
1. Derive the constant of motion associated with inspiral according to the Peters equations.

Hint: define y ≡ e2 to get da/dt and dy/dt, then look for a constant in the form C = af(y).

2. Consider a merger of two black holes of arbitrary masses and spins. Suppose that the

merger takes place at an unknown redshift z. Show that without knowing z, the waveform of

the inspiral/merger/ringdown (meaning the observed frequencies, but not the amplitudes) is

not sufficient to measure the masses or angular momenta of the black holes uniquely. What

combinations of masses, spins, and redshifts can be measured?

3. This problem shows the limits of order of magnitude calculations in some cases. Let’s

say you’d like to estimate the recoil speed of a merged black hole remnant, due to linear

momentum carried away by gravitational radiation. To simplify things, suppose we have two

nonrotating black holes of masses M1 and M2 that collide head-on, so there is no spin at any

point. A theorem from black hole thermodynamics says that the square of the irreducible

mass of the final black hole cannot be less than the sum of the squares of the irreducible

masses of the initial black holes. For nonrotating black holes, this becomes

M2
final ≥ M2

1 +M2
2 . (1)

Like the increase in entropy, this is an inequality, but for our order of magnitude estimate

we will assume M2
final = M2

1 +M2
2 .

With that assumption, compute the final speed of the remnant (as a fraction of the speed

of light, and as a function of M1 and M2) assuming that all the radiated energy is carried

away in a single direction. For comparison, the best current estimate is that the speed for

M1/M2 ≈ 10 is ∼ 30 km s−1 for nonrotating holes that coalesce via a quasicircular inspiral.

4. Consider the ringdown produced by two 10M⊙ black holes. Suppose that the ringdown

lasts for 2 cycles and emits a total of 1% of the mass-energy of the final black hole. Assuming

a nonrotating black hole (j = 0), what would be the frequency of the radiation and how

long would it last? The frequency is in the range of human hearing (although, of course,

not audible!), and sound amplitude is measured in decibels, where 0 dB has an intensity of

10−9 erg cm−2 s−1. If the BH-BH merger occurs at the distance of the Virgo Cluster (about

50 million light years, or 15 million parsecs, which is ≈ 5× 1025 cm), compare the intensity

of the ringdown at Earth with the intensity of the loudest scream ever registered (129 dB,

by Jill Drake of the UK). Then, do the same calculation for GW150914, which is the loudest

of the events yet detected: two ∼ 30 M⊙ black holes, final spin j = 0.7, distance 420 Mpc.



Challenge #1: Make your own estimate of the rate per volume of BH-BH mergers (ex-

pressed in number per Gpc3 per year), including the 90% credible interval, based on the

three events reported thus far (for these purposes we assume that LVT151012 was a real

event). The first Advanced LIGO run had 49 total days in which both detectors were taking

data, so that will be our baseline time. Potentially relevant numbers are: GW150914 was at

a distance of 420 Mpc (we’ll ignore the uncertainties for simplicity) and had a signal to noise

ratio of 23.7; GW151226 was at a distance of 440 Mpc and had a signal to noise ratio of

13.0; LVT151012 was at a distance of 1 Gpc and had a signal to noise ratio of 9.7. Suppose

that the threshold for announcing a detection is a signal to noise ratio of 12.0 (recall that

LVT151012 was a marginal detection), and remember that for a given event the distance

scales as the reciprocal of the signal to noise ratio.

a) With no other information, what would be your best estimate for the rate per volume based

on each of the events individually (i.e., without combining them or estimating uncertainties)?

b) How should you estimate the uncertainties for each event individually? More specifi-

cally, how would you calculate the 90% credible interval for the rate based on each event

individually?

c) How should you combine the information from the three events? Do this without, then

with, the uncertainties included.

d) Suppose now that you are given the information that one of the events (pick any of them)

was in a direction to which Advanced LIGO was unusually sensitive. What effect, if any,

would this have on your best estimate of the rate based on that event (i.e., would it decrease

your best estimate, increase your best estimate, or leave it unchanged)?

e) Same question as d), but with regard to the orientation: suppose that one of the events

was known to have its binary orbital axis pointed nearly towards us, which means that we

see a high amplitude compared to the orientation-averaged amplitude. What effect would

this have on your best estimate of the rate from that event alone?

