocity.
Finally, model A0.01 features no significant signal for either
velocity component or any choice of PSD range.

One might ask whether these trapped modes are identical to
the trapped g-modes seen in A0 or whether these are truly the
distinct viscosity-induced trapped modes described by Ortega-
Rodrı́guez & Wagoner (2000). Looking again at Figure 1, it
is clear that the initial disk perturbation energy is damped out

more rapidly at early times in the viscous models than in A0, thus
depriving alpha disks of much of the initial energy available to
inviscid disks. Moreover, A0 shows a long-term downward trend
upon which is superposed a high-frequency signal indicative of
the trapped g-mode. Model A0.1, on the other hand, has no such
obvious long-term trend, suggesting that viscous and boundary
losses are offset by ongoing energy input. In the alpha-disk
models, this input energy in fact stems from the viscous coupling
of disk rotational velocity to radial and vertical motions; a
channel unavailable to inviscid disks. Although the peaks and
valleys in Figure 1 illustrate that, for model A0.1, this process
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Figure 5. Deviation in midplane radial velocity (Δvr ≡ vr − v̄r ) for A0.1 as a
function of radius and time. The linear color table extends from vr = −0.0003c

(dark) to vr = 0.0003c (light), where positive radial velocities point radially
outward in the disk. The bi-colored dashed line, which can be arbitrarily shifted
horizontally, represents the approximate path of a wave moving radially through
the disk at the local sound speed. That the velocity features run parallel to this
line suggests that they are waves propagating radially outward from a region
located near r ∼ rmax.

(A color version of this figure is available in the online journal.)

has not achieved a steady state on timescales much shorter than
the total simulation time, the overall energy profile demonstrates
that the viscous method of generating persistent trapped modes
is distinct from that of an inviscid disk. Figure 1 also shows
models A0.05 and A0.01, both of which evolve to a lower value
of K. This is not surprising since their trapped-mode signals are
weaker or, in the case of A0.01, undetectable, suggesting that
the energy resupply is not as efficient as for higher viscosities.
Interestingly, model A0.01 does show an increase in K near
the very end of its evolution, but we cannot definitively claim
this as evidence for the development of trapped modes without
extending the simulation in time.

Finally, we reiterate that the signal observed in our viscous
models cannot be generated by unphysical computational phe-
nomena. Test models EQ0.1 and GRD0.1 were designed specif-
ically to confirm that conditions such as the disk perturbation
method and the computational grid boundary locations were
not important factors in our simulations. Figure 8 shows the
vertical velocity PSDs for the two test simulations. EQ0.1 re-
sembles one of the intermediate viscosity models with a weaker
trapped-mode signal than that of A0.1. This is partly because
the kinematic viscosity is lower in EQ0.1 than in A0.1. Recall
from Equation 2 that ν = αcsH ∝ c2

s , which is in turn pro-
portional to the disk temperature. Since the equilibrium disk in
model EQ0.1 does not collapse, it is not adiabatically heated
and is subsequently cooler on average than the disk in model
A0.1. Empirically, we measure the average kinematic viscosity
in the inner disk of model EQ0.1 to be ∼70% that of A0.1. We
thus expect the trapped-mode behavior of model EQ0.1 to fall
roughly between that of A0.05 and A0.075, which is consis-
tent with Figure 8. Additionally, we note that the trapped-mode
signal in EQ0.1 should take longer than any other model to
reach a given trapped-mode amplitude since the seed disk per-
turbations are initially so small. Model GRD0.1, on the other
hand, reflects most of the significant characteristics of A0.1,
showing that the trapped-mode signal is not strongly dependent
on the location of the grid boundaries. Interestingly, this and
all models feature a small region of high-frequency noise near
ν ∼ 0.01–0.02c3/GM . We assume that this is associated with
motions of material in the relatively diffuse accretion stream

since the signal is comparable in frequency to the innermost or-
bital frequencies and does not appear in the pressure and density
PSDs in Figure 3.

