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ABSTRACT

We present a detailed temporal analysis of a set of hydrodynamic and magnetohydrodynamic (MHD) simulations
of geometrically thin (h/r ∼ 0.05) black hole accretion disks. The black hole potential is approximated
by the Paczynski–Wiita pseudo-Newtonian potential. In particular, we use our simulations to critically assess
two widely discussed models for high-frequency quasi-periodic oscillations (QPOs), global oscillation modes
(diskoseismology), and parametric resonance instabilities. We find that initially disturbed hydrodynamic disks
clearly display the trapped global g-mode oscillation predicted by linear perturbation theory. In contrast, the
sustained turbulence produced in the simulated MHD disks by the magnetorotational instability does not excite
these trapped g-modes. We cannot say at present whether the MHD turbulence actively damps the hydrodynamic
g-mode. Our simulated MHD disks also fail to display any indications of a parametric resonance instability between
the vertical and radial epicyclic frequencies. However, we do see characteristic frequencies at any given radius in
the disk corresponding to local acoustic waves. We also conduct a blind search for any QPO in a proxy light curve
based on the instantaneous mass accretion rate of the black hole, and place an upper limit of 2% on the total power
in any such feature. We highlight the importance of correcting for secular changes in the simulated accretion disk
when performing temporal analyses.
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1. INTRODUCTION

Rapid X-ray variability is a ubiquitous characteristic of
accretion onto black holes. Aperiodic X-ray fluctuations are
seen from both galactic black hole binaries (GBHBs) and active
galactic nuclei (AGNs) and, accounting for the inverse scaling
of all relevant frequencies with black hole mass, appear to
have similar characteristics (Uttley et al. 2005; McHardy et al.
2006). While it is highly tempting to relate this variability to the
magnetohydrodynamic (MHD) turbulence that is believed to
drive the accretion process (Balbus & Hawley 1991, 1998), the
exact physical processes underlying the observed fluctuations
remain mysterious.

GBHBs also display quasi-periodic oscillations (QPOs) in
their X-ray light curves (see review by McClintock & Remillard
2003).1 The high-frequency QPOs (HFQPOs) that are seen in
the very high (or steep power law; McClintock & Remillard
2003) state of GBHBs are of particular interest. The HFQPOs
have quality factors of few to 10, centroid frequencies of order
of 100Hz, and appear to be imprinted on the hard X-ray tail
of the spectrum rather than the thermal disk emission. The fact
that their frequencies are stable and at least loosely comparable
with the orbital frequency at the innermost stable circular orbit
(ISCO) around the black hole suggests that their properties are
set by the relativistic portions of the gravitational potential. This
gives them enormous promise as a diagnosis of black hole mass
and spin.

However, the utility of HFQPOs to relativistic astrophysics
is severely limited by the lack of a compelling theoretical
framework in which to interpret measurements of the frequen-
cies, quality factors, and rms powers. There exist well defined

1 Very recently, the first convincing case of a QPO in an AGN was reported
by Gierlinski et al. (2008).

geodesic frequencies (i.e., the orbital, radial epicyclic, and ver-
tical epicyclic frequencies) at any given radius in the accretion
disk. However, these frequencies (as well as all nontrivial linear
combinations) change with the radius, and it is not clear why the
frequencies of any one particular radius would be preferentially
displayed in the overall power spectrum.

HFQPOs are commonly found in pairs with an approximate
3:2 frequency ratio, and this has been used to suggest that
a particular radius is picked out due to a resonance. In the
parametric resonance model (Abramowicz & Kluźniak 2001,
2003; Abramowicz et al. 2002, 2003), there is a resonance
in the disk at the radius where the radial epicyclic frequency
and vertical epicyclic frequency are in small integer ratios.
As discussed below, the strongest resonance occurs when
these frequencies are in a 3:2 ratio, at least in the simplest
manifestation of this model. Other resonance models have been
examined by Rezzolla et al. (2003a, 2003b) and Kato (2004a,
2004b, 2004c).

Another interesting possibility is that the HFQPOs are global
oscillation modes of the accretion disk (i.e., “diskoseismic”
modes). Global modes have been examined analytically (using
linear theory) on a hydrodynamic background in spacetimes that
are pseudo-Newtonian (Okazaki et al. 1987; Nowak & Wagoner
1991, 1992, 1993; Marković & Lamb 1998), Schwarzschild
(Kato & Fukue 1980), and Kerr (Kato 1990, 1991, 1993;
Kato & Honma 1991; Perez et al. 1997; Silbergleit et al.
2001; Wagoner et al. 2001; Ortega-Rodriguez et al. 2001).
Three classes of modes are recovered corresponding to pressure
modes (p-modes), inertial modes (conventionally referred to as
g-modes even though the restoring force results from rotation
or inertia, depending on the frame of reference; J. Pringle 2008,
private communication), and warping/corrugation modes (c-
modes). For plausible masses and spins, the fundamental (m =
0) g-mode was quickly identified as a good candidate for the first
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HFQPO discovered, the 67 Hz oscillation found in the system
GRS 1915 + 105 (Nowak et al. 1997). Current diskoseismology
theory does not provide a natural explanation of HFQPO pairs
with small-integer ratios; however, all present analyses are
conducted using linear theory whereas these HFQPO pairs
would likely arise from mode coupling that would only be
revealed by a nonlinear analysis.

Clearly, many open questions concerning the physics of X-ray
variability remain, including the correct interpretation of
HFQPOs. The current dominant paradigm for understanding
black hole accretion is that the magnetorotational instability
(MRI; Balbus & Hawley 1991) drives powerful MHD turbu-
lence, and correlated Maxwell stresses within this turbulence
mediate the outward transport of angular momentum that al-
lows accretion to proceed. However, the connection between
the MHD turbulence paradigm and models for the aperiodic and
quasi-periodic variabilities remains highly uncertain. For exam-
ple, can the MHD turbulence naturally produce the rms–flux
relation noted in most black hole X-ray light curves (Uttley &
McHardy 2001) and/or the log-normal flux distribution found
in Cygnus X-1 (Uttley et al. 2005)? Are diskoseismic modes ex-
cited by turbulent fluctuation (Nowak & Wagoner 1993), or does
the turbulence act to damp such modes (Arras et al. 2006)? Do
the Maxwell stresses couple radial and vertical motions in such
a way as to excite parametric resonance instabilities of the type
identified by Abramowicz & Kluźniak (2001) or any other reso-
nant phenomena? Does the fact that the HFQPOs are imprinted
on the high-energy tail provide a fundamental clue to their ori-
gin, or is it a generic consequence of any oscillating thermal ac-
cretion disk surrounded by a Comptonizing corona (Lehr et al.
2000)?

In this paper, we use a set of global hydrodynamic and
MHD simulations of geometrically thin accretion disks in a
pseudo-Newtonian potential to begin an exploration of these
issues. Our canonical MHD simulation represents a thinner
disk, and is run for more orbits, than any previously published
well resolved three-dimensional MHD disk simulation. This
allows us to conduct a more extensive study of the temporal
variability of such disks than has previously been attempted.
In Section 2, we give a brief review of the theory of both
local and global hydrodynamic modes of black hole accretion
disks, as well as the parametric resonance instability model
for HFQPOs. Section 3 presents our study of ideal (inviscid)
hydrodynamic disks, both with imposed axisymmetry and in
full three dimensions. We find prominent trapped g-modes in the
axisymmetric simulations that remain (albeit with diminished
amplitude) in the full three-dimensional case. We then study the
MHD case in Section 4, where we find that the turbulence excites
neither the diskoseismic modes nor the parametric resonances
discussed above. Instead, we find that the turbulence excites
local hydrodynamic waves of the type elucidated by Lubow &
Pringle (1993; hereafter LP93). We discuss our results, including
a comparison with previous work, in Section 5 and conclude in
Section 6.

2. THEORETICAL PRELIMINARIES

Here we provide a brief review of some previously established
theoretical results that are pertinent to this paper.

2.1. Local Oscillations and Waves in Accretion Disks

There is a very extensive literature on oscillations and waves
in accretion disks. Here, we focus on just those aspects of the

field that turn out to be relevant for the interpretation of our
simulation, which have been elucidated most clearly by LP93.

LP93 studied three-dimensional wave propagation in accre-
tion disks ignoring self-gravity. In the case where one ignores
vertical motions, they show that radial waves obey the well
known dispersion relation:

ω2 = κ2 + c2
s k

2, (1)

where cs is the sound speed (assumed, in this case, to be purely
a function of r) and κ is the radial epicyclic frequency given
by κ2 = 4Ω2 + r ∂Ω2/∂r (also see Binney & Tremaine 1987).
Here, Ω(r) is the angular frequency of the background Keplerian
flow. LP93 proceeded to study the propagation of axisymmetric
waves in the case where the atmosphere has a locally isothermal
vertical structure. They find two types of waves. There are low-
frequency gravity waves for which

0 < ω < Ω. (2)

There are also high-frequency acoustic waves that have

ω2 > (nγ + 1)Ω2, (3)

where n = 0, 1, 2, . . . and γ is the adiabatic index. In the special
case of purely vertical perturbations, the inequality becomes an
equality:

ω2 = (nγ + 1)Ω2. (4)

The n = 0 mode corresponds to a bulk vertical displacement
of the disk and subsequent vertical oscillation at the vertical
epicyclic frequency, which, in the analysis of LP93 and in all
analyses performed in this paper, coincides with the orbital
frequency. In general, the nth mode has n vertical nodes (i.e.,
locations where the vertical velocity perturbation vanishes), and
is either even or odd depending on whether n is even or odd,
respectively.

As discussed in Section 4, our simulations demonstrate the
effectiveness with which MHD turbulence excites these local
acoustic waves.

2.2. Global Oscillation Modes of an Accretion Disk

As discussed in Section 1, several groups have studied the
global oscillation of black hole accretion disks using linear
perturbation theory, identifying three classes of the normal
mode (g-modes, p-modes and c-modes). Trapped g-modes have
received particular attention as a possible source of the HFQPO,
although the other families of modes may well be relevant.
Here we review some of the basic results of these analyses,
following the approach of Nowak & Wagoner (1991, 1992;
hereafter NW91 and NW92, respectively). The NW91 and
NW92 analyses are not fully relativistic; instead, they employ
a pseudo-Newtonian potential. Thus, these analyses can be
readily compared with our pseudo-Newtonian simulations. We
also note that full general relativistic MHD simulations have
typically yielded results for slowly rotating black holes that are
very similar to those obtained with pseudo-Newtonian potentials
(e.g., Gammie et al. 2003; De Villiers & Hawley 2003).

NW91 and NW92 used a Lagrangian formalism (Friedman
& Schutz 1978) and a WKBJ approximation to derive the lin-
earized equations describing perturbations of an inviscid hydro-
dynamic thin accretion accretion disk about a pure Keplerian
background state. They also initially examined the special case
of purely radial oscillations and found the standard dispersion



No. 1, 2009 TIME VARIABILITY OF GEOMETRICALLY THIN BLACK HOLE ACCRETION DISKS. I. 871

relation of disk theory (Equation (1)). Given that the gravity-
modified p-modes described by this dispersion relation become
evanescent when ω2 < κ2, global p-modes can be trapped be-
tween the ISCO (where κ = 0) and the radius at which ω = κ .
In practice, however, the “leaky” nature of the ISCO would seem
to make the trapping of these modes ineffective.

