
Order of Magnitude Estimates in Quantum

As our second step in understanding the principles of quantum mechanics, we’ll think

about some order of magnitude estimates. These are important for the same reason they

always are: they allow quick assessment of models or effects for importance, so that if

necessary we can then make more accurate calculations.

The effect we’ll focus on is one that may seem surprising. The uncertainty principle

doesn’t just limit precision in measurement. Remarkably, it also produces a host of other

effects, including the appearance of a new type of energy and new forces! We’ll explore

these principles in a couple of different ways, then look at applications.

Suppose that you confine a particle within a box of size ∆x. Ask class: according to

the uncertainty principle, what is the lower limit on the uncertainty about the momentum

of this particle? Since we have ∆x∆p >∼ h̄, then the uncertainty in the momentum is

∆p >∼ h̄/∆x. So far, so good. However, the next step may not be as obvious: if the

magnitude of the momentum itself were to be less than h̄/∆x, then we would know the

momentum to more than the allowed accuracy of h̄/∆x. Therefore, |p|>∼ h̄/∆x!

If you’re not convinced, we can do a little quantum mechanics on the cheap to motivate

this further. Suppose as before that we confine a particle within a box of size ∆x. Let

the box have strong walls that are infinitely thick and high. This means that the particle

has zero probability of being outside the box. From the postulates of quantum mechanics,

this implies that the squared modulus of the wavefunction is zero outside the box as

well. However, the probability must integrate to unity over all space. Therefore, all of

the probability has to be confined to the box, within a distance ∆x. In addition, further

investigation reveals that the probability cannot be discontinuous (this is not something

that follows immediately from the axioms we’ve discussed, but is true anyway). Thus the

probability has to vanish at the sides of the box, and must integrate to 1 over the box.

Imagine, then, that the wavefunction can be represented by something like sin(x/λ),

where λ is the wavelength of the probability function inside the box and we choose this form

because it can have zeros at periodic intervals. Ask class: what do these conditions imply

about λ? If there is a zero at, say, x = 0 and x = ∆x, then we know λ = ∆x/(πn), where n

is a positive integer. That’s the only way to have zeroes at the right places. In particular,

it means that the wavelength cannot be any more than ∆x/π. You may worry that this

is the result of a special choice of wavefunctions, but in fact since any function may be

represented by the sum of sines and cosines (that is, in a Fourier series), it is roughly the

case that no term in that series may have a wavelength longer than ∆x/π, otherwise the

boundary conditions wouldn’t be satisfied.

For our next step, let’s pretend that the particle acts like a photon, so we have a definite



relation between the wavelength and the momentum. Ask class: what is the momentum of

a photon with wavelength λ? The momentum is simply p = h/λ. Therefore, the minimum

momentum of the particle is pmin = h/(∆x/π). Ignoring factors of π and the like, we again

find p >∼ h̄/∆x. Note that it doesn’t make sense to be overly precise at this point, because

the true minimum momentum will depend on the shape of the box (or more physically, on

the functional form of the confining potential).

Now, of course, there’s nothing to prevent the momentum from being larger than this

value. For a particle in a box, it is perfectly legal for the wavelength of the wavefunction

to be smaller than ∆x/π, as long as an integral number of wavelengths fit inside the

box. However, unlike in classical physics, there is a lower limit to the momentum. Note,

incidentally, that the lower limit is proportional to h̄. The appearance of Planck’s constant

in anything at all tells us that quantum mechanics is important, and to get the classical

limit you can set h̄ → 0. Similarly, if you ever see c, the speed of light, you know that

relativity is important, and if you ever see G, the gravitational constant, you know that

gravity is important. This gives you another way to check your equations quickly.

What other consequences does this have? If a particle has momentum, it has energy.

Suppose that the momentum is very nonrelativistic, i.e., pmin ¿ mc, where m is the rest

mass of the particle. Ask class: what is the kinetic energy of a particle of momentum p?