4. DISCUSSION

4.1. Comparison with Previous Results

As mentioned in Section 1, the work of Honma et al. (1992),
Chen & Taam (1995), Milsom & Taam (1996, 1997), and Mao
et al. (2008) has identified simulated accretion disk oscillations
previously, and some of their work merit comparison here.
Their basic finding relevant to our work is that waves propagate
through their simulated disks at frequencies ∼νmax. Specifically,
Milsom & Taam (1996) find waves in one-dimensional vertically
integrated disks for accretion rates 0.01ṀEdd � M � 0.25ṀEdd
for a characteristic viscous parameter 0.2 � α � 1. For
our simulated accretion rates of Ṁ/ṀEdd ∼ 0.01, we find
that trapped modes and waves are easily identifiable for α =
0.075–0.1, trapped modes only are marginally detectable at
α = 0.05, and all modes and waves are undetectable for lower
viscosities. Taking a detailed look at Milsom & Taam (1996),
we see that they also detect a signal for α � 0.05 in the case
that Ṁ/ṀEdd = 0.01. They claim no detection at α = 0.025,
where we too failed to detect even a convincing mode, and they
simulate no lower viscosities. The two-dimensional simulations
of Milsom & Taam (1997) also find that the oscillations are
favored for low accretion rates and high viscosities, but it
is difficult to compare their work to our results since they
simulate optically thick disks with accretion rates and viscosities
characteristically higher than ours. We note that these studies
combine to suggest that oscillations are present for a broad
variety of physical models, including both constant and alpha
viscosities (Milsom & Taam 1996, 1997), and for both two-
dimensional and vertically integrated disks.

One interesting feature present in the aforementioned viscous
disk simulations is a characteristic strong signal located in
frequency very near νmax. Specifically, the higher-frequency
spike seen in our models A0.1 and A0.075 (see Figures 3, 4,
and 6) peaks at νmax to the accuracy of the PSD frequency
resolution. This is worth noting because analytic treatments of
nonevanescent trapped g-modes and inner p-modes constrain
them to have frequencies strictly less than νmax (e.g., Ortega-
Rodrı́guez & Wagoner 2000; Nowak & Wagoner 1992). In fact,
the lower frequency spike seen in models A0.1 and A0.075
has exactly the expected characteristics of these predicted
trapped modes, peaking just below νmax. Although the absence
of a narrow signal in model A0 suggests that viscosity is
partly responsible, no clear physical explanation of this high-
frequency feature has yet been put forth, as Kato (2001) also
notes.

4.2. Comparing α-Models to Full MHD

Part of our motivation for conducting these simulations was
to explore the differences between full MHD and viscous al-
pha models. To do this, we revisit one of the MHD simu-
lations described in Paper I and labeled “MHD_1.” MHD_1
was a full three-dimensional MHD simulation that utilized
a computational framework and initial conditions similar
to our alpha models, extended axisymmetrically in the az-
imuthal dimension. Additionally, MHD_1 featured initially
weak poloidal magnetic field loops that threaded the disk. As
described in Paper I, these fields are amplified by the MRI
and drive turbulence which in turn provides a natural means for
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Figure 6. Midplane PSDs of radial velocity for a range of model viscosities. Also shown are the radial epicyclic frequency (solid) and orbital frequency (dashed) for
comparison. The logarithmic color bars span 5 orders of magnitude and are normalized in magnitude across all plots in this figure to facilitate cross-comparison. Here,
models A0.1 and A0.075 clearly show trapped modes and waves, and A0 features a trapped g-mode.

(A color version of this figure is available in the online journal.)

accretion to take place. The physical domain of MHD_1 covered
r ∈ (4rg, 16rg), z ∈ (−3rg, 3rg), and φ ∈ (0, π/6), and it was
run for over three times the total simulation time of our alpha
disks.

