
Three objects; “2+1” problem

Having conquered the two-body problem, we now set our sights on more objects. In

principle, we can treat the gravitational interactions of any number of objects by simply

adding together all the forces; for example, for n objects, the net force on object j is

Fj = −
n

∑

i6=j

Gmimj

|rj − ri|3
(rj − ri) . (1)

Unfortunately, for n > 2 there is no general analytical solution. That means we need to

do the integrations numerically if we have an arbitrary collection of three objects. This is

a classic situation in astrophysics: the real problem we want to do is too complicated for

analytical approaches. Do we throw our hands up in despair? No! Instead, we try to gain

further insight by looking for simplified cases we can treat.

One such case is where one of the three objects has a tiny mass compared to the other

two. We can then make the approximation that the two big guys are essentially not affected

by the small mass. The motion of the two larger masses is then just what it would be in

the two-body problem. The motion of the third mass can then be calculated in the field of

force produced by the motion of the other two.

Suppose that the distance of the third mass from the other two is much greater than

the separation between the two large masses. Ask class: to a reasonable approximation,

what is the motion of the system? The two inner objects orbit each other as usual, and the

third object orbits their center of mass as if it were a point mass, to lowest order. In fact,

this is also true for arbitrary masses. We’ll get to this case more in the next class.

But what if the third mass is close to the other two? In that case, even with the mass

restrictions, if the two large bodies move in significantly eccentric orbits then the motion of

the third mass is quite complicated in general. We therefore simplify further, and assume

that the two large masses orbit each other in circles. Does this have applications in the real

world? Yes! Close binary stars tend to circularize their orbits because of tidal effects. In

our Solar System, most of the planets are on nearly circular orbits. It used to be thought

(and may be true) that this was the result of dissipation in the protosolar disk, but since

quite a few extrasolar planets have highly eccentric orbits this has to be rethought. In any

case, nearly circular orbits are common enough that our approximation will indeed have

applications.

Ask class: given our approximation, what is the motion of the two large masses? Since

the motion is circular, they move at a constant angular velocity Ω =
√

G(m1 + m2)/a3, and

maintain a constant separation. But what happens to a third object? If you just place it in

the system with some arbitrary position and velocity, it will get batted all around the place



by the time-varying forces in the system. Fun, but complicated. We can, however, get more

insight by considering whether there are any special orbits that can allow a third mass to

remain stationary with respect to the two large masses.

To do this, we’ll shift to a coordinate system, centered on the center of mass of the two

large objects, that rotates with the angular speed Ω. Because the orbits are circular, in this

system the two large masses are fixed at a constant distance from each other. Let’s set up

axes so that the orbit is in the x − y plane, and the masses are both on the x axis, with

m1 at x = −a1 and m2 at x = +a2, with a1 = m2a/(m1 + m2) and a2 = m1a/(m1 + m2).

What we’d like to do is find places in the x − y plane where a third particle experiences no

net acceleration. We have to realize, however, that in this rotating coordinate system there

is an extra effective acceleration that is added. This is a centrifugal acceleration; if the

particle is at location r then the centrifugal acceleration in this noninertial reference frame

is Ω2r. Generally, if mass m1 is at location r1 and mass m2 is at location r2, then the net

acceleration in the rotating frame is

anet = −
Gm1

|r − r1|3
(r − r1) −

Gm2

|r − r2|3
(r − r2) + Ω2r . (2)

We’d like to know points where anet = 0. To put it another way, in this rotating frame there

is an effective potential that includes the effects of centrifugal acceleration. Let Φ represent

the effective potential energy per unit mass, so that anet = −∇Φ. We then have

Φ = −
Gm1

|r − r1|
−

Gm2

|r − r2|
−

1

2
Ω2r2 . (3)

Effective potentials are common in physics, from condensed matter to general relativity.

We’ll solve the equations in a moment, but first let’s use our intuition to guess where

such points might be. By symmetry, we notice that along the x axis there can be no net

acceleration in the +y or −y directions. Therefore, if there are places along the x axis

where there is zero net acceleration in the x direction, the acceleration is zero, period, and

we have a point. Where are such places?

Let’s start with x being large and negative. Clearly, for large |r|, the centrifugal term

(linear in r) dominates over the gravitational terms (inverse square in r). Therefore, when

x is large and negative the net acceleration is in the −x direction. Ask class: what is

the net acceleration when the particle is to the left of m1 but very close to it? If it’s close

enough then the inverse square term dominates, so the acceleration is in the +x direction.

That means that somewhere between x → −∞ and x = −a1, the net acceleration must pass

through zero. Ask class: moving along the x axis, what other points of zero acceleration

can we identify in the same way? There must also be one between m1 and m2, and one

to the right of m2. By similar arguments, you can also show that there must be two zero

acceleration points off the x axis. These five points are called the Lagrange points. If



m2 < m1, then L1 is between m1 and m2; L2 is to the right of m2 in our diagram; L3 is

to the left of m1; L4 is the off-axis point in the direction of rotation; and L5 is the off-axis

point in the direction opposite to rotation. All other points in the system experience net

acceleration.

Incidentally, this method of identifying points is also useful any time you want some

insight into an algebraic equation f(x) = 0 of cubic or higher order (when direct solution is

messy). If you can show that f(x) is negative in one place and positive in another, then it

must have a root in between if it is an algebraic equation with positive powers of x.

Let us now solve the equation directly. We have

0 = −
Gm1

|r − r1|3
(r − r1) −

Gm2

|r − r2|3
(r − r2) + Ω2r . (4)

We have a vector equation in two dimensions, so this encodes two separate equations. We

could do this in Cartesian x − y coordinates, but for reference we’ll instead use a method

that is often helpful in dealing with vector equations. We want to look at the components

of this equation that are perpendicular to, then parallel to, a given vector, in this case r.

