
Waves and Instabilities

With the introduction of dynamics in fluids comes the possibility that there is time

variation in the density, pressure, etc., of the fluid. In particular, even if you were to set up

a fluid in complete equilibrium (e.g., you could imagine a stationary Sun), in reality there

are many things that will perturb the fluid slightly. In some cases, the perturbation will

be damped away (think of ripples in molasses). In others, it may produce a wave or mode,

and in still others it may lead to an instability. The general analysis of such perturbations

is broadly useful throughout physics. In this lecture we’ll explore some particular examples

and their astrophysical applications. First, though, let’s sketch out how you would do a

perturbation analysis.

• Set up your fluid in equilibrium. You now have the density ρ0(r), the pressure P0(r),

and other equilibrium quantities, where the “0” subscript indicates equilibrium. Since

these equations are equilibrium solutions, they have no time-dependence.

• Write the relevant equations of fluid dynamics for your problem. These will be such

that ρ0, P0, etc., satisfy the equations.

• Now imagine that the density, pressure, and so on are changed very slightly from their

equilibrium values. That is, say that ρ(r) = ρ0(r) + ρ1(r, t), where ρ1(r, t) ¿ ρ0(r),

and similarly for the pressure or other quantities. Note that we allow the perturbed

quantities to depend on time.

• Put these into your equations of fluid dynamics. The lowest order portions (involving

just ρ0, etc.) solve the equations automatically, so you can subtract those out. Now,

only keep first-order terms in the equation. For example, you would keep ρ0P1, but

not ρ1P1, because that is second-order in magnitude. This is called linearization of the

equations.

• Now an important trick: just as in Fourier analysis, where any one-dimensional

function can be represented by a sum of sines or cosines, here your function ρ1(r, t)

can be represented by a sum of the functions C exp[i(ωt− k · r)], where C = C(ω,k) is

a constant, ω is a frequency, and k is called a wavenumber and has units of cm−1.

• The key is that to linear order, a given (ω,k) term evolves independently from all other

(ω,k) terms. Therefore, we can consider each one of them separately.

• The gist is that you can put ρ1 = cρ exp[i(ωt − k · r)], P1 = cP exp[i(ωt − k · r)], and

so on into your equations as a trial solution. The time and spatial derivatives are then

easy to compute, and you end up with a relation between ω and k. This is called a

dispersion relation.

• From the properties of ω, you can figure out whether a perturbation is damped, or

oscillates, or grows, or whatever.



This procedure is general enough that we will look at several examples. We’ll start

with simple ones, where using the full power of this technique is akin to hammering a

tack with a sledgehammer, then move to somewhat more complicated examples. However,

never lose sight of the underlying physics! Dispersion relations are mightily helpful in doing

quantitative analysis, but you always need to back it up with an understanding of why the

instability or oscillation is taking place!

Okay, first example. Consider a pendulum that consists of a mass m at the end of

a massless but rigid rod of length l, suspended in a constant gravitational acceleration g

(downwards). Let the point O be the equilibrium position, and let s measure the distance

from O. The component of the gravitational force in the direction of s is −mg sin θ, where

θ is the angle made by the rod to the vertical direction. Therefore, θ = s/l. The equation

of motion is

ms̈ + mg sin(s/l) = 0 . (1)

Cancelling the ms and writing in terms of θ, we have

θ̈ +
g

l
sin θ = 0 . (2)

Now we linearize. Assume θ ¿ 1, so this is a small displacement from vertical. Then

sin θ ≈ θ, so we have

θ̈ +
g

l
θ = 0 . (3)

Now we try a trial solution: θ = θ0 exp(iωt). At this point you may wonder: how can

the angle be complex? It can’t, of course. However, a nice general principle about linear

differential equations with real coefficients is that if a complex function satisfies the

equation, then the real and imaginary parts must satisfy the equation separately. You’d

only get into trouble if there were something that mixed the real and imaginary parts, such

as squaring the function. In any case, we’ll choose a complex function for convenience of

manipulation, then take the real part if necessary for relation to reality.