The more general case, including perturbations that have
vertical as well as radial motions, yields more promising
results. NW92 examined the linearized equations describing
the behavior of the scalar potential

δu ≡ δP/ρ, (5)

where δP is the Eulerian variation in the pressure. They showed
that the linearized equations are approximately separable into
radial and vertical equations, with the separation constant being
a slowly varying function of r, ϒ(r). The general dispersion
relation for these modes becomes

[ω2 − γ ϒ(r)Ω2](ω2 − κ2) = ω2c2
s k

2 . (6)

Assuming that γ ϒΩ2 > κ2, nonevanescent solutions exist for
ω2 > γ ϒΩ2 (predominantly radial p-modes) or ω2 < κ2

(predominantly vertical g-modes). Through this analysis, NW92
identified a class of global g-modes that are trapped between two
evanescent regions, r < r− and r > r+, where κ(r±) = ω. In
other words, these modes are trapped under the peak of the
epicyclic frequency. They principally focused on the m = 0
(axisymmetric) modes, and showed that the mode frequency
is only slightly smaller than the maximum radial epicyclic
frequency κmax. Radial harmonics of these modes are very
closely spaced. Thus, the inner radius at which the mode
becomes evanescent is still a finite distance (and, in plausible
settings, several vertical scale heights) from the ISCO. This
raises the interesting possibility of having appreciable power in
such modes without significant leakage across the ISCO.

A major issue, however, is the effect of the turbulent MHD
background state on these modes. The diskoseismic mode
frequencies are comparable with the frequencies characterizing
the expected MHD turbulent fluctuations (which is very different
to the situation in the Sun, for example, where the observed
helioseismic modes have frequencies that are four orders of
magnitude higher than the turbulent turnover frequency). Thus,
an MHD turbulent disk is likely to be a hostile environment
for any diskoseismic modes. Furthermore, magnetic forces can
lead to a rather gradual transition in flow properties around the
ISCO, potentially worsening the leakage of the trapped g-modes.
Considering these mode destruction/suppression mechanisms,
it is reasonable to suppose that mode survival becomes easier in
thinner disks since (1) the ratio of the typical turbulent cell size
to the radial extent of the resonant cavity will decrease with disk
thickness and (2) there are suggestions that the transition in flow
properties around the ISCO is sharper in thinner disks (Reynolds
& Fabian 2008; Shafee et al. 2008), thereby producing less
mode leakage. This raises the possibility that a g-mode can be
sustained against (or even fed by; Nowak & Wagoner 1993) the
turbulence in a sufficiently thin disk.

Previously published global MHD disk simulations (e.g.,
Hawley & Krolik 2001) have modeled flows as thin as h/r ∼ 0.1
and have not reported diskoseismic modes. However, these
authors did not conduct a directed search for such modes
and hence it is not possible to say that the modes were
really not present. Careful examination of local “shearing-
box” simulations have indeed failed to find trapped g-modes

associated with MHD turbulence (Arras et al. 2006), but this
issue has yet to be examined in a global thin-disk setting.
Searching for and characterizing these trapped g-modes in
global thin-disk simulations will be a major theme of our paper.

2.3. Parametric Resonance

From the point of view of explaining HFQPOs, the need for
global oscillation modes is diminished if some process does
indeed select special radii in the accretion disk. As discussed
in Section 1, the discovery of pairs of HFQPOs with small
integer ratios has prompted several groups to examine resonance
models. In particular, we shall briefly review the parametric
resonance model of Abramowicz & Kluźniak (Abramowicz &
Kluźniak 2001, 2003; Abramowicz et al. 2002, 2003).

We begin by considering an accretion disk in which the flow
deviates only slightly from the Keplerian so that the position of
a fluid element (in spherical polar coordinates) is given by

r(t) = r0 + δr(t), θ (t) = 1

2
π + δθ (t), φ(t) = Ωt. (7)

We have specialized to the case of axisymmetric perturbations.
By expanding the resulting equations of motion to third order
(and wrapping up the nongravitational forces into two unspec-
ified force functions), one finds a Mathieu-type equation of
motion:

δθ, tt + Ω2[1 + a cos(κt)]δθ + λ δθ, t = 0, (8)

where a is a small constant that describes the coupling between
the vertical and radial perturbations and λ is a (small) damping
constant. Here, we have specialized the equations of Abramow-
icz et al. (2003; hereafter A2003) to the case where the vertical
epicyclic frequency is the same as the orbital frequency. This
is valid for a nonspinning black hole and, in particular, the
pseudo-Newtonian potential that we use for the simulations in
this paper.

One expects a system described by Equation (8) to exhibit a
parametric resonance instability when κ = 2Ω/n, where n is a
nonzero positive integer. Given that black hole potentials always
have κ < Ω, the smallest value of n for which the resonance
condition is obeyed is n = 3, that is, κ = 2Ω/3. This is
expected to be the strongest of the set of resonances. It is
interesting that the fundamental “test-particle” frequencies at
this resonant radius have a 3:2 frequency ratio in agreement
with observations of HFQPO pairs. For the Paczynski–Wiita
(PW) pseudo-Newtonian potential we use in our simulations
(Paczynski & Wiita 1980; hereafter PW),

Φ = − GM

r − 2rg

, rg ≡ GM

c2
, (9)

we have

Ω = 1

r − 2rg

√
GM

r
(10)

and

κ =
√

GM(r − 6rg)

r(r − 2rg)3
. (11)

Hence, the 3:2 resonance occurs at r = 9.2rg . It must be
noted, however, that a full integration of a toy problem by
A2003 reveals that higher order effects shift the location of



872 REYNOLDS & MILLER Vol. 692

Table 1
Summary of the Hydrodynamic (HD) and MHD Simulations Discussed in This Paper

Run dim h2/risco r-domain (rg) z-domain (rg) φ-domain nr × nz(×nφ ) Tstop (rg/c)
(1) (2) (3) (4) (5) (6) (7) (8)

HD2d_1 2 0.05∗ (4,16) (−1.5,1.5) – 256 × 128 12320
HD2d_1hr 2 0.05∗ (4,28) (−1.5,1.5) – 1024 × 256 12320
HD2d_2 2 0.025∗ (4,16) (−0.75,0.75) – 512 × 128 12320
HD2d_3 2 0.1∗ (4,16) (−3,3) – 256 × 128 12320
HD3d_1 3 0.05∗ (4,16) (−1.5,1.5) (0, π/6) 240 × 128 × 32 12320
MHD_1 3 0.05 (4,16) (−3,3) (0, φ/6) 240 × 256 × 32 38800
MHD_2 3 0.05 (4,16) (−1.5,1.5) (0, φ/6) 240 × 128 × 32 38800
MHD_2hr 3 0.05 (4,16) (−1.5,1.5) (0, φ/3) 480 × 256 × 64 5236
MHD_3 3 0.05 (4,28) (−1.5,1.5) (0, φ/6) 960 × 128 × 32 11400

Notes. Column (1) gives the designation of the simulation. Column (2) lists the dimensionality of the
simulation. Column (3) gives the fractional disk thickness at the ISCO; the asterisk (∗) denotes that the
simulation was started with an initial vertical structure that is slightly out of equilibrium in order to seed
subsequent oscillation modes (as described in the text). Columns (4)–(6) list the r-, z- and φ- domains of
the simulation box, respectively. Column (7) gives the number of computational zones within the domain.
Column (8) lists the run time of the simulated disk.

the resonance, making the ratio of the epicyclic frequencies ex-
tremely sensitive to the strength of the coupling between the
r and θ perturbations. While A2003 suggested that this sensitiv-
ity is a strength of the model, allowing application to HFQPO
pairs in neutron star systems that do not have simple integer ra-
tios, it inevitably diminishes the power of this model to explain
black hole systems. In addition, there is currently no physi-
cal model of the coupling between the radial and vertical mo-
tions. The simulations described in this paper allow us to assess
whether magnetic forces couple these motions in such a way as
to drive a parametric resonance instability.

3. HYDRODYNAMIC DISKS

3.1. Initial Comments

In the remainder of this paper, we construct and analyze
numerical simulations of thin disks in order to examine their
variability properties, focusing on the presence of local and
global modes, as well as parametric resonances. Of course,
real accretion disks are believed to require at least an MHD-
level description in order to capture the MRI-driven turbulence
that transports angular momentum and drives accretion. MHD
simulations are addressed in Section 4. However, it is useful
to begin with a discussion of ideal hydrodynamic models in
order to help isolate the various physical effects present in these
complex systems. This will be the focus of this section.

In order to allow us to perform a set of simulations with
modest-to-high resolution, we begin with two-dimensional (ax-
isymmetric) hydrodynamic simulations. We expect (and indeed
show) that these axisymmetric models are well suited for study-
ing the fundamental m = 0 g-mode. However, once we move
to MHD, Cowling’s antidynamo theorem (Cowling 1957) leads
to qualitatively different behavior in axisymmetric compared
with full three-dimensional simulations. Hence, all of the MHD
models that we shall describe are performed in three dimen-
sions. Since we will be directly comparing results (e.g., g-mode
amplitudes) between the hydrodynamic and MHD simulations,
we also need to perform a “bridging” three-dimensional hydro-
dynamic simulation.

3.2. Basic Simulation Setup

To make the problem tractable despite the severe resolution
requirements imposed by the geometrical thinness of the accre-

tion disk, we choose to focus on only the most essential aspects
of the physics. From the discussion in Section 2, it is clear that
the essential aspect of the relativistic potential that must be cap-
tured is the nature of the radial epicyclic frequency (e.g., that it
goes to zero at some finite radius and hence produces an ISCO
at that radius). In this sense, the PW potential (Equation (9)) is a
good approximation for the gravitational field of a nonrotating
black hole; its ISCO (at 6rg) and marginally bound orbit (at
4rg) are both at the same radius as in the Schwarzschild geome-
try. We also simplify the simulations by neglecting all radiation
processes (radiative heating, radiative cooling, radiative trans-
fer, and the dynamical effects of radiation pressure). In place of
a full energy equation, the gas is given an adiabatic equation of
state with γ = 5/3.