Figures 9 and 10 show midplane PSDs of (decay-corrected)
gas pressure and radial velocity that compare MHD_1 (solid),
A0.1 (dotted), and A0.01 (dashed). Each plot is constructed
by summing the power in that quantity over a radial range
Δr = 0.5rg centered at the listed radius, and the powers are
constructed so that cross-comparison between models in a given

figure is valid. In Figure 9, we first notice the remaining secular
trend in our simulated data that scales in power roughly as
1/ω2. The imperfect process of removing this variation has left
present enough of this accretion-related signal that it dominates
the overall data trend, particularly in the two inner radial bins.
On top of this signal, however, we do see some oscillations that,
in the case of model A0.1, are associated with trapped modes. In
the three bins centered at r � 10GM/c3, we see two pronounced
peaks in A0.1 that correspond to the waves seen in Figures 3–5,
for example. At the frequencies of interest near νmax, however,
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Figure 7. Midplane PSDs of vertical velocity for a range of model viscosities. Also shown are the radial epicyclic frequency (solid) and orbital frequency (dashed)
for comparison. The logarithmic color bars span 5 orders of magnitude and are normalized in magnitude across all plots in this figure to facilitate cross-comparison.
Here, models A0.1 and A0.075 clearly show trapped modes and waves, A0.05 shows evidence for a trapped mode, and A0 features a trapped g-mode.

(A color version of this figure is available in the online journal.)

this wave signal is always an order of magnitude or more
below the noise level of model MHD_1, which itself shows
no convincing trapped-mode signal. Similarly, there remains no
clear trapped-mode signal in model A0.01. Although Figure 10
features no pronounced secular trend, we again see that the
trapped-mode and wave signal in model A0.1 is typically more
than an order of magnitude below the MHD_1 noise level at
frequencies near νmax. In this case, model A0.01 does show some
oscillations near νmax, but these are not obviously indicative
of trapped-mode signals and are always at least an order of

magnitude below the signal in A0.1. Taken together, these two
figures suggest that a trapped-mode signal corresponding to an
effective viscosity of the magnitude suggested by observations
(King et al. 2007) would not be easily seen above the noise in a
real MHD disk.

Our prospects of easily detecting a trapped-mode signal in
MHD_1, however, are even further reduced because of that
model’s low effective viscosity. By measuring the correlated
stresses, we can estimate an effective alpha viscosity as de-
scribed in Balbus & Hawley (1998) and Pessah et al. (2008), for
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Figure 8. Midplane PSDs of vertical velocity for the two test simulations EQ0.1 and GRD0.1. Also shown are the radial epicyclic frequency (solid) and orbital
frequency (dashed) for comparison. The logarithmic color bars span 5 orders of magnitude. EQ0.1 resembles one of the lower viscosity runs because it has a lower
average temperature than A0.1. GRD0.1, on the other hand, strongly resembles A0.1.

(A color version of this figure is available in the online journal.)

Figure 9. Midplane PSDs of (decay-corrected) pressure, summed over radial ranges Δr = 0.5rg and each centered at the listed radius. Shown are models MHD_1
(solid), A0.1 (dotted), and A0.01 (dashed). The vertical line indicates the position of the maximum radial epicyclic frequency. In all cases, the signals of trapped modes
in our model viscous disks would fall at least an order of magnitude below the noise level in MHD_1.

(A color version of this figure is available in the online journal.)

example, and given by

α ∼ 1

p̄

[
〈ρδvrδvφ〉 − 1

4π
〈δBrδBφ〉

]
. (11)

Applying this estimator to MHD_1, we find that αMHD ∼ 0.01,
although the variation in this quantity is comparable to its value.

Still, that αMHD  0.1 reflects the known discrepancy between
simulated and observationally inferred α values described in
King et al. (2007) and further ensures that MHD_1 does not
show a peak near νmax. More reflective of the inferred viscosity
in MHD_1 is the A0.01 model, for which we have already noted
the absence of any pronounced trapped-mode signal. With the
addition of turbulent noise at the level present for MHD_1,
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Figure 10. Midplane PSDs of radial velocity, summed over radial ranges Δr = 0.5rg and each centered at the listed radius. Shown are models MHD_1 (solid), A0.1
(dotted), and A0.01 (dashed). The vertical line indicates the position of the maximum radial epicyclic frequency. In all cases, the signals of trapped modes in our model
viscous disks would fall at least an order of magnitude below the noise level in MHD_1.

(A color version of this figure is available in the online journal.)

we can safely conclude that this model would not generate a
detectable signal in a simulated MHD disk.