When we put this trial solution in, we find

−θ0ω
2 exp(iωt) + (g/l)θ0 exp(iωt) = 0

ω2 = g/l .
(4)

This has two solutions: ω = +
√

g/l and ω = −
√

g/l. Either one gives an oscillating

solution, with the same result that we find a pendulum swings back and forth! Duh. This

is a pure oscillating solution, with no damping or growing terms.

What happens if we consider the same pendulum when it starts in a vertically upwards

position? By the same logic, we find that when θ ¿ 1 the equation of motion becomes

θ̈ −
g

l
θ = 0 . (5)



Once again, we try θ = θ0 exp(iωt). Now we find

−θ0ω
2 exp(iωt) − (g/l)θ0 exp(iωt) = 0

ω2 = −g/l .
(6)

That minus sign makes a big difference! It means that ω = ±i
√

g/l, so our solution is

θ = θ0 exp(±t
√

g/l) . (7)

Unlike the oscillating case, where the two solutions were basically equivalent, the two

solutions here are not the same at all! The one with the negative in the exponential dies

away, on a typical time scale t0 ≈
√

l/g, whereas the one with the positive sign grows, on

the same time scale. Therefore, if θ0 ¿ 1 initially, the dying one becomes insignificant

whereas the growing one becomes exponentially larger. This is a mathematical statement of

something you know from experience: if, say, you balance a ruler vertically on your finger,

it is unstable and falls down. This is a pure growing mode, with no oscillating terms.

Therefore, in these simplified examples, when ω is purely real, you get just oscillation.

Ask class: what is an astrophysical example of that? Modes on the Sun are long-lived,

so they are essentially undamped. When ω is purely imaginary, you get either growth or

damping, depending on the sign. Ask class: can they think of an example? The collapse of

a supernova core is an instability of this type. In general you can imagine other possibilities.

For example, one could have oscillation with damping. Ask class: what is an example?

Waves produced by a comet impact. For a biological example, think of oscillations of body

temperature. These have to be damped, otherwise we could run into a real problem! One

could also have an oscillation that grows; this, misleadingly, is called “overdamping”(!). It

simply means that the system overcorrects, so the amplitude goes up. Some of you may

have experienced this when learning to drive: if you veer to the left, you swing the wheel

too far to the right, then even farther to the left, so that you fishtail.

Now let’s use this machinery on a problem we studied before: the Jeans instability,

where a nearly uniform gas cloud can become gravitationally unstable. Our basic equations

are the continuity equation, Euler’s equation, and the Poisson equation:

(∂ρ/∂t) + ∇ · (ρv) = 0 ,

(∂v/∂t) + (v · ∇)v = −(1/ρ)∇p −∇Φ ,

∇2Φ = 4πGρ .

(8)

We also need an equation of state, i.e., a relation of pressure to density, temperature, or

other parameters. We’ll consider an equation of state in which the pressure is just a function

of density, which is called a barotropic equation of state, P = P (ρ) (for example, in an ideal

gas, P ∝ ρ5/3).

We therefore have four quantities of interest: the density, pressure, velocity,

and potential. Let the equilibrium values be represented by a 0 subscript:



ρ0(r), P0(r), v0(r), Φ0(r). Now consider a small time-dependent perturbation:

ρ(r, t) = ρ0(r) + ρ1(r, t) ; P (r, t) = P0(r) + P1(r, t)

v(r, t) = v0(r) + v1(r, t) ; Φ(r, t) = Φ0(r) + Φ1(r, t)
(9)