All simulations are performed in cylindrical polar coordinates
(r, z, φ). The initial condition consists of a disk with a constant
midplane density (ρ0 = 1) for r > risco. The initial density
scale height of the disk is assumed to be constant with the
radius, implying a sound speed that falls off with radius as
approximately r−3/2. There are two motivations for choosing to
model a “constant-h” disk: (1) such a choice is well suited to the
cylindrical symmetry of our coordinate grid and (2) according to
the standard model of Shakura & Sunyaev (1973), the radiation-
pressure-dominated disks of real accreting black holes are likely
to maintain an approximately constant scale height in their
innermost regions. In more detail, the vertical structure of the
disk is given by

ρ(r, z) = ρ0 exp

(
− z2

2h2
1

)
, (12)

p(r, z) = GMh2
2

(R − 2rg)2R
ρ(r, z), (13)

where r is the cylindrical radius, z is the vertical height above
the disk midplane, and R = √

r2 + z2. This corresponds to an
isothermal atmosphere, which, when h1 = h2, is in vertical
hydrostatic equilibrium in the PW potential. In order to give the
disk an initial vertical kick, we set h1 = 1.2h2 (the values of h2
for all of our runs are detailed in Table 1). Thus, the initial disk
temperature is ∼ 20% too cold for the density and pressure run,
leading to a vertical collapse and bounce of the disk. The initial
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density is set to zero for r < risco. The initial velocity field is
everywhere set to

vφ = rΩ =
√

GMr

r − 2rg

, vr = vz = 0, (14)

corresponding to rotation on cylinders and pure Keplerian
motion for material on the midplane. We impose zero-gradient
outflow boundary conditions on both the radial and the vertical
boundaries of the simulation, that is, the fluid quantities in the
ghost zones are set to the values of the neighboring active zone,
and a “diode” condition is imposed on the component of the
velocity perpendicular to the boundary that allows outflow but
disallows inflow.

Table 1 details our hydrodynamic simulations. We perform
four simulations in which strict axisymmetry is imposed at
all times (∂/∂φ = 0). These axisymmetric simulations were
performed using the serial ZEUS-3D MHD code (Stone &
Norman 1992a, 1992b) in its pure hydrodynamic axisymmetric
mode. In our canonical axisymmetric run (HD2d_1), we set
h2 = 0.3rg (corresponding to h2/r = 0.05 at the ISCO). To
model the dynamics of the disk in a robust manner, our vertical
domain must cover many scale heights; in our canonical run, the
vertical domain is z ∈ (−5h2, +5h2). We place 128 uniformly
spaced grid cells in this vertical direction, giving 13 cells per
scale height. This allows us to resolve hydrodynamic waves
with wavelengths of ∼ 0.5h2 or greater. The vertical resolution
requirements force us to consider a limited radial domain. In the
canonical simulation, the radial domain extends from 4rg (i.e.,
well within the plunge region) to 16rg and should correspond to
the range of radii where trapped diskoseismic modes or A2003-
type resonances occur. Tolerating a grid-cell aspect ratio of ∼ 2,
we place 256 uniformly spaced radial cells in this radial domain.
The simulation was evolved for a time 200Tisco, where

Tisco ≈ 61.6 GM/c3, (15)

is the orbital period at the ISCO.
In order to test the robustness of the results discussed below

to resolution and the limited radial domain, we performed a sec-
ond simulation (HD2d_1hr) in which the spatial resolution was
doubled (i.e., the size of each voxel was halved in both the radial
and the vertical dimensions) and the radial domain extended out
to 28rg. We also performed two additional axisymmetric sim-
ulations employing the same setup as the canonical simulation
but with disks that are half (HD2d_2) and twice (HD2d_3) the
thickness (including appropriate modifications to the vertical
domain and resolution; see Table 1).

As discussed above, we perform a three-dimensional hydro-
dynamic simulation in order to aid the later interpretation of the
three-dimensional MHD simulations. The setup of our three-
dimensional run (HD3d_1) is identical to that for the canonical
two-dimensional run except that the computational domain has
a φ-dimension. To reduce computational expense while cap-
turing the essential physics, we simulate only a Δφ = 30◦
wedge of the disk using 32 uniformly spaced grid cells, impos-
ing periodic boundary conditions on the φ-boundaries. This
three-dimensional simulation was performed using an MPI-
parallelized version of ZEUS kindly supplied to us by Eve
Ostriker (and similar to the ZEUS-MP code of Vernaleo &
Reynolds 2006).

3.3. Axisymmetric Hydrodynamic Models and the Recovery of
Trapped g-modes

We now discuss the evolution of the axisymmetric hydro-
dynamic simulations, beginning with the canonical simulation.
Starting from the initial condition, the disk undergoes dynam-
ical timescale variability because of pressure gradients, which
push matter inside of the ISCO. The strong transients close to
the ISCO launch outward-radially directed waves into the disk,
which break rapidly to become rolls. This behavior can be seen
in Figure 1. These high amplitude transients are short-lived,
however, lasting only ∼ 10Tisco. At subsequent times, the disk
settles into a stationary state apart from small amplitude (and
decaying) internal oscillations and a very weak accretion stream
driven by the numerical viscosity.

In order to study the decay of the hydrodynamic fluctuations
in a more quantitative manner, we start by computing the
quantity

K =
∫
D

ρv2
z dV . (16)

This quantity is particularly well suited to diagnose vertical
oscillations of the disk, and will vanish once the hydrody-
namic configuration has established a stationary state. In or-
der to diagnose the state of the body of the disk (i.e., side-
stepping issues of the outer radial boundary or the plunge
region), we choose to compute this integral over a restricted
domain D consisting of the annulus r ∈ (7rg, 14rg). The
time dependence of K/ max(K) for the canonical axisymmet-
ric simulation (HD2d_1) and its high-resolution counterpart
(HD2d_1hr) are shown in Figure 2. The rapid initial decline
of K(t) is very similar for these two simulations and corre-
sponds to the strong transients described above. At long times
(after about t ∼ 4 × 103 GM/c3 ≈ 70 Tisco) the behavior of
these simulations begins to deviate. HD2d_1 continues to de-
cay in an approximately exponential manner K(t) ∝ e−t/τ0 ,
where τ0 ≈ 4 × 103 GM/c3. Superposed on this decay is a
distinct oscillation. This corresponds to (twice) the frequency
of the trapped g-mode that we shall discuss below. The high-
resolution version of this simulation HD2d_1hr shows very sim-
ilar behavior except that the exponential decay time is longer,
τ0 ≈ 6 × 103 GM/c3. This suggests that the decay of these
small perturbations is due to numerical dissipation, which ap-
proximately scales as the square root of the size of the simulation
grid cells.

We now study the spatio-temporal variability of the disk and,
in particular, seek the diskoseismic modes predicted by linear
theory. Figure 3 shows the midplane value of vr on the (r, t)-
plane, that is, the value of the function vr(r, z = 0; t), for run
HD2d_1. Note that, outside of the ISCO, the average value is
〈vr〉  0.001c so that this figure essentially plots the fluctuation
of vr from its mean value. At early times, we see strong wave-
like disturbances that are generated in the inner parts of the
disk (at r ≈ 8rg) and propagate to both large and small radii.
Although the outer radial boundary condition is a zero-gradient
outflow, impedance mismatching results in some reflection of
these initial strong waves. After these initial transients have
died out, it can be seen that the highest amplitude fluctuations
are limited to a rather narrow range of radii in the approximate
range r=7–9rg. The fact that these perturbations are essentially
vertical on the (t, r)-plane indicates that they are coherent across
this radial range, as would be expected if we see a global mode.

This temporal variability can be explored in more detail using
the power spectral density (PSD), defined as P (ν) = α|f̃ (ν)|2,
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Figure 1. Snapshots of evolution of the canonical axisymmetric hydrodynamic simulation (HD2d_1) at t = 0.5Tisco (top-left), t = 1.0Tisco (top-right), t = 5Tisco
(bottom-left), and t = 50Tisco (bottom-right), where Tisco is the orbital period at the ISCO. Both the color table and contours show the logarithmic density structure of
the disk cross section, with 10 contours per decade of density. A range of densities spanning three orders of magnitude are shown. The curved line to the left of each
frame represents the event horizon.

(A color version of this figure is available in the online journal.)

where α is some normalization constant and f̃ (ν) is the Fourier
transform (FT) of the time sequence f (t) under consideration:

f̃ (ν) =
∫

f (t)e−2πiνt dt. (17)

Note that, for ease of interpretation, most of the PSDs presented
in this paper will be in terms of the usual frequency, ν, rather
than the angular frequency, ω. Figure 4 shows the PSD of the
midplane pressure as a function of r and frequency for HD2d_1
and HD2d_1hr. This is computed using approximately the final
half (Δt = 102.4Tisco ≈ 6308 GM/c3) of the simulation in
order to avoid the initial strong transients. These PSDs differ
in the range r = 12 − 16rg; run HD2d_1hr has significantly
less low-frequency noise than run HD2d_1 in this radial range.
We attribute this to effects related to the outer radial boundary,
which is at r = 16rg in run HD2d_1 but substantially further
out (r = 28rg) in run HD2d_1hr.

Inside of r = 12rg , however, the PSDs of these two
simulations are very similar and we can trust that neither the
resolution nor the outer radial boundary affects the results
significantly. We note that simulations in which the initial radial
density profile of the disk is truncated before reaching the outer
boundary also produce essentially identical results, again giving
us confidence that noise infiltration from the outer boundary is
not an important issue. In addition to very low frequency noise,
the most prominent feature of the inner-disk PSD is a vertical
ridge of enhanced power at ν ≈ (4−5)×10−3 c3/GM extending
from r ≈ 6.5rg out to r ≈ 9.5rg . The one-dimensional cuts

Figure 2. Change of the quantity K = ∫
D ρv2

z dV with time. The integration
domain D is the annulus r ∈ (7, 14). The bottom (black) line is for the
canonical two-dimensional run (HD2d_1), lower-middle (red) line is for the
high-resolution two-dimensional run (HD2d_1hr), the upper-middle (blue) line
is for the canonical three-dimensional run (HD3d_1), and the top (green)
line is for the canonical MHD run (MHD_1). The distinct “ringing” seen in
runs HD2d_1 and HD2d_1hr corresponds to the axisymmetric g-mode (see
Section 3.3). In run HD3d_1, nonaxisymmetric aperiodic structures mask the
underlying g-mode (see Section 3.4). The fact that K(t) for the run MHD_1 lies
an order of magnitude above that for HD3d_1 demonstrates that the MRI-driven
turbulence completely overwhelms the hydrodynamic disturbances seen in the
analogous three-dimensional hydrodynamic simulation (see Section 4.2).

(A color version of this figure is available in the online journal.)

through this ridge in Figure 5 demonstrate it to have all of the
expected properties of a trapped g-mode. First, it exists in a
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Figure 3. Radial component of velocity vr on the midplane of the disk as
a function of radius and time for the canonical axisymmetric hydrodynamic
simulation (HD2d_1). The linear color table extends from radial velocities of
vr = −0.001c (black) to vr = +0.001c (white). Note that, outside of the ISCO,
the average value is |vr |  0.001c so that this diagram essentially plots the
fluctuation of vr from its mean value.

(A color version of this figure is available in the online journal.)

rather narrow range of frequencies, ν ≈ (4−5)×10−3 c3/GM ,
just below the maximum radial epicyclic frequency (κmax ≈
5.52 × 10−3 c3/GM). Second, it is spatially bounded by the
radii at which the mode frequency becomes equal to the radial
epicyclic frequency. There is, however, some leaking of the
mode down to the ISCO.

We can visualize the eigenmode by producing maps of
pressure deviations that have been “period-folded” on the
period corresponding to the peak power in this mode. More
precisely, we use the last half of the simulation to produce maps
of the difference between the instantaneous pressure and the
time-averaged pressure with a sampling rate of 0.2Tisco. We
then sort these maps into 16 phase bins (based on the period
corresponding to the peak power in this mode) and average
together all maps within a given phase bin. The result is shown
in Figure 6. In addition to the g-mode itself, these maps reveal a
striking “chevron” pattern at large radii. Time sequences of maps
reveal these features to be outward-radially traveling acoustic

waves driven by the global g-mode, refracted into the upper
layers of the disk atmosphere as they propagate.