Although the trapped-mode signal present in our two-
dimensional viscous disks could not be detected in a full three-
dimensional MHD system, we interpret this more as a shortcom-
ing of the approach than as evidence for a dearth of diskoseismic
modes in real astrophysical systems. In addition to the basic dis-
crepancy reported on by King et al. (2007), several groups have
begun to address the limitations of the current generation of
MHD simulations. Bodo et al. (2008), for example, have noted
a dependence upon computational grid resolution and, surpris-
ingly, grid aspect ratio on values of α inferred from shearing-box
simulations of the MRI. Similarly, both Pessah et al. (2007) and
Fromang & Papaloizou (2007) have recently discussed lack of
convergence in zero net magnetic flux shearing-box MHD simu-
lations. Specifically, they note that the effective alpha viscosities
derived from these simulations decrease with increasing numer-
ical resolution, suggesting that the saturation behavior of the
MRI has yet to be captured properly. Pessah et al. (2007) further
point out that the physical scales of dissipation in real disks
would be still smaller than the numerical resolution limit, thus
making the effective viscosity in analogous real systems com-
pletely negligible. In these cases, as in the case of MHD_1 and
the global simulations of Paper I, it is plausible that field cancel-
lation in the absence of net magnetic flux produces an artificially
low effective viscosity. Although a strong net vertical field has
the potential to disrupt the trapped g-mode region (Fu & Lai

2009), this process would not affect trapped p-modes. It is also
possible that one needs only a modest, and therefore nondisrup-
tive, net vertical field to seed sufficient turbulence to produce a
higher effective viscosity. That said, a factor of 10 increase in α
from its inferred value in MHD_1 would still leave diskoseismic
modes at least an order of magnitude below the current turbulent
MHD noise level, making them quite challenging to detect.

The presence of turbulent noise in MHD_1 highlights one
significant way that full MHD simulations are different from
alpha disks. Our simulated alpha disks are characteristically
nonturbulent, particularly as the viscosity increases. Obviously,
this makes the detection of diskoseismic modes in alpha disks
simpler because they feature less competing background noise
than the MHD case. This problem can in part be overcome by
conducting MHD simulations over longer times to produce a
better diskoseismic mode signal-to-noise ratio, although one
must make certain that the integrated mass loss does not
significantly change the total mass of the disk over the simulation
time. Such explorations in fact may be the only way to correctly
ascertain whether the trapped modes are hidden beneath the
noise or actively damped, as suggested by Arras et al. (2006).
Finally, we note that Pessah et al. (2008) have pointed out
another shortcoming of alpha disks, namely that real MRI-
induced stresses are not typically proportional to the local
shear. All of these issues suggest that full MHD treatments
are preferable when net flux simulations cease to be technically
prohibitive.
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5. CONCLUSIONS

We have conducted an ensemble of axisymmetric simulations
of black hole viscous accretion disks to explore the generation of
diskoseismic modes and their influence on disks. While we are
still far from a definitive identification of the origin of HFQPOs,
we have uncovered and explored several interesting facets of
viscous disk evolution, and we summarize our findings here:

1. For viscous disks with α � 0.05, we see indications of
the trapped diskoseismic modes of Ortega-Rodrı́guez &
Wagoner (2000). These modes have all of the expected
properties of trapped g-modes or inner p-modes, and
are located at r � rmax with frequencies ν ∼ νmax.
This confirms that modes similar to those seen in earlier
simulations of vertically integrated models are present for
two-dimensional optically and geometrically thin accretion
disks.

2. We note that viscous disk models with trapped diskoseismic
modes also develop related waves that pervade much of the
body of the disk. These outward propagating waves are con-
tinuous extensions in frequency and power of the trapped
modes, despite extending beyond the region of formal mode
trapping. This too is similar to the one-dimensional result
and suggests that diskoseismic modes can effectively com-
municate their characteristic frequencies to portions of the
disk in which the modes themselves would be strongly
damped.

3. By comparing our viscous disks to a full three-dimensional
MHD simulation of Paper I, we have further shown that
the trapped-mode signal for the corresponding alpha disk
would fall far below the current noise level of the MHD sim-
ulation. This suggests that, to produce detectable trapped
modes, MHD simulations may need to feature larger ef-
fective viscosities, possibly through the natural incorpora-
tion of net magnetic flux. Alternately, larger trapped-mode
signal-to-noise ratios should be achievable by extending the
time domain of these simulations.
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