
For the first two problems, note that we are thinking about the Fermi momentum and

Fermi energy to order of magnitude level only. Given that, recall that the Fermi momentum

is pF ∼ ~/∆x, where ∆x ∼ n−1/3 is the approximate linear space per particle for a number

density n.

1. Suppose that there are µe degenerate particles per baryon. For example, in a white

dwarf, there are roughly one proton and one neutron per electron, and electrons are the

degenerate species, so µe ≈ 1/2 in that case. In a neutron star, most of the particles are

neutrons and neutrons are the relevant degenerate species, so µe ≈ 1 in that case. If the

degeneracy is nonrelativistic, compute the average energy per baryon in a star of mass M

and radius R. This energy will have a positive contribution from the Fermi energy, and

a negative contribution from the gravitational potential energy. Assume that the baryons,

which make up most of the mass of the star, each have a mass mbary (which is roughly the

mass of a neutron or proton), and that the degenerate particles, which provide the pressure

support, each have a mass mdegen (for a white dwarf, mdegen = me, and for a neutron star

mdegen = mn ≈ mbary).

Given this, minimize the energy per particle as a function of the radius R for a fixed

mass M . How does R depend on M , and how does that compare with the dependence of R

on M for an object of fixed density?

2. Given the same general setup, suppose that the degeneracy is relativistic. If you try to

minimize the energy over the radius R with fixed M , what do you find? You should find

that there is a maximum stable mass; how does that mass depend on µe? Given your result,

how would you expect the maximum masses of neutron stars and white dwarfs to compare

with each other? The actual maximum gravitational mass (i.e., the mass you would derive

from Kepler’s laws and the orbit of a distant satellite around the star) is about 1.35 M⊙ for

white dwarfs and somewhere between 2 M⊙ and 3 M⊙ for neutron stars. Comment on this

in light of your results.

3. This problem will give you a sense for the process of magnetically channeled accretion onto

neutron stars. Suppose that a neutron star has a magnetic dipole moment µ, which means

that at a distance r from the center of the star the magnetic field strength is B(r) ≈ µ/r3

(there would, in reality, be a factor of 2 dependence on the latitude, but we will ignore that).

To be simplistic, let us also suppose that matter comes in spherically at the free-fall speed

vff(r) =
√

2GM/r, with a total mass accretion rate of Ṁ .

(a) Given continuity (each spherical shell of thickness dr, at any radius r, must have the

same inward mass flow rate Ṁ), derive the mass density ρ(r) as a function of radius.

(b) The ram pressure stress is then Tram ≈
1
2
ρ(r)vff(r)

2. Compare this with the magnetic



stress Tmag ≈ B(r)2/8π. At what radius are they equal? Give a numerical answer, in

centimeters (note that we are using cgs units, so that B2 has units of erg cm−3 if B is in

Gauss), if B = 108 G (near the low end for neutron stars) and Ṁ = 1018 g s−1 (near the

high end for accreting neutron stars). Compare the radius you get with ∼ 106 cm, which is

the order of magnitude of the radius of a neutron star.

(c) At the balance radius that you computed, what is the Keplerian rotation frequency of

a circular orbit, ν(r) = 1
2π
(GM/r3)1/2? What would typical values be for the previous case

(B = 108 G and Ṁ = 1018 g s−1, which is typical of many low-mass X-ray binaries), and for

B = 1012 G and Ṁ = 1018 g s−1, which is typical of many high-mass X-ray binaries?

(d) We have obviously taken major liberties in our treatment! For example, the flow in most

circumstances will be through a geometrically thin disk rather than through a spherical flow.

Given the radial dependences that you found for Tram and Tmag, can you nonetheless make

an argument that your answer for the balance radius is not likely to be tremendously far off

(meaning that it is good to a factor of 10 or better)?

4. In the crust of a neutron star, the Fermi energy of electrons could be 10 MeV or more

(1 MeV ≈ 1.6× 10−6 erg). The temperature of the crust could be 108 K for an old star. For

those of you with some exposure to condensed matter physics, why is it that a comparison

of the thermal energy (recall that Eth = kT ,where k = 1.38×10−16 erg K−1) with the Fermi

energy suggests that the crust of a neutron star should have extremely high thermal and

electrical conductivity? This, combined with the superfluidity of the core, means that other

than the top ∼ 10− 100 meters of the star, a neutron star is nearly isothermal.

5. Dr. Sane has once again demonstrated his universal brilliance, this time in his analysis

of the structure of neutron stars. He realized that establishment scientists have foolishly

forgotten to include the effects of superfluidity and superconductivity in their calculations

of neutron star masses and radii. His calculations show that when those effects are included,

the radius of a neutron star at a given mass, and the maximum mass of a neutron star, are

both changed by ≈ 20%. The Nobel Committee has asked you to look into this discovery.

To evaluate Dr. Sane’s latest claim, note that the pairing gap for superfluids and su-

perconductors in neutron stars is likely to be ∼ 0.1 MeV; this means that, energetically, a

superconducting state has ∼ 0.1 MeV per nucleon lower energy than a non-superconducting

state. The number density of nucleons in neutron star cores is of the order of 1039 cm−3;

using this, please compute the approximate neutron Fermi energy. Given that, what do you

think of Dr. Sane’s estimate of the net influence of superfluidity and superconductivity on

neutron star masses and radii?