As a final demonstration that we have properly identified
trapped g-modes in our axisymmetric hydrodynamic simula-
tions, we use our set of runs to study the dependence of the
mode frequency on the sound speed in the disk. Figure 7 shows
the dependence of the mode frequency on the midplane sound
speed of the disk (and, hence, disk thickness) at r = 8rg . As ex-
pected from analytical theory (see Appendix A), the difference
between the mode frequency and the maximum epicyclic fre-
quency linearly depends on the sound speed. There is, however,
a discrepancy in the slope of this linear relationship obtained by
the simulations and expected from the analytical theory. Note
that the analytical treatment assumes that the gas is strictly
isothermal across the whole region of interest, a condition that
is clearly violated in the simulated disk. Given the sensitivity of
the mode to the radial structure of the disk (as demonstrated by
the factor of 2.5 difference in the analytical results between the
two pseudo-Newtonian potentials examined in Appendix A),
the nonisothermality of the gas in the simulated disk can readily
shift the mode frequency away from the analytical value.

3.4. Extension to Three-Dimensional Hydrodynamic Models

We begin our analysis of the three-dimensional hydrodynamic
simulations (HD3d_1) by examining the decay of hydrodynamic
perturbations in our canonical three-dimensional run (HD3d_1)
using the quantity K(t) as defined in Equation (16). The
K(t) behavior for HD3d_1 is somewhat different from the
axisymmetric simulations at late times, reaching a quasi-steady
state at K/ max(K) ∼ 3 × 10−3 with aperiodic fluctuations
rather than continuing a ringing exponential decay (Figure 2).
Numerical dissipation must be just as effective in HD3d_1
as compared with HD2d_1; hence, these perturbations must
be driven by some instability. While it is thought that free
Keplerian accretion disks are stable to linear hydrodynamic
perturbations (see Balbus & Hawley 1998; Hantao et al. 2006),
the presence of the simulation boundaries can introduce true
instabilities (associated with reflection from the boundaries)
and uncontrolled numerical noise, and these might explain
these low-level sustained fluctuations. Visual inspection of
density slices in the (r, z)- and (r, φ)-planes also suggests that
nonaxisymmetric wavelike perturbations interacting with the

Figure 4. Midplane PSD for pressure fluctuations in run HD2d_1 (left panel) and its high-resolution counterpart HD2d_1hr (right panel). Note that we show the radial
range r ∈ (4, 16), which is coincident with the full computational domain of HD2d_1 but only the inner half of the domain for HD2d_1hr (whose full radial domain
extends from 4rg to 28rg). Also shown are the radial epicyclic frequency (solid white line), orbital frequency (dashed), and the n = 1, 2, 3 pure vertical p-modes (from
left to right dot–dashed lines). The absolute scaling of the PSD, as indicated by the color bar, is arbitrary.

(A color version of this figure is available in the online journal.)
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Figure 5. Left panel: midplane pressure PSD for run HD2d_1 summed up over a range of radii Δr = 0.5rg centered on r = 8rg . The dashed line shows the maximum
radial epicyclic frequency. Right panel: integral of the midplane pressure PSD of those frequency bins that exceed 5 × 10−14 in the left panel, as a function of radius.
Vertical dashed lines show the range of radii for which the mean frequency of this peak is less than the radial epicyclic frequency.

Figure 6. Maps of period-folded pressure deviation (i.e., the difference between the instantaneous pressure and the time-averaged pressure) for run HD2d_1hr. Only
the last 102.4 orbits of data have been included in order to avoid the transient behavior associated with the initial conditions. The folding period corresponds to the
peak of the PSD seen in Figure 5. Phases of 0.0 (top left), 0.25 (top right), 0.5 (bottom left), and 0.75 (bottom right) are shown. This, in essence, gives us a direct view
of the eigenmode.

(A color version of this figure is available in the online journal.)

boundaries are responsible for perturbing the three-dimensional
hydrodynamic disk. However, a detailed study of the sustained
fluctuations in the three-dimensional hydrodynamic disks is
beyond the scope of this paper. Since these perturbations exist
at a low level (particularly compared with the MHD turbulence
discussed in Section 4; see Figure 2 for a comparison of the
sustained fluctuations in the three-dimensional hydrodynamic
run compared with the canonical MHD run) and are likely to
be driven by our boundaries (hence, are not of astrophysical

relevance), they are not of importance for the principal focus of
our study.

The principal issue to be addressed here is the impact of the
transition to three dimensions on the presence of the trapped
m = 0 g-modes in the simulated disks. We might expect
the power in these axisymmetric modes to be reduced in
the three-dimensional case as the free energy is shared with
nonaxisymmetric modes. This is indeed the case. Figure 8
shows the PSD at r = 8rg of the last Δt = 102.4Tisco of the
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Figure 7. Frequency of the g-modes as a function of midplane sound speed
at r = 8rg for runs HD2d_2, HD2d_1, and HD2d_3 (from left to right). The
vertical bars indicate the range of frequencies over which enhanced power is
seen.

canonical three-dimensional run HD3d_1. A region of enhanced
power is clearly seen in the correct range of frequencies ν ≈
(4 − 5) × 10−3 c3/GM to be identified with the axisymmetric
g-modes studied in Section 3.3. Furthermore, examination of
the radially resolved PSD shows that this region of enhanced
power is bounded by the radial epicyclic frequency in precisely
the manner expected for trapped g-modes. A comparison of
the absolute values of the PSD across the mode does reveal,
however, that the mode contains almost an order-of-magnitude
less power than in the axisymmetric case.

We note the existence of a narrow but large amplitude spike
just above a frequency of 7 × 10−3 c3/GM in the r = 8rg PSD
of this run. The identification of this feature is not clear; it is
not at the frequency of any expected global g- or p-mode. It
is, however, confined to a single frequency bin, contains only a
small amount of power, and only shows up over a narrow range
of radii. It seems likely that this is a noise spike.

4. MAGNETOHYDRODYNAMIC DISKS

Having gained an understanding of the thin hydrodynamic
disks, we move onto the more astrophysically relevant case of
MHD disks. In this section, we construct MHD simulations of
thin accretion disks in a PW potential. We then examine the
properties of the broadband noise and search for modes in the
resulting turbulent MHD disks.

4.1. Simulation Setup

We simulate geometrically thin MHD accretion disks by
building upon our hydrodynamic computational setup described
in Section 3.2. As discussed in Section 3.1, we only consider
three-dimensional MHD simulations.

Table 1 details our set of MHD simulations. Most of our
discussion will center around run MHD_1 (which we shall refer
to as our canonical MHD run). In this run, the hydrodynamic
variables are setup as for the canonical hydrodynamic run
(see Section 3.2) except that we begin the disk in vertical
hydrostatic equilibrium (h1 = h2 = 0.3rg corresponding to
h1/r = h2/r = 0.05 at the ISCO). An initially weak magnetic
field is introduced in the form of poloidal field loops specified
in terms of their vector potential A = (Ar,Az,Aφ) in order to
ensure that the initial field is divergence free. We choose the
explicit form for the vector potential,

Aφ = A0 f (r, z) p1/2 sin

(
2πr

5h1

)
, Ar = Az = 0, (18)

Figure 8. Midplane PSD of azimuthally averaged pressure for run HD3d_1
summed up over a range of radii Δr = 0.5rg centered on r = 8rg . The dashed
line shows the maximum epicyclic frequency.

where A0 is a normalization constant and f(r, z) is an envelope
function that is unity in the body of the disk and then smoothly
goes to zero at r = risco, r = rout, and at a location three pressure
scale heights away from the midplane of the disk. The use of
f (r, z) keeps the initial field configuration well away from
either the radial boundaries of the initial disk configuration
or the vertical boundaries of the calculation domain. The
final multiplicative term produces field reversals with a radial
wavelength of 5h. This results in a number of distinct poloidal
loops throughout the disk. The normalization constant A0 is set
to give an initial ratio of gas-to-magnetic pressure of β = 103

in the inner disk. In our canonical MHD simulation, this initial
condition is evolved for a duration of 630Tisco (38800 GM/c3)
using the MPI-parallelized version of ZEUS described above.

We supplement the ideal MHD algorithms of ZEUS in two
ways. First, it is necessary to impose a floor on the density field
of 10−5 times the initial maximum density in order to prevent
the numerical integration from producing negative densities.
This essentially amounts to a subtle distributed mass source.
The density only reaches this floor close to the z-boundary (i.e.,
many scale heights above and below the disk plane). Second, we
implement the prescription of Miller & Stone (2000) to include
some effects of the displacement current, principally forcing
the Alfvén speed to correctly limit to the speed of light as the
magnetic fields become strong. We note that this “Alfvén speed
limiter” only plays a role within small patches of the tenuous
magnetized atmosphere that forms at large vertical distances
above and below the disk; it never plays a significant role in the
body of the accretion disk.

Periodic boundary conditions were imposed on the φ-
boundaries, and zero-gradient outflow boundary conditions
were imposed at both the inner and outer radial boundaries
(Stone & Norman 1992a, 1992b). However, the choice of the
z-boundary condition for this kind of simulation is notoriously
problematic. The most physically motivated choice would be
a free outflow boundary. However, as described in Stone et al.
(1996), field-line “snapping” at these free boundaries can halt
such a simulation. Indeed, our own test simulations employing
zero-gradient outflow boundary conditions on the z-boundaries
were found to be subject to these difficulties, as well as occa-
sional numerical instabilities appearing to result from an inter-
play of the imposition of the density floor and the free boundary.
Furthermore, these tests showed that the tenuous matter high
above the disk midplane generally flows slowly across these
boundaries at very subsonic and sub-Alfvénic speeds; strictly,
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Figure 9. Snapshots of evolution of the canonical MHD simulation (MHD_1) at t = 0 (top left), t = 1Tisco (top right), t = 10Tisco (bottom left) and t = 100Tisco
(bottom right), where Tisco is the orbital period at the ISCO. Both the color table and contours show the logarithmic density structure of the disk cross section, with 10
contours per decade of density. A range of densities spanning 3 orders of magnitude are shown. The curved line to the left of each frame represents the event horizon.

(A color version of this figure is available in the online journal.)

this anyways invalidates the use of such boundary conditions
(since the flow on the other side of the boundary should be able
to act back on the simulation domain).

We adopt the solution of Stone et al. (1996) and choose to
employ periodic boundary conditions in the z-directions. While
this is obviously unphysical in the sense that matter cannot
leave the simulation domain in the vertical direction, it does
guarantee mathematically reasonable behavior at the boundary
(eliminating numerical instabilities) and, more importantly,
appears to have no effect on the dynamics of the accretion
disk itself (as diagnosed through comparisons with our vertical-
outflow test runs). In order to further isolate the simulated disk
from the vertical boundaries, we expand the vertical domain
(compared with the canonical hydrodynamic simulation) to
z ∈ (−3, 3) (i.e., ±10h1).

