
N-body problem, continued

Consider now a system of particles (e.g., stars or dark matter particles) that has reached

virial equilibrium. What happens next? In the short term, nothing, since that’s what

equilibrium means. Let us think, however, about the motion of an individual particle. First,

suppose that the cluster has mass that is distributed perfectly smoothly, in a sphere. Place

a particle at the edge of this sphere, with no speed, and let it go. Remembering that there

are no collisions, Ask class: what will happen to the particle? It will fall through the center

and come out the other side, slow down, stop at a radius equal to what it had before, and

return. If the distribution really is perfectly smooth, this will continue indefinitely. On the

other hand, if the mass is concentrated into one big star, then our particle will get deflected

significantly by passing close to the star.

What this means is that any change in the motion of a particle is due to its gravitational

interactions with individual particles. Each interaction deflects our chosen particle a bit, until

after some large number of encounters the velocity of our particle has changed by a large

amount (e.g., of order itself). This process of scrambling velocities by individual encounters is

called two-body relaxation, because it is interactions of two objects that are most important

(a three-body or higher interaction between single point masses would require an improbable

coincidence to have all those objects nearby at once). But how long does such two-body

relaxation take?

To answer this, consider an individual two-body encounter. Let a star of mass m pass

another star of mass M , with an initial relative speed v. The impact parameter is the closest

that the two stars would come to each other if they moved in straight-line paths; call the

impact parameter b. Suppose that this is a weak encounter, so that the deflection δθ of the

trajectory is small. Let the initial motion of m be in the x̂ direction. Then the acceleration

as a function of time t (where t = 0 at closest approach) is

r̈ = −
GMb

(v2t2 + b2)3/2
ŷ −

vtGM

(v2t2 + b2)3/2
x̂ . (1)

The change in velocity is this acceleration integrated over all time. Therefore,

∆vx =

∫

∞

−∞

ẍdt = −

∫

∞

−∞

vtGMdt

(v2t2 + b2)3/2
= 0 (2)

where the integral vanishes because it is antisymmetric in t. Put another way, for a small

deflection δθ, the new x velocity will be roughly cos(δθ) times the old x velocity. For δθ ≪ 1,

cos(δθ) ≈ 1−O[(δθ)2] ≈ 1. Therefore, there is only a tiny change in the x component of the

velocity. The change in the y component is

∆vy = −

∫

∞

−∞

GMbdt

(v2t2 + b2)3/2
= −

2GM

vb
. (3)



Therefore, the deflection angle is δθ = |∆vy|/v = 2GM/(v2b).

How small is this angle? It depends on the impact parameter. If the impact parameter

is comparable to the separation between stars, then b ∼ n−1/3, so δθ ∼ 2GMn1/3/v2. If the

system is virialized, then v2 ∼ GNM/r, where N is the number of stars of mass M . Also,

the number density is n ∼ N/r3 for a cluster radius r. Then,

δθ ∼
2GM

GMN/r

N1/3

r
∼ N−2/3 . (4)

For large N , δθ is tiny; for example, a globular cluster might have N ∼ 106 stars, so

δθ ∼ 10−4, or only a few tens of arcseconds. You can similarly convince yourself that the

fractional change in velocity is |∆vy|/v ∼ N−2/3.

Therefore, an individual encounter doesn’t do much to the velocity. In fact, you can

convince yourself by symmetry that the average velocity doesn’t change if the two particles

are of equal mass. That is, for a given impact parameter, any interaction that changes

the y component of velocity by ∆vy = −2GM/(vb) has a mirror image encounter with

∆vy = +2GM/(vb). It may seem, therefore, that the net result is a big fat nothing. However,

in fact we have here an example of a random walk, where the “steps” are in velocity space.

Even though there is an equal chance to increase as to decrease the velocity, the mean square

of the velocity does change. Here’s how it works. Suppose, in some arbitrary units, that

the y component of the velocity is 1. An interaction changes this component to 1 − ǫ with

a 50% probability, and to 1 + ǫ with a 50% probability. The average is still 1. However, the

average square is 0.5(1− ǫ)2 + 0.5(1 + ǫ)2, or 1 + ǫ2. Thus, the square changes by ǫ2. In our

case of a two-body interaction, this means that

〈(∆vy)
2〉 =

4(GM)2

v2b2
. (5)

When the change in the mean square becomes comparable to v2, the sum of all the little

interactions has become significant. How long does this take?