Now we can place these into the fluid dynamic equations. The zeroth order time-independent

terms sum to zero. Therefore, we subtract them out to get the first-order equations (but

don’t include second-order terms). We’ll skip the details. What we need to do is determine

the equilibrium state, then put that into the first-order equations so that we can solve for

the perturbed quantities. In this situation, this involves what Binney and Tremaine (in their

book “Galactic Dynamics”) call the “Jeans swindle”. The problem is that we are imagining

perturbations of an infinite homogeneous medium. If the density and pressure are constant

and the mean velocity is zero, this means (from Euler’s equation) that ∇Φ0 = 0. However,

the Poisson equation says that ∇2Φ0 = 4πGρ0. Oops! The only way these are consistent

with each other is if ρ0 = 0, which would be a rather boring situation. The Jeans swindle

is to assume that Poisson’s equation relates only the perturbed potential to the perturbed

potential, and that the unperturbed potential is zero. One must check the validity of this

in a given situation, but it usually gives surprisingly accurate answers.

Therefore, we assume an equilibrium state in which ρ0 is a constant in space, v0 = 0,

and Φ0 = 0. If we use the internal energy per unit mass (also called the enthalpy), we find

that the perturbed enthalpy is w1 = c2

sρ1/ρ0, where cs is the speed of sound. Our four

linearized equations then become

∂ρ1/∂t + ρ0∇ · v1 = 0

∂v1/∂t = −∇w1 −∇Φ1

∇2Φ1 = 4πGρ1

w1 = c2

sρ1/ρ0

(10)

If we take the partial time derivative of the first equation, combine it with the divergence

of the second, and eliminate v1, Φ1, and w1 in favor of ρ1, we get

∂2ρ1

∂t2
− c2

s∇
2ρ1 − 4πGρ0ρ1 = 0 . (11)

Now we substitute in our trial solution

ρ1(r, t) = C exp[i(ωt − k · r)] . (12)

Defining k ≡ |k|, this gives us a dispersion relation between ω and k:

ω2 = c2

sk
2 − 4πGρ0 . (13)

Whew! Time to take stock. Ask class: what does this mean in terms of stability

or instability as a function of the wavenumber k = 2π/λ, where λ is the wavelength?



Remember that if ω is real, we have an oscillating solution, whereas if ω is imaginary we can

have exponential growth. With this in mind, when c2

sk
2 > 4πGρ0, we have only oscillations.

Note, however, that unlike the case of the pendulum (where the system oscillates in place),

here constant phase keeps k · r−ωt constant. Ask class: what does that mean, physically?

It means that the wave travels. In fact, this is a sound wave! It says that if k is large enough

(equivalently, if λ is small enough), then squeezing a region of the gas and letting it go

produces a wave that travels in the medium at the sound speed. However, if c2

sk
2 < 4πGρ0,

then ω2 < 0 and one of the solutions grows exponentially. Therefore, for small enough k

(i.e., large enough λ), a perturbation will grow. The critical wavenumber or wavelength is

then given by
k2 < k2

J ≡ 4πGρ0/c
2

s

λ2 > λ2

J ≡ πc2

s/Gρ0 .
(14)

The mass contained in a sphere of diameter λJ is the Jeans mass:

MJ =
4π

3
ρ0(

1

2
λJ)3 =

1

6
πρ0

(

πc2

s

Gρ0

)

3/2

. (15)

Our previous answer, based on energy arguments, was

MJ =

(

5

2

kT

Gm

)

3/2 (
4π

3
ρ
)

−1/2

. (16)

This has a numerical factor of 1.9. Since c2

s = 3kT/m, our new derivation based on the

dispersion relation has a numerical factor of 2.7. Pretty close, especially when you consider

that perturbations need not be exactly spherical, so there is some slack in the derivation

anyway.

I hope this has given you some sense of the mathematics that can go into analysis

of the stability of systems. The procedure just followed can be used in a wide variety

of circumstances. To be redundant, the key is always that you must have a physical

understanding of why a system is stable or unstable in some situation. That allows you to

catch errors, and also gives you more insight into the system.