We perform four additional simulations aimed at demonstrat-
ing the robustness of the canonical simulation. In run MHD_2,
we restrict the vertical domain back to z ∈ (−1.5, 1.5), allowing
us to gauge the importance of the location of the z-boundaries.
Run MHD_2hr has a setup identical to MHD_2 except that the
radial and vertical resolutions are doubled compared with the
canonical run (i.e., the voxel size is reduced by a factor of 2
in each of the radial and vertical directions), and the azimuthal
domain is doubled to Δφ = 60◦ at fixed resolution. Due to the
factor of 8 increase in the number of computational cells (and
the decrease in the timestep), this run was only integrated for a
duration of 85Tisco (5236 GM/c3). While the run time is insuf-
ficient to conduct a detailed temporal study, a comparison with

run MHD_2 does allow us to investigate the effect of both the
radial/vertical resolution and the extent of the φ-domain on the
turbulent state (see below). As discussed below, we find that the
properties of the simulated disks are very similar to these two
runs.

Run MHD_3 is similar to MHD_2 except that the outer radius
is pushed to r = 28rg (at fixed resolution), doubling the size of
the radial domain. Comparing MHD_2 with MHD_3, we find
no evidence that the outer radial boundary affects the inner disk
(r < 12rg) in any way.

4.2. Basic Evolution of the MHD Disks

We now discuss the evolution and general properties of these
MHD disks, centering our discussion around run MHD_1. At
very early times (t < 5Tisco), strong hydrodynamic transients
dominate the evolution as radial pressure forces drive mass
into the region within the ISCO. Similar to the hydrodynamic
cases, these transients launch outwardly directed axisymmetric
waves that break to form rolls. These strong hydrodynamic
transients largely damp away in all but the outermost parts of the
disk within 10Tisco. Concurrently, the MRI amplifies the initial
magnetic field until the (domain wide) volume-averaged ratio
of gas-to-magnetic pressure peaks at 〈β〉 ∼ 5 (at t ≈ 10Tisco), at
which point most of the flow has become turbulent. The entire
flow (outside of the ISCO) becomes turbulent by t ≈ 20Tisco.
Figure 9 displays the density field across a vertical slice through
the accretion disk at various times.
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Figure 10. Normalized total mass as a function of time for run MHD_1.

Between t = 10Tisco and t = 20Tisco, the total magnetic
energy in the computational domain declines until 〈β〉 ∼ 20.
After this, a quasi-steady state seems to be achieved where the
magnetic field generation by the MRI-driven MHD turbulence
is balanced by the removal of magnetic field energy due to
numerical reconnection and magnetic buoyancy. The fact that
buoyancy is playing an important role is revealed by examining
time sequences of the strengths of B-field components in (r, z)
cross-sections of the disk. One clearly sees highly magnetized
structures being generated close to the midplane of the disk,
which then propagate vertically away from the midplane.2 From
this time until the end of the simulation at t = 630Tisco, MHD
turbulence and hence accretion is sustained. Over the course of
the simulation, the disk loses a little more than 60% of its mass
(Figure 10).

The total magnetic energy and thermal energy undergo a slow
decline as mass is drained out of the simulated disk. During
this decline, the volume-averaged plasma-β parameter within
the domain remains in the range 〈β〉 ∼ 20–30. However, as
expected, the β parameter within the high-density body of the
disk is appreciably higher, reaching values of β ≈ 70–100.

2 In principle, one could address the importance of magnetic buoyancy in
removing magnetic energy from the midplane regions of the disk by
comparing the vertical Poynting flux with (numerical) reconnection losses.
However, energy losses due to numerical reconnection cannot be tracked in
our simulation (due to the nonconservative nature of the ZEUS algorithm) and,
hence, a rigorous study of this issue is not possible.

While this is significantly larger than the β found in global
simulations of thicker disks (e.g., Hawley & Krolik 2001, 2002),
it is in line with what might be expected for thin accretion disks
with a zero net field as diagnosed through local shearing-box
simulations both with and without vertical stratification (Stone
et al. 1996; Hawley et al. 1996; Miller & Stone 2000).

A generic concern in this class of simulation is the effect of
the z-boundaries. Once it achieves its quasi-steady state, our
canonical MHD simulation displays a 2–3 order-of-magnitude
drop in magnetic pressure, and a 5 order-of-magnitude drop in
gas pressure, between the disk and the z-boundary. Thus, the disk
boundary seems to be well isolated from the boundary. Further
confidence is gained from an examination of run MHD_2 in
which the z-boundaries have been brought in from z = ± 3 to
z = ± 1.5. Despite the fact that the magnetic pressure now only
drops by 1 order of magnitude from the disk to the boundary,
all of the results from the canonical MHD run discussed in
this paper are reproduced by MHD_2. More precisely, (1)
the PSD of the fluid variables (Section 4.3.2) are essentially
indistinguishable, failing to show any evidence of global modes
but displaying prominent local p-modes, (2) the PSD of the mass
accretion rate has a broken power-law form with indices that
differ from those found in MHD_1 by Δγ ≈ 0.1 (comparable
with the 1σ error bars) and break frequencies that differ by
Δ(log νbreak) ≈ 0.05 (again, comparable with the 1σ error bars).

Another generic concern with thin disk simulations is whether
the resolution in the vertical direction is adequate. The canonical
MHD simulation (MHD_1) has approximately 13 grid cells
spanning a vertical range Δz = h2, implying that we cannot
follow any modes with a wavelength smaller than λ ∼ h2/2.
This is just sufficient to follow the fastest growing MRI mode
(with wavelength λ ∼ 2πh/β1/2) if β � 100. To ensure that
we have, in fact, achieved adequate resolution, we compare
run MHD_2 and its high resolution counterpart, run MHD_2hr.
For example, Figure 11 compares the time dependence of the
thermal and magnetic energies, as well as the height dependence
of the plasma-β parameter. While there is some indication of
increased buoyancy-driven escape of magnetic fields from the
high-resolution simulation (as is apparent from the higher value
of β at intermediate heights), the two simulations generally
compare very well. Thus, we conclude that we have achieved
adequate numerical resolution.

Figure 11. Left panel: total (domain integrated) magnetic and thermal energies for run MHD_2 (black solid line) and its high-resolution counterpart (MHD_2hr; red
dashed line). Right panel: azimuthally averaged plasma-β parameter (i.e., the ratio of the thermal-to-magnetic pressure) as a function of vertical height in the disk at
r = 8 rg . To obtain this plot, data from t = 30 − 35Tisco have been averaged together. The solid (black) line shows run MHD_2 whereas the dashed (red) line shows
its high-resolution counterpart (MHD_2hr).

(A color version of this figure is available in the online journal.)



880 REYNOLDS & MILLER Vol. 692

4.3. Temporal Power Spectra of the Basic Fluid Variables

4.3.1. The Importance of Correcting for Secular Changes During the
Simulation

The length of our canonical MHD run makes it well suited for
a detailed study of temporal variability. In particular, the long
stream of simulation data facilitates the construction of PSDs.
However, as we now discuss, significant complications arise in
the analysis of these MHD simulations as compared with the
pure hydrodynamic simulations.

In the case of the hydrodynamic simulations, the background
(i.e., unperturbed) flow achieves almost a stationary state once
the large transients caused by the initial conditions have died out.
In particular, the lack of angular momentum transport within
the hydrodynamic disk (other than that due to the very small
numerical viscosity) allows the disk to achieve a nonaccreting
state. Density and pressure fluctuations about this background
state can then be studied via the straightforward construction of
the PSD. The constant background level does not contribute to
the power spectrum and, hence, the PSD faithfully characterizes
the fluctuations of interest.

However, even once the initial transients have been dissipated,
MHD disks never achieve this kind of stationary background
flow. MHD turbulence leads to continued accretion that depletes
mass from the simulated disks. This decline in total mass leads to
secular changes (with an approximately exponential form) in the
density and pressure of the background flow. Unless corrected
for, even a rather slow exponential decay can have a significant
influence on the PSD of the pressure or density fluctuations,
severely affecting attempts to characterize the properties of the
astrophysically relevant fluctuations (i.e., the fluctuations that
would be present in the ideal case of a steady-state disk in
which the mass was replaced from a large reservoir).

To see this, consider some quantity whose time series f (t)
we extract from the simulation (e.g., this could be the midplane
density or pressure at some given radius). Let us assume that
this can be decomposed as

f (t) = ε(t)[1 + g(t)], (19)

where g(t) is the time series of the astrophysically interesting
fluctuations about some mean state (i.e., 〈g〉 = 0) and ε(t) is
a decay function that describes the secular change in the back-
ground state due to the draining of mass from the simulation.
It must be noted that the decomposition given in Equation (19)
is not completely general; this assumes that the amplitude of
the “real” fluctuations is proportional to the mean background
value, and that the properties of the fluctuations otherwise re-
main invariant as the background state decays. This decompo-
sition would be valid if the decay of the simulated disk simply
amounted to a gradual decline in the density scale of the sim-
ulation while the temperature and velocity structures remained
unchanged. We shall refer to such (simulated) disks as density-
invariant disks. This does indeed appear to describe our simu-
lated MHD disks (i.e., there is little or no corresponding secular
change in disk thickness or characteristic turbulent velocities).
In this case, the mass accretion rate will be proportional to the
density and the decay will hence have an exponential form,
ε = ε0 e−t/t0 .

In the uninteresting case where there are no fluctuations
(g(t) = 0,∀t), the observed signal is just f (t) = ε(t), leading
to a FT and PSD given by

ε̃(ω) = A1

(1/t0) + iω
and Pε(ω) = A2

(1/t0)2 + ω2
, (20)

where A1 and A2 are uninteresting normalization constants.
Thus, for ω � 1/t0, the PSD of the exponential decay goes
as Pε(ω) ∝ ω−2.

In the more interesting case of nonzero fluctuations, the FT
of the observed signal is

f̃ (ω) = ε̃(ω) +
∫

ε̃(ω′)g̃(ω − ω′) dω′, (21)

that is, the sum of the FT of the exponential decay with
the convolution of the FTs of the decay and the interesting
fluctuations. When the fluctuations are small compared with the
(decaying) background state, as is the case for the density and
pressure, one can see that the PSD of the observed signal will
be dominated by 1/ω2 associated with the decay. Even in the
case where the fluctuations are large compared with the decay,
the PSD will still be influenced by the exponential decay due
to the convolution term in Equation (21). In particular, regions
of the “real” PSD that are steeper than ω−2 (including the high-
frequency wing of any QPO or regions above a high-frequency
break) will tend to get filled.

Clearly, we must correct for this decay of the background
state, and be cognizant of manifestations of any remaining
uncorrected effects of this decay. This procedure plays the
same role as the “prewhitening” employed by Schnittman et al.
(2006; hereafter SKH). We proceed by dividing the observed
time series by a “best-fitting” exponential decay function. Here,
the time constant of the exponential decay t0 is estimated via
two methods. First, we can set t0 by the requirement that
the starting and final values of the observed series are equal
(f (t = 0) = f (t = T ), where t = T corresponds to the
end of the time series). This is the procedure adopted by SKH
except that they employed a linear form for the decay function.
Secondly, we can set t0 via a least-square fit of an exponential
form to the observed time series. These methods give very
similar values of t0 and similar corrected PSDs when applied to
density or pressure fluctuations, as we shall now see.