If the star moves with speed v, then the number of stars with which it interacts in time

dt with impact parameters between b and b + db is the number density times the area times

the distance traveled in time dt, or

dN = n2π b db v dt . (6)

Therefore, the change in 〈v2〉 in time dt from that group of stars is

d〈v2〉 =
4(GM)2

v2b2
n2π b db v dt , (7)

and the rate of change in 〈v2〉 is given by integrating over impact parameters from the



minimum bmin to the maximum bmax, or

d〈v2〉

dt
=

4(GM)22π

v
n

∫ bmax

bmin

db

b
= (8π/v)(GM)2n ln(bmax/bmin) . (8)

The relaxation time is the time necessary to change v2 by of order itself:

τrel = v2/(dE/dt) =
v3

8π(GM)2n ln(bmax/bmin)
. (9)

We haven’t defined what the minimum and maximum impact parameters should be.

Luckily, because they only appear in a logarithm, their exact value doesn’t matter much.

We can, in fact, use the tongue-in-cheek rule that “all logarithms are 10”. What that

means is that there is a huge range of values for which the logarithm is within a factor of

2 of 10: 100 to 109 fit the bill. If we wanted to get more precise, we could say that since

we’ve assumed weak interactions, b > GM/v2 (because otherwise the velocity would change

by of order itself in a single interaction) and b < r (since that’s the size of the system).

From virial equilibrium, v2 ∼ GNM/r, so bmax/bmin ∼ r/(GM/v2) ∼ r/(r/N) ∼ N , so

ln(bmax/bmin) ∼ ln N . The time to cross the system by free-fall is tcr ∼ r/v, so we can write

τrel ∼ (GNM/r)(1/n)(v/(GM)2)(1/ ln N)

∼ (r/v)[(v/r)2/(GMn)](N/ ln N)

∼ tcr[GMN/(r3GMn)](N/ ln N)

∼ tcrN/ ln N .

(10)

Therefore, relaxation occurs in ∼ N/ ln N crossing times. A more exact calculation gives

∼ 0.1N/ ln N crossing times.

How long is this, for various systems? A globular cluster has N ≈ 106 and tcr ≈ 105 yr,

so τrel ∼ 109 yr. Globulars are ∼ 1010 yr old, so they are several relaxation times old and

lots of evolution has happened. In contrast, a galaxy has N ≈ 1010 in the central bulge and

tcr ≈ 108 yr, so τrel ∼ 1016 yr, much longer than the age of the galaxy. Relaxation is not

important for a galaxy, for the most part (unless there are centrally concentrated regions).

Galaxy clusters have N ≈ 103 and tcr ≈ 109 yr, so τrel ∼ 1010 yr, comparable to their ages.

Therefore, many galaxy clusters are expected to be at least partially relaxed.

All this is wonderful, but by now you may be wondering what the big honking deal is

about relaxation. So what if the velocity vectors are scrambled a bit? The reason this is

important has to do with a fundamentally important fact about gravity:

The less energy a self-gravitating system has, the faster it moves.

To see this, return to a one-body orbit. Heck, let it be a circle. The total energy is

Etot = W +K = −2K +K = −K. Since Etot < 0 for a bound orbit, then the more negative



it is, the larger (more positive) K is. As an example, Mercury moves faster in its orbit than

Neptune does, and Mercury is deeper in the Sun’s gravitational well.

Why is this important? Recall that we showed that if two equal-mass particles interact,

one of which is moving faster than the other, then the faster-moving one gives up energy

to the slower-moving one. That means that the faster-moving one loses energy. But loss

of energy means that it sinks deeper into the cluster’s potential, so it moves faster. This

process continues, with the faster particles tending to lose energy and sink deeper, therefore

moving faster and so on. Ask class: what does this mean about the evolution of the cluster

as a whole? It means that even if all the particles are of equal mass and the cluster starts

out with essentially uniform density, random interactions tend to grant extra speed (thus

lower total energy) to some particles, which then sink to the center. Over a period of a few

relaxation times, therefore, the center of the cluster gets denser and the outer part expands.

This happens in such a way as to conserve total energy. Thus, the effective radius of the

cluster increases with time. In the case of a globular, the outermost stars become susceptible

to tidal stripping by the host galaxy.