5. Dr. Sane has come to you with a brilliant idea. He has realized that LISA will be the

ideal instrument to detect satellites around extrasolar planets. In particular, he envisions a

m = 6 × 1026 g satellite (about 10% of Earth’s mass, i.e., bigger than any satellite in the

Solar System) orbiting with an orbital frequency of forb = 5 × 10−5 Hz around a planet

with mass M = 2 × 1031 g, about ten times Jupiter’s mass. At gravitational wave frequen-

cies fGW < 10−3 Hz, LISA’s expected spectral density sensitivity at signal to noise of 1

is 10−19(10−3 Hz/fGW)2 Hz−1/2. Assuming an observing time of 108 seconds, evaluate the

detection prospects if the system is at a distance of 10 parsecs (about 3× 1019 cm).



Consider a population of binaries, each of which has reduced mass µ and total mass M .

Suppose they are all circular, and that the population is in steady-state, meaning that the

number in a given frequency bin is simply proportional to the amount of time they spend

in that bin. Also assume that the only angular momentum loss process is gravitational

radiation, rather than mass transfer or other effects. For each of the following problems,

derive the answers in general and then apply the numbers to WD-WD binaries, where we

assume that both masses are 0.6M⊙ (note that M⊙ = 1.989× 1033 g ≈ 2× 1033 g).

6. Using the Peters equations for circular orbits of point masses, derive the frequency fmin

such that the characteristic inspiral time Tinsp ∼ 1/ [d ln f/dt] is equal to the Hubble time

TH ∼ 1010 yr. What is the frequency specifically for a WD-WD binary?

7. Below fmin the distribution dN/df of sources with frequency will depend on their birth

population. Above it, gravitational radiation controls the distribution. Derive the depen-

dence of dN/df on f for f > fmin (the normalization is not important).

8. Suppose there are 109 WD-WD binaries at frequencies fmin < f < 0.1 Hz. To within

a factor of 2, compute the frequency fres above which you expect an average of less than

one WD-WD binary per df = 10−8 Hz frequency bin (this is 1/3 yr, or about the frequency

resolution expected for the LISA experiment). Very roughly speaking, above fres one can

identify individual WD-WD binaries, whereas below it is the confusion limit.

9. Dr. I. M. N. Sane doesn’t understand why everyone is so worried about white dwarf noise

(which is supposed to be larger than the LISA instrumental noise below about 2× 10−3 Hz).

He asserts that with so many WD-WD binaries in a given bin, the total flux in gravitational

waves will be very stable; in particular, he believes that from frequency bin to frequency bin,

the flux will vary so little that even a weak additional source will show up easily. He comes

to this conclusion by taking the square root of the flux to get a measure of the amplitude.

Show Dr. Sane the error of his ways by doing the following model problem. Let there be N

sources in a given frequency bin. Suppose that they are all equally strong, but have random

phases between 0 and 2π. Add the complex amplitudes based on those random phases. Take

the squared magnitude of the total amplitude as a measure of the typical flux. Determine

the mean and standard deviation of the flux that results. You should find that, unlike what

happens when you add sources incoherently (i.e., square the amplitudes, then add), the

standard deviation of the flux is comparable to the flux, so Dr. Sane’s idea fails. . .to no

one’s surprise.

Challenge #2: Suppose that you are doing radio observations of a double pulsar system,



in which both neutron stars are visible as pulsars. We’d like to determine, qualitatively, how

overdetermined the system is. That is, we’d like to know how many aspects of the system can

be measured, versus how many parameters there are. This is a deliberately vague question

to get you thinking about the process of measurement. If more quantities can be measured

than there are parameters, the system is overdetermined and the underlying theory can be

tested.