4.3.2. Power Spectra of Fluid Variables in Disk Midplane

We now examine the PSD of the azimuthally averaged
fluid variables (velocities, pressure, and density) for the sim-
ulated MHD disks, as we did with the hydrodynamic disks in
Section 3.3. The top panels of Figure 12 show the PSD for the
radial and vertical components of velocity in the midplane of the
disk, vmid

r (r, t) and vmid
z (r, t), respectively, for a duration lasting

Δt = 409.6Tisco starting at t = 100Tisco (i.e., well after all of
the initial transients have dissipated and a quasi-steady turbulent
state has been established). Note that, outside of the ISCO, these
velocity components are themselves first-order fluctuating quan-
tities (i.e., the radial and vertical velocities of the background
state are approximately zero) and, within the density-invariant
disk assumption, will have characteristic fluctuation amplitudes
that remain constant throughout the simulation. Hence, we do
not need to correct these PSDs for the effect of the density decay
in the simulation.

It is readily seen that the PSD of the midplane radial velocity
vmid

r is dominated by the radial epicyclic frequency from r ∼ 7–
8rg out to the outer radial boundary. Inside of r ≈ 7 − 8rg ,
the PSD shows broadband power associated with the transition
from turbulent to plunging flow.

The PSD of the midplane vertical velocity vmid
z is quite

different and can be interpreted in the light of the local fluid
oscillations discussed in Section 2.1. Below the radial epicyclic
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Figure 12. PSD for azimuthally averaged midplane fluid quantities from run MHD_1. Panels show PSDs for radial velocity (top left), vertical velocity (top right),
density (bottom left), and pressure (bottom right). The density and pressure variables have been divided by the least-square best-fitting exponential function to correct
for the secular decay of the simulation, as discussed in Section 4.3.1. Also shown are the radial epicyclic frequency (solid), orbital frequency (dashed), and the
n = 1, 2, 3 pure vertical p-modes (from left to right dot–dashed lines). The absolute scaling of the PSDs, as indicated by the color bar, is arbitrary.

(A color version of this figure is available in the online journal.)

frequency, there is a broad spectrum of g-modes. Above the
orbital frequency, the distinct modes described by Equation (4)
become apparent; the n = 0 mode (ω > Ω) and n = 2 mode
(ω > 2.08Ω) can be picked out as distinct tracks, and there
are hints of higher frequency modes as well. The fact that only
even-n modes are seen is readily understood given that the odd-
n modes have vz-nodes at the midplane, as is evident from the
power deficit centered on the n = 1 frequency in the vz PSD.

The bottom panels of Figure 12 show the corresponding PSD
for the density and pressure from the canonical simulation.
The displayed PSDs have been corrected for the decay of the
background state by dividing through by an exponential curve
that best fits (in a least-square sense) the domain-averaged
density or pressure. Very similar results are obtained using an
exponential determined from just the end points. The radial
banding of the low-frequency noise is largely the effect of the
prewhitening procedure; the full (noncorrected) low-frequency
power is somewhat greater, and the bands correspond to the
residuals between the real decay and the simple exponential
model. In addition to this low-frequency noise (which is of
secondary interest to the investigation presented in this paper),
both PSDs show an enhancement corresponding to the n = 1
vertical p-mode (with ω > 1.63Ω). As expected, there is no
enhancement in the density or pressure PSDs corresponding to
the n = 0 or n = 2 p-modes; these have pressure and density
nodes at the midplane.

In stark contrast to the hydrodynamic simulation, the (decay-
corrected) midplane pressure PSD does not show the κ-bounded
vertical “ridge” on the frequency–radius plane that is character-
istic of trapped g-modes. The absence of an excited trapped
g-mode is also confirmed by examining the PSD at r = 8rg

(Figure 13, normalized such that a direct comparison can
be made with the three-dimensional hydrodynamic results of
Figure 8). It is important to note, however, that a trapped
g-mode of the strength seen in our three-dimensional hydrody-
namic simulation would not stand out from the background tur-
bulence. Thus, while it is apparent that the fundamental trapped
g-mode is not strongly excited by the turbulence (e.g., in the way
that the local p-modes are), we cannot say whether the g-mode
is actively damped by the turbulence.

Finally, we note that there is no indication that the parametric
resonance instability of Abramowicz & Kluzniak is at work,
at least in its simplest form. As discussed in Section 2, this
model predicts its strongest resonance at the location where the
radial and vertical epicyclic frequencies are in a 2:3 ratio; this
occurs at r = 9.2rg in the PW potential. As shown in Figure 13,
the PSD of the pressure fluctuations at r = 9.2rg shows no
structure associated with the local epicyclic frequencies. We
have verified that a similar conclusion holds true for the PSD
of the other variables. While it is possible that nonlinear effects
have shifted the location of the resonance inward from r = 9.2rg

(A2003), we note that the PSDs of Figure 12 show no obvious
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Figure 13. PSD of the midplane (decay-corrected) pressure for Δr = 0.5rg
wide zones centered on r = 7rg (top red curve), r = 8rg (middle black curve),
and r = 9.2rg (bottom green curve). The thin vertical dashed line marks the
maximum radial epicyclic frequency. A line segment with a slope of −2 is shown
for reference. Also shown (heavy vertical blue lines) are the radial and vertical
epicyclic frequencies at r = 9.2rg where the simplest form of the parametric
instability model would predict resonances.

(A color version of this figure is available in the online journal.)

radius at which the power at the radial epicyclic and the orbital
frequencies appears to be locally enhanced.

4.4. Temporal Properties of the Instantaneous Black Hole
Accretion Rate

The previous section addressed the temporal properties of
the fundamental fluid variables through the body of the disk.
Of course, real observations of accretion disks measure the
electromagnetic radiation generated by the accretion flow. While
our simulations miss all of the physics relevant for making
a first-principles prediction of the observed light curve, it is
still instructive to analyze a simple scalar quantity that can
be generated from the simulation and may be related to the
observed hard X-ray radiation (since it is the hard X-rays that
carry the HFQPO signal).

Here we consider one such proxy for the observed light curve,
the instantaneous mass accretion rate into the black hole,

Ṁ =
∫

∂R i

r(−vr )ρ dS, (22)

where the integral is performed over the surface ∂R i defin-
ing the inner radial boundary of the computational domain.
Figure 14 shows the raw light curve (i.e., not corrected for the
exponential decay of the disk). In the remainder of this section,
we address the temporal properties of this light curve. Of partic-
ular interest is the presence of breaks or QPOs in the PSD of this
light curve. Hence, we need a quantitative approach by which
the significance of such features in the PSD can be assessed.
We begin by discussing our general statistical approach, which
differs from that advocated by SKH.

4.4.1. Analysis Method

Our approach to PSD fitting is predicated on the assumption
(also made by SKH) that at a given frequency, the power density
has an exponential probability distribution; if the mean is p0,
then the probability of measuring a power between p and p + dp
is

P (p)dp = 1

p0
e−p/p0dp . (23)

Figure 14. The instantaneous mass accretion rate onto the black hole from our
canonical MHD simulation (run MHD_1).

Suppose that we have a model that predicts a power density
pmod,i for frequency bin i, and that in our MHD simulation, we
actually observe a power density pobs,i in that bin. Then the
likelihood of the data given the model in that bin is

Li = (1/pmod,i) exp(−pobs,i/pmod,i). (24)

The likelihood of the whole power density spectrum given the
model is the product of the individual likelihoods, but the log
likelihood is typically more useful:

lnL =
∑

i

[− ln pmod,i − pobs,i/pmod,i

]
. (25)

This is the figure of merit for a given model. It can, therefore, be
used for standard tasks, such as parameter estimation and model
comparison (e.g., determining if a QPO or break is required by
the data).

Note that to maximize the information content, the bin size
should be the smallest possible, in this case the frequency
resolution of the raw PSD. As a result, this method does not
require rebinning to coarser resolution. Our approach, therefore,
yields an accurate evaluation of one or more precisely specified
models, as opposed to the broader but less sensitive method of
trying to detect a signal in a model-independent way.

We apply a Markov Chain Monte Carlo method to search
for best fits and establish confidence regions. As discussed
in Section 4.3.1, we correct for secular changes. Given the
large amplitude fluctuations in the Ṁ and Stot curves, the end-
point method discussed in Section 4.3.1 is not appropriate.
Hence, we employ the least-square method described in Section
4.3.1 in order to determine and then divide out the best-fitting
exponential decay.

4.4.2. Results

The mass accretion rate Ṁ has sufficient intrinsic variability
that secular changes in the disk properties have only minor
effects on the PSD. This is evident from Figure 15, which
compares the PSD and Fourier phase of the raw Ṁ curve as a
function of frequency (left panel) with these after multiplication
by the exponential in time that minimizes the overall rms
amplitude (right panel). The lack of significant differences
suggests that inferences drawn from the PSD are robust. The
comparison shown in Figure 15 is for the second quarter of run
MHD_1 (approximately t = 150Tisco to t = 310Tisco); analyses
of the third and fourth quarters also reveal a lack of sensitivity
to the secular decay of the disk.
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Figure 15. Comparison of the PSD and Fourier phase of the mass accretion rate without (left panel) and with (right panel) multiplication of the time series by an
exponential in time designed to compensate for the slow loss of mass from the disk. The similarity of the two implies that at these frequencies, the variability is
dominated by intrinsic fluctuations instead of by secular changes in the disk.

(A color version of this figure is available in the online journal.)

Table 2
Model Comparisons for PSD of Mass Accretion Rate Ṁ

Data segment Model Parameters and Uncertainties Maximum lnL
1 Single PL Γ = 2.50 ± 0.05 9131

Broken PL Γ1 = 0.82 ± 0.09, Γ2 = 2.96 ± 0.07, 9238
log10(νbreak) = −1.94 ± 0.04

2 Single PL Γ = 2.70 ± 0.08 6508
Broken PL Γ1 = 1.45 ± 0.11, Γ2 = 2.91 ± 0.10, 6609

log10(νbreak) = −1.65 ± 0.07
3 Single PL Γ = 2.16 ± 0.04 9561

Broken PL Γ1 = 1.47 ± 0.07, Γ2 = 2.89 ± 0.09, 9630
log10(νbreak) = −1.60 ± 0.04

Note. Γ is the power-law index of a single power-law model for the PSD; P (ν) ∝ ν−Γ. Γ1 and Γ2 are the
two indices obtained from a broken power law; P ∝ ν−Γ1 for ν < νbreak and P ∝ ν−Γ2 for ν > νbreak.
All error bars are 1 standard deviation.

Having established that the secular decay of the disk is
unimportant for the PSD of Ṁ , we will directly work with the
raw time series from run MHD_1, without multiplication by an
exponential function. We separately analyze the second, third,
and fourth quarters of the data (each encompassing a period
of Δt ≈ 160Tisco) to look for trends or stability in the PSD,
while discarding the first quarter as potentially biased by initial
conditions. The results are summarized in Table 2, where we
compare single power-law models for the PSD with models
involving a broken power law. We use the method described
in the previous section; note that only differences in the log
likelihood lnL are important rather than the absolute magnitude
of lnL.