We’ve talked about thermodynamic analogies, so here’s another one. Although the

energy is constant, the “entropy” of the system goes up because the outermost stars have

a lot more volume to access than they did before (and this more than makes up for the

smaller volume accessible to the core stars). The effective negative specific heat of gravity

(take away energy and things move faster, i.e., get hotter), however, produces strange effects

because heat flows from cold things to hot things. That takes some getting used to!

What if the stars in a cluster have a range of masses? Let us, briefly, return to the

interactions between two stars. Suppose two stars approach each other on hyperbolic orbits.

Let the first star have mass m1 and the second have mass m2. Assume that initially, both

have speed v0 as measured in the cluster frame and that both are moving in the direction x̂.

What is their speed in the cluster frame after they interact gravitationally?

As we did for stars of the same mass but different velocity, we simply need to take into

account conservation of energy and linear momentum. Let the initial velocity of particle 1

be v1 = v0x̂, and the initial velocity of particle 2 be v2 = −v0x̂. Ask class: for masses

m1 and m2, what is the velocity of the center of mass? We can get it by conservation of

momentum:

vCM =
1

Mtot

ptot =
m1 − m2

m1 + m2

v0x̂ . (11)

Therefore, in the center of mass frame, the initial velocities are

v1,CM = v1 − vCM = 2m2v0/(m1 + m2)x̂

v2,CM = v2 − vCM = −2m1v0/(m1 + m2)x̂ .
(12)

Say that the result of the interaction is that particle 1 is deflected by an angle θ, as measured



in the center of mass frame. Ask class: by how much is particle 2 deflected? By θ, since

otherwise momentum isn’t conserved. Concentrate on particle 1. The new velocity in the

center of mass frame is

v′

1,CM
= |v1,CM| cos θx̂ + |v1,CM| sin θŷ . (13)

Adding back the center of mass velocity, the new velocity in the cluster frame is

v′

1
=

v0

m1 + m2

(2m2 cos θ + m1 − m2) x̂ +
v0

m1 + m2

2m2 sin θŷ . (14)

Therefore, the new speed is

v′

1
= [v0/(m1 + m2)]

√

m2
1
+ m2

2
− 2m1m2 + 4m2

2
+ 4m2 cos θ(m1 − m2)

= [v0/(m1 + m2)]
√

m2
1
+ m2

2
+ 2m1m2 + 4[m2

2
(1 − cos θ) − m1m2(1 − cos θ)]

= [v0/(m1 + m2)]
√

(m1 + m2)2 + 4m2(m2 − m1)(1 − cos θ) .

(15)

Ask class: what does this say about how the speed changes? It says that if m2 > m1, star

1 gains speed from the encounter, but that if m1 > m2, star 1 loses speed. Therefore, the

more massive star loses speed in an encounter of this type. Now let’s check the expression.

Ask class: what units, limits, or symmetries can we consider? The units are okay (we need

a speed, and indeed the masses cancel out). The symmetries are okay (relabeling 1 to 2

gives the right result). At least two limits are also okay: m1 = m2 gives no change in energy,

regardless of the angle, and θ = 0 (no encounter) also doesn’t change the speeds. We’ve

only considered a restricted set of encounters (collinear, equal speed in the cluster frame),

but this motivates what turns out to be a more general rule: interactions tend to produce

faster-moving light objects and slower-moving heavy objects. In fact, remarkably, one finds

that there is net zero energy transfer for isotropic interactions and a Maxwellian distribution

of speeds when the average kinetic energy is the same for all masses. Ask class: what

does that imply about the average speed as a function of mass? Since 1

2
mv2 is constant,

v ∝ m−1/2.

Given this result, Ask class: what does this imply about the relative locations of

less and more massive objects as the cluster evolves? Since the more massive objects lose

energy through interactions, they sink to the center and go faster. Indeed, this process

of mass segregation is observed in many globulars, where in the center higher-mass stars

can outnumber lower-mass stars, in contrast to the normal ordering. One also expects

to find an excess of black holes and neutron stars in the centers of globulars, as well as

binary stars (which count as two stars, mass-wise). This is likely to lead to a bunch of very

interesting interactions, some of which I am investigating for their potential as gravitational

wave sources.