Ask class: how can we project out the component of this equation that is perpendicular

to r? We can take the cross product of the whole equation with r, which gives us just the

perpendicular component. Doing this gives

Gm1

|r − r1|3
(r1 × r) +

Gm2

|r − r2|3
(r2 × r) = 0 . (5)

Suppose that r makes an angle θ with the x axis. Then, since r1 = −a1x̂ and r2 = a2x̂, we

have

r1 × r = −a1r sin θẑ , r2 × r = a2r sin θẑ . (6)

Therefore,
Gm1a1

|r − r1|3
r sin θ =

Gm2a2

|r − r2|3
r sin θ . (7)

On the x axis (θ = 0, π) or at the center of mass (r = 0) this equation is satisfied

automatically. If neither condition holds (as it doesn’t for L4 or L5) then we notice that

m1a1 = m1m2a/(m1 + m2) = m2a2, so we’re left with

|r − r1| = |r − r2| . (8)

Therefore, L4 and L5 must be on the midline between the two masses, and the x component

of the distance to m1 and m2 is just a/2. If the third particle has the y-coordinate y, then

d ≡ |r − r1| = |r − r2| = (a2/4 + y2)
1/2

.

Now let’s return to our full equation for zero acceleration. Ask class: how do we

project out the component that is parallel to r? We take the dot product with r. We can



then divide by r2 and rearrange to get

G(m1 + m2)

a3
=

Gm1

d3
(1 + a1/r) +

Gm2

d3
(1 − a2/r) . (9)

As before, the m1a1 and m2a2 terms on the right hand side cancel each other. We therefore

have
G(m1 + m2)

a3
=

G(m1 + m2)

d3
. (10)

Therefore, d = a. This says something remarkable: the L4 and L5 points make an equilateral

triangle, of side a, with m1 and m2 in the plane of the orbit! This is true regardless of the

mass ratio m2/m1. If m1 À m2 (as for the Sun and Jupiter), the L4 point is 60◦ ahead, and

the L5 point is 60◦ behind, the smaller object in its orbit.

There aren’t such simple solutions for the other three Lagrange points. In fact, you end

up with a fifth-order algebraic equation, which does not have a general closed-form solution.

However, as always, we can examine limiting cases. Let’s consider L1 first. Ask class:

what is the simplest limiting case they can think of? When m1 = m2, by symmetry the L1

point must be exactly in the middle, which is the center of mass. Now what if m2 ¿ m1?

Then the transition from m1 to m2 being the primary source of gravity (and therefore the

net acceleration going from −x to +x in our diagram) must be pretty close to m2. We can

solve for this by saying that L1 is at location x = a2 − R, where R ¿ a, and getting R

to first order. If we do this we find R ≈ (m2/3m1)
1/3a. We also find that L2 is the same

distance to the right of m2. Therefore,

xL1
≈ a2 − (m2/3m1)

1/3a

xL2
≈ a2 + (m2/3m1)

1/3a .
(11)

The radius R = (m2/3m1)
1/3a is called the Roche radius or radius of the Hill sphere,

depending on whether one is working in stellar or planetary applications. This radius is of

great importance in many branches of astrophysics. That’s because, if a body is dominated

by gravity instead of material strength, if its size is greater than R it will get torn apart.

Thus, if a star in a binary expands beyond R, some of its mass will flow onto its companion;

this mass transfer underlies many phenomena such as cataclysmic variables, symbiotic

stars, and X-ray binaries. Another application is to asteroids. Mounting evidence suggests

that asteroids aren’t solid bodies but are instead gravitational aggregates, or rubble piles

(think of a heap of gravel several kilometers across). When an asteroid gets too close to a

large body, the Roche radius or Hill sphere becomes smaller than the asteroid, so that it

is stretched by tidal forces. Derek Richardson and his students Zoë Leinhardt and Kevin

Walsh are working on applications of this effect to many phenomena.

Our last investigation of the Lagrange points has to do with their stability. Formally,

the Lagrange points are infinitesimal points. At those points, ∇Φ = 0 so there is zero

acceleration. But in reality, there are all kinds of little perturbations that will occur: the



gravity of other planets, radiation forces, or who knows what. It therefore makes a difference

whether the equilibrium at a given Lagrange point is stable or unstable. We can determine

this in the standard way from calculus: we take a second derivative of the effective potential

and examine its characteristics. The result of this examination is that L1, L2, and L3 are

unstable, in that a slight perturbation away from those points will grow large. In contrast,

L4 and L5 are stable; a slight perturbation will cause a particle to orbit those points. Thus,

L4 and L5 are collection points. For the Sun-Jupiter system, they are called the Trojan

points, and asteroids there are called the Trojan asteroids. There are probably a greater

number of asteroids at the Trojan points than in the “main” belt between Mars and Jupiter!

In the Earth-Moon system, the eccentricity is high enough that there is not a significant

collection of debris at our L4 and L5.

Even the unstable Lagrange points have their applications. Since the net acceleration

is zero at, e.g., L2, a spacecraft flown there needs to do relatively little course correction.

Think of a pencil balanced on its point: it’s unstable, yes, but small tweaks keep it balanced.

By comparison, a pencil at a 45◦ angle needs constant strong maintenance. Since the same

goes for spacecraft, there are plans for many spacecraft (e.g., the Next Generation Space

Telescope and LISA) to be put at the Earth-Sun L2 point.