From this analysis, we find compelling evidence of a break
in the power law characterizing the PSD of Ṁ . Compared
with a single power law, the broken power fit is better by
Δ lnL = 76−90; hence, the maximum likelihood ratio is at least
exp(76) = 1033 in all three data segments independently. The
break frequency and power-law slopes are consistent between
the second and third data segments, but these do not match the
first data segment. The break frequencies are within a factor of
2 of, but not consistent with, the orbital frequency at the ISCO,
log10(νISCO) = −1.79. Therefore, although there is a clear

steepening in the power density spectrum, it is not possible at this
point to assign a specific physical meaning to the break. We note
that this general form of the PSD, that is, an approximate power
law with curvature or a break at frequencies close to the ISCO
orbital frequency, has been previously seen in the mass accretion
rate of global disk simulations (Hawley & Krolik 2001, 2002).

We see no indications of QPOs in the Ṁ PSD. Quantitatively,
we add a Lorentzian QPO to the broken power-law PSD model in
which the QPO centroid frequency, FWHM, and amplitude are
allowed to be free parameters, with the one restriction that the
quality factor of the QPO must exceed 2. We find that the peak
power of any QPO cannot exceed 2% of the continuum power
measured at the centroid of the QPO at the 99% confidence level.

5. DISCUSSION

5.1. Comparison with Previous Numerical Results

In recent years, several groups have reported temporal anal-
yses of MHD disk simulations. Here, we briefly compare our
work with some of these published results.

Probably the most relevant previous work is that of Arras
et al. (2006; hereafter ABT). These authors perform a local,
shearing box MHD simulation of a patch of an accretion disk;
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this provides a controlled environment in which fluid modes can
be characterized. ABT found that the MHD turbulence excites
a spectrum of distinct acoustic modes as well as radial epicyclic
motions. However, they noted a lack of distinct inertial modes
(g-modes) and used this fact to argue against the excitation of
trapped g-modes in global accretion disks. Our findings are com-
pletely in line with those of ABT, and represent an extension of
ABT’s conclusions to global simulations of thin accretion disks.

There have been QPOs reported from global simulations.
Kato (2004d) performed a global MHD disk simulation in a
PW potential and presented an analysis of quantities derived
from the mass accretion rate. Through visual inspection of the
resulting PSDs from four periods of the (long) simulation, he
reported a pair of transient QPOs and a pair of QPOs that are
labeled as persistent (although it is not clear that they are present
in the PSD of all data segments, and the statistical significance of
the features is unclear). The QPOs are attributed to resonances
between the vertical and radial epicyclic frequencies, and it
is found that these QPO pairs have frequency ratios that are
approximately 3:2. We find no evidence of these resonances in
our simulations. In another interesting difference, an inspection
of the radially resolved PSDs in Kato (2004d) reveal no signs
of the local p-modes that seem to feature so prominently in
our PSDs. While the reason for these discrepancies is unclear,
we do note that the Kato (2004d) simulations have an order-
of-magnitude less resolution in both the azimuthal and (more
importantly) the vertical directions, although his simulations do
have a significantly larger computational domain. It is possible
that the Kato (2004d) simulations have failed to adequately
resolve the vertical dynamics of the thin disk.

Chan et al. (2006) have also performed global MHD disk sim-
ulations in a PW potential using the pseudo-spectral algorithm
of Chan et al. (2005, 2006). Their study included a postpro-
cessing of the simulation to include detailed radiative transfer,
and was explicitly targeted at understanding the variability (in-
cluding the large amplitude flaring) of the hot accretion flow
around the black hole at the center of the Galaxy. They found
that the turbulence of the quiescent flow could only produce a
factor of 2 modulations in the observed luminosity. To model
the large amplitude flares, they introduced large density pertur-
bations into the flow. After being perturbed, the disk displays
a QPO with a frequency equal to the orbital frequency at the
magnetosonic point. Given that the Chan et al. study explores a
rather different regime of accretion than our present study (i.e.,
hot, thick accretion flows versus thin, cold accretion flows), it is
hard to make a direct comparison.

Finally, SKH have performed detailed analyses of General
Relativistic MHD (GRMHD) simulations of disks performed
using the code of De Villiers & Hawley (2003). In particular,
they have studied a long (6000 GM/c3) simulation of a disk
around a Schwarzschild black hole, focusing on the temporal
behavior of proxy light curves (rather than the underlying fluid
properties discussed in this paper). It is unclear from their
analysis whether their simulated accretion disk has excited local
p-modes of the type that we find in this current work. SKH
did find, though, that a proxy light curve based on radiative
transfer through the disk assuming black body emission and
free–free absorption displays QPOs with an approximate 3:2
ratio. However, these QPOs are transient, only appearing at
certain times and certain viewing inclinations.

5.2. Comments on 3:2 Frequency Ratios

As described above, several authors have reported transient
QPO pairs from MHD simulations with a frequency ratio of 3:2.

It is tempting to interpret these as resonance phenomena. Here,
we note that there are several ways that approximate 3:2 ratios
can be generated that do not necessarily involve resonances
and, hence, one should guard against overinterpreting QPO
pairs. Indeed, we must remember that some sources have QPO
frequency ratios that are inconsistent with 3:2 (e.g., the 67
Hz and 41 Hz QPOs from GRS 1915+105; see Strohmayer
2001).

For example, consider the local vertical p-modes of the disk
(discussed in Section 2.1). At a given radius, the n = 1 vertical
pressure mode has a frequency of ωvert,1 = √

γ + 1 Ω, where Ω
is the orbital frequency. For a gas-pressure-dominated disk in
which γ = 5/3, ωvert,1/Ω = 1.63, and for a radiation pressure
dominated disk in which γ = 4/3, ωvert,1/Ω = 1.53. If some
unspecified physical process enhances emission from a given
ring of the disk, one can imagine a situation where QPOs
are generated at the orbital frequency and the n = 1 vertical
pressure mode, thereby giving frequency ratios compatible with
the measured ratios in several sources. Alternatively, the next
lowest vertical mode that has a vertical velocity node in the
midplane (and thus the maximum variation of pressure and
density there) has a frequency of ωvert,3 = √

3γ + 1 Ω. As a
result, when γ = 5/3, we have ωvert,3/ωvert,1 = 1.5, and when
γ = 4/3, the ratio is 1.46. Once again, if nature picks out a
specific radius and the emission is modulated by the n = 1 and
n = 3 modes, we would see QPOs with frequency ratios entirely
consistent with the observations.

As another example, suppose that the disk emission is
modulated at the vertical and radial epicyclic frequencies and
that the emission is distributed in radius according to a standard
Page & Thorne (1974) disk. The radial distribution of the
emission then peaks close to the radius where the radial epicyclic
frequency is a maximum (and, hence, is slowly changing
with radius). One might then expect to see a pair of QPOs
corresponding to these two epicyclic frequencies. The frequency
ratio only weakly depends on the spin parameter, ranging from
1.46 at a/M = 0 to 1.7 at a/M = 0.9.

6. CONCLUSIONS

The origin of HFQPOs remains elusive. Our simulations
of geometrically thin accretion disks have shown that MRI-
driven MHD turbulence does not excite the trapped g-modes
of NW92, even when these modes definitively exist in the
equivalent hydrodynamic disk. We have also shown that MHD
turbulence does not excite the parametric resonance instability
of Abramowicz & Kluźniak (2001). Instead, the only distinct
modes found in our simulated MHD disks are local vertical
p-modes and radial epicyclic oscillations.

Clearly, the failure of all simulations to date to produce stable
QPO pairs of the type seen in GBHBs suggests that either
the QPOs are too weak to be detected in the simulations or
the models are missing some important physical ingredients.
It is an open question whether the global disk modes or the
parametric instabilities discussed in this paper can be excited
once one includes the full effects of GR close to rapidly
spinning black holes and/or radiation physics. Indeed, the fact
that HFQPOs are only seen in rather special spectral states
(the soft intermediate state; e.g., see Belloni 2006), when the
accretion rate is thought to be comparable with the Eddington
limit, suggests that radiation physics, in particular, may well
be important to the HFQPO mechanism. It is also noteworthy
that the transition from the hard intermediate state into the
soft intermediate state is associated with powerful relativistic
ejection events. Thus, another interesting possibility is that
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HFQPO production occurs in the black hole magnetosphere
(i.e., the base of the jet) and not the accretion disk at all.
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APPENDIX A

FUNDAMENTAL g-MODE FREQUENCY FOR VERY
SMALL SOUND SPEEDS

For very small sound speeds, there are simplifications that
allow the frequency of the fundamental trapped g-mode in a
hydrodynamic accretion disk to be analytically obtained. Here,
we base our analysis on the equations and formalism of NW92.

NW92 examined the linearized equations describing the
behavior of the scalar potential

δu ≡ δP/ρ, (A1)

where δP is the Eulerian variation in the pressure. The radial
equation for the perturbation is

ω2c2
s

∂2δu

∂r2
= − (

ω2 − γ ϒΩ2) (
ω2 − κ2) δu , (A2)

where ω is the mode angular frequency, Ω is the orbital angular
frequency, κ is the radial epicyclic angular frequency, and γ
is the usual adiabatic index γ = 5/3. ϒ is determined by the
quantization condition

A + 1/2

(1 − 4B)1/2
= j + 1/2 , (A3)

where A = ϒ − ζ and

B = ζ

γ

(ω2 − γ ϒΩ2)

ω2
(A4)

with ζ = (γ −1)/γ = 2/5. For the fundamental mode, we have
j = 0 and Equation (A3) can be solved to obtain

ϒ = 0.4
Ω2

ω2
− 0.2. (A5)

Now we concentrate on low sound speeds, cs  1 (within
this appendix, speeds will be given in units of c, frequencies
in units of c3/(GM), and lengths in units of rg). This implies
that the mode frequency ω ≈ κmax, where κmax is the maximum
radial epicyclic frequency. In this limit, we note that the factor
(ω2 − γ ϒΩ2) within Equation (A2) is close to constant with
radius. Let us define D ≡ −(ω2 − γ ϒΩ2) > 0, where we
evaluate D by assuming ω = κmax.

We also note that near the maximum, the radial epicyclic
frequency has a parabolic form, κ2 = κ2

max − E(r − rmax)2,

where rmax is the radius at which κ = κmax. The differential
equation then becomes

∂2δu

∂r2
=

[
−D

c2
s

(
κ2

max

/
ω2 − 1

)
+

D

c2
s

E

ω2
(r − rmax)2

]
δu .

(A6)
This has the form of a harmonic oscillator, so we try a solution
of the type

δu ∝ e− 1
2 C(r−rmax)2

, (A7)

meaning that

∂2δu

∂r2
= [

C2(r − rmax)2 − C
]
e− 1

2 C(r−rmax)2
. (A8)

This yields the conditions

C = D

c2
s

(
κ2

max

/
ω2 − 1

)
(A9)

C2 = D

c2
s

E

ω2
. (A10)

(A11)

Defining x ≡ 1/ω2, these two conditions can be combined
(eliminating C) to yield

D2

c4
s

(
κ4

maxx
2 − 2κ2

maxx + 1
) = D

c2
s

Ex . (A12)

Solving for x gives

x = 1

2κ4
max

[
2κ2

max + c2
s E/D ±

√
4κ2

maxc
2
s E/D + c4

s E
2
/
D2

]
.

(A13)
Since ω < κmax, we choose the positive sign. For small cs, the
first term in the square root dominates, and the lowest order in
cs gives

x ≈ 1

κ2
max

(
1 +

cs

κmax

√
E

D

)
. (A14)

This finally implies that

κmax − ω

κmax
= cs

2κmax

√
E/D . (A15)

This clearly demonstrates that the fractional difference of the
mode frequency from the radial epicyclic maximum is linear in
cs.

Evaluating this expression for the PW potential, we obtain
κ2

max = 1.202 × 10−3 (at r = rmax = 4 + 2
√

3 = 7.464), and

κmax − ω

κmax
= 2.269cs . (A16)

In contrast, the Nowak & Wagoner pseudo-Newtonian potential,

ΦNW = −1

r
+

3

r2
− 12

r3
. (A17)

yields κ2
max = 8.607 × 10−4 (at rmax = 7.746) and

κmax − ω

κmax
= 5.621cs . (A18)

For both potentials, the analytical frequencies agree extremely
well with direct numerical solutions to Equation (A2).
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Marković, D., & Lamb, F. K. 1998, ApJ, 507, 316
McClintock, J., & Remillard, R. 2006, in Compact Stellar X-ray Sources, ed.

W. H. G. Lewin, & M. van der Klis (Cambridge: Cambridge Univ. Press),
157

McClintock, J. E., & Remillard, R. A. 2003, arXiv:astro-ph/0306213
McHardy, I. M., Körding, E., Knigge, C., Uttley, P., & Fender, R. P. 2006, Nature,

444, 730
Miller, K. A., & Stone, J. M. 2000, ApJ, 534, 398
Nowak, M. A., & Wagoner, R. V. 1991, ApJ, 378, 656 (NW91)
Nowak, M. A., & Wagoner, R. V. 1992, ApJ, 393, 697 (NW92)
Nowak, M. A., & Wagoner, R. V. 1993, ApJ, 418, 187
Nowak, M. A., Wagoner, R. V., Begelman, M. C., & Lehr, D. E. 1997, ApJ, 477,

L91
Okazaki, A. T., Kato, S., & Fukue, J. 1987, PASJ, 39, 457
Ortega-Rodriguez, M., Silbergleit, A. S., & Wagoner, R. V. 2001, ApJ, 567,

1043
Paczynski, B., & Wiita, P. J. 1980, A&A, 88, 23 (PW)
Page, D. N., & Thorne, K. S. 1974, ApJ, 191, 499
Perez, C. A., Silbergleit, A. S., Wagoner, R. V., & Lehr, D. E. 1997, ApJ, 476,

589
Reynolds, C. S., & Fabian, A. C. 2008, ApJ, 675, 1048
Rezzolla, L., Yoshida, S.’i., Maccarone, T. J., & Zanotti, O. 2003a, MNRAS,

344, L37
Rezzolla, L., Yoshida, S.’i., & Zanotti, O. 2003b, MNRAS, 344, 978
Schnittman, J. D., Krolik, J. H., & Hawley, J. F. 2006, ApJ, 651, 1031 (SKH)
Shafee, R., McKinney, J. C., Narayan, R., Tchekhovkoy, A., Gammie, C. F., &

McClintock, J. E. 2008, ApJ, 687, L25
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Silbergleit, A. S., Wagoner, R. V., & Ortega-Rodriguez, M. 2001, ApJ, 548, 335
Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A 1996, ApJ, 463, 656
Stone, J. M., & Norman, M. L. 1992a, ApJS, 80, 753
Stone, J. M., & Norman, M. L. 1992b, ApJS, 80, 791
Strohmayer, T. E. 2001, ApJ, 554, L169
Uttley, P., & McHardy, I. M. 2001, MNRAS, 323, L26
Uttley, P., McHardy, I. M., & Vaughan, S. 2005, MNRAS, 359, 345
Vernaleo, J. C., & Reynolds, C. S. 2006, ApJ, 645, 83
Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodriguez, M. 2001, ApJ, 559, L25

http://dx.doi.org/10.1088/0264-9381/19/8/103
http://adsabs.harvard.edu/cgi-bin/bib_query?2002CQGra..19L..57A
http://adsabs.harvard.edu/cgi-bin/bib_query?2002CQGra..19L..57A
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PASJ...55..467A
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PASJ...55..467A
http://dx.doi.org/10.1051/0004-6361:20010791
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...374L..19A
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...374L..19A
http://dx.doi.org/10.1023/A:1021354928292
http://adsabs.harvard.edu/cgi-bin/bib_query?2003GReGr..35...69A
http://adsabs.harvard.edu/cgi-bin/bib_query?2003GReGr..35...69A
http://dx.doi.org/10.1086/505966
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645L..65A
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645L..65A
http://dx.doi.org/10.1086/170270
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...376..214B
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...376..214B
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1016/j.asr.2005.10.048
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AdSpR..38.2801B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AdSpR..38.2801B
http://dx.doi.org/10.1086/430511
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...628..353C
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...628..353C
http://dx.doi.org/10.1086/500394
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645..506C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645..506C
http://www.arxiv.org/abs/0611269
http://dx.doi.org/10.1093/qjmam/10.1.129
http://dx.doi.org/10.1086/375866
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...592.1060D
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...592.1060D
http://dx.doi.org/10.1086/156098
http://adsabs.harvard.edu/cgi-bin/bib_query?1978ApJ...221..937F
http://adsabs.harvard.edu/cgi-bin/bib_query?1978ApJ...221..937F
http://dx.doi.org/10.1086/374594
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..444G
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..444G
http://dx.doi.org/10.1038/nature07277
http://adsabs.harvard.edu/cgi-bin/bib_query?2008Natur.455..369G
http://adsabs.harvard.edu/cgi-bin/bib_query?2008Natur.455..369G
http://dx.doi.org/10.1038/nature05323
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.444..343J
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.444..343J
http://dx.doi.org/10.1086/177356
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...464..690H
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...464..690H
http://dx.doi.org/10.1086/318678
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..348H
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..348H
http://dx.doi.org/10.1086/338059
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...566..164H
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...566..164H
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PASJ...42...99K
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PASJ...42...99K
http://adsabs.harvard.edu/cgi-bin/bib_query?1991PASJ...43..557K
http://adsabs.harvard.edu/cgi-bin/bib_query?1991PASJ...43..557K
http://adsabs.harvard.edu/cgi-bin/bib_query?1993PASJ...45..219K
http://adsabs.harvard.edu/cgi-bin/bib_query?1993PASJ...45..219K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..559K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..559K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..905K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..905K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56L..25K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56L..25K
http://adsabs.harvard.edu/cgi-bin/bib_query?1991PASJ...43...95K
http://adsabs.harvard.edu/cgi-bin/bib_query?1991PASJ...43...95K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..931K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PASJ...56..931K
http://www.arxiv.org/abs/astro-ph/0004211
http://dx.doi.org/10.1086/172669
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...409..360L
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...409..360L
http://dx.doi.org/10.1086/306320
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...507..316M
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...507..316M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006csxs.book..157M
http://www.arxiv.org/abs/astro-ph/0306213
http://dx.doi.org/10.1038/nature05389
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.444..730M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.444..730M
http://dx.doi.org/10.1086/308736
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...534..398M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...534..398M
http://dx.doi.org/10.1086/170465
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...378..656N
http://adsabs.harvard.edu/cgi-bin/bib_query?1991ApJ...378..656N
http://dx.doi.org/10.1086/171538
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...393..697N
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJ...393..697N
http://dx.doi.org/10.1086/173381
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...418..187N
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ApJ...418..187N
http://dx.doi.org/10.1086/310534
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...477L..91N
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...477L..91N
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PASJ...39..457O
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PASJ...39..457O
http://dx.doi.org/10.1086/338685
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...567.1043O
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...567.1043O
http://adsabs.harvard.edu/cgi-bin/bib_query?1980A&A....88...23P
http://adsabs.harvard.edu/cgi-bin/bib_query?1980A&A....88...23P
http://dx.doi.org/10.1086/152990
http://adsabs.harvard.edu/cgi-bin/bib_query?1974ApJ...191..499P
http://adsabs.harvard.edu/cgi-bin/bib_query?1974ApJ...191..499P
http://dx.doi.org/10.1086/303658
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...476..589P
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...476..589P
http://dx.doi.org/10.1086/527344
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1048R
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1048R
http://dx.doi.org/10.1046/j.1365-8711.2003.07018.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.344L..37R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.344L..37R
http://dx.doi.org/10.1046/j.1365-8711.2003.07023.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.344..978R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.344..978R
http://dx.doi.org/10.1086/507421
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...651.1031S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...651.1031S
http://dx.doi.org/10.1086/593148
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...687L..25S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...687L..25S
http://adsabs.harvard.edu/cgi-bin/bib_query?1973A&A....24..337S
http://adsabs.harvard.edu/cgi-bin/bib_query?1973A&A....24..337S
http://dx.doi.org/10.1086/318659
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..335S
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...548..335S
http://dx.doi.org/10.1086/177280
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...463..656S
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...463..656S
http://dx.doi.org/10.1086/191680
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJS...80..753S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJS...80..753S
http://dx.doi.org/10.1086/191681
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJS...80..791S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992ApJS...80..791S
http://dx.doi.org/10.1086/321720
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554L.169S
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554L.169S
http://dx.doi.org/10.1046/j.1365-8711.2001.04496.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2001MNRAS.323L..26U
http://adsabs.harvard.edu/cgi-bin/bib_query?2001MNRAS.323L..26U
http://dx.doi.org/10.1111/j.1365-2966.2005.08886.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.359..345U
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.359..345U
http://dx.doi.org/10.1086/504029
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645...83V
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...645...83V
http://dx.doi.org/10.1086/323655
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...559L..25W
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...559L..25W

	1. INTRODUCTION
	2. THEORETICAL PRELIMINARIES
	2.1. Local Oscillations and Waves in Accretion Disks
	2.2. Global Oscillation Modes of an Accretion Disk
	2.3. Parametric Resonance

	3. HYDRODYNAMIC DISKS
	3.1. Initial Comments
	3.2. Basic Simulation Setup
	3.3. Axisymmetric Hydrodynamic Models and the Recovery of Trapped g-modes
	3.4. Extension to Three-Dimensional Hydrodynamic Models

	4. MAGNETOHYDRODYNAMIC DISKS
	4.1. Simulation Setup
	4.2. Basic Evolution of the MHD Disks
	4.3. Temporal Power Spectra of the Basic Fluid Variables
	4.4. Temporal Properties of the Instantaneous Black Hole Accretion Rate

	5. DISCUSSION
	5.1. Comparison with Previous Numerical Results
	5.2. Comments on 3:2 Frequency Ratios

	6. CONCLUSIONS
	APPENDIX A. FUNDAMENTAL g-mode FREQUENCY FOR VERY SMALL SOUND SPEEDS
	REFERENCES