It’s p2/2m in the nonrelativistic limit. Therefore, the minimum energy is Emin ≈ p2

min
/2m,

or ∼ (h̄/∆x)2/2m. Ask class: what if the momentum is highly relativistic? Then, as with

photons, E ≈ pc, or Emin ≈ h̄c/∆x. Therefore, even if the particle has no other source of

energy (e.g., normal kinetic energy or thermal energy), it will have this energy. This energy,

based on the uncertainty principle, is called Fermi energy, and is written EF . Similarly, the

minimum momentum is called the Fermi momentum, and written pF .

What applications does this have? For one, think about states of matter. In normal

experience, a substance is a gas when its thermal energy is larger than the Coulomb energy

between individual molecules (more or less; there’s actually a factor between those energies,

but we’ll ignore it in this simple treatment). As the substance cools down, there comes a

point when the thermal energy is smaller than the Coulomb energy, then the substance

becomes a liquid. At even smaller temperatures, the lattice energy (i.e., the energy benefit

of arranging molecules in a regular order) is larger than the thermal energy, and the

substance becomes a solid. If thermal energy were the only competitor to these effects,

then all substances would become solid at a small enough temperature. However, we also

have to worry about Fermi energy. Even if the temperature is absolute zero, there is some

residual energy left and if that energy is greater than the lattice energy, the substance

won’t become a solid. This is actually the case for helium at atmospheric pressure. Helium

is so symmetric that it has just a tiny lattice energy, which is enough less than the Fermi

energy that helium stays a liquid. If the pressure is boosted to about 30 atmospheres, then



helium can become a solid because of enhanced lattice energy, but at normal pressures this

is dramatic proof of the importance of Fermi energy!

We can therefore, roughly, divide up substances into whether thermal energy or Fermi

energy is more important, i.e., whether kT > EF or EF > kT . If the former is true,

especially if kT À EF , then we have more or less classical statistics. If EF > kT , especially

if EF À kT , then quantum statistics dominate and the material is called degenerate. If the

material is degenerate, then we need to know whether it is relativistic or nonrelativistic. For

fully ionized normal material, electrons have a relativistic Fermi energy (i.e., EF ∼ mec
2)

at a density ρ ∼ 106 g cm−3. The boundary scales as m3, so neutrons and protons have

relativistic Fermi energies at much, much, higher densities. Note the distinction: degeneracy

depends on the comparison between Fermi energy and temperature, so it can happen

whether or not the components are relativistic.

For Perspective: am I degenerate? In the old days we’d figure this out by

considering my deeds and bad habits, but now we can answer it mathematically! Ask

class: what do we need to determine? We need to figure out the Fermi energy of my

constituents, then compare it to my thermal energy. Ask class: if there are plenty of free

particles of all kinds, what kind of particle would be degenerate first? Electrons, because

they have lower mass and EF ∝ 1/m for nonrelativistic. Ask class: is the nonrelativistic

limit the correct one? Yes, because 106 g cm−3 is the rough boundary, and I’m nowhere

near that!

In the examples above we’ve discussed matter that is completely ionized, so that

electrons are free to move around as they will. However, in me the electrons are mostly

not free. Instead, typically there are ions. So, let’s calculate first what the Fermi energy

is assuming the dominant species is a molecule of some sort. What is the most common

molecule? Water, of course. Water has an atomic weight 18 times that of hydrogen, or about

20 times that of the neutron, roughly speaking. The critical density at which the Fermi

energy becomes relativistic goes like M 3, so for water it is about 203 ≈ 104 times that for

neutrons, or about 6 × 1019 g cm−3. Below this density the Fermi energy is nonrelativistic,

and therefore goes like p2 ∼ n2/3. At my density of ∼ 1 g cm−3, the Fermi energy is

therefore ∼ 10−13 times the rest mass energy of water, or 10−13×20 GeV=2 × 10−3eV. The

equivalent temperature for 1 eV is about 104 K, so this equates to about 20 K versus about

300 K for the temperature. Sadly, most of my mass is not degenerate! Of course, this is

also true for, say, a white dwarf, where the mass is dominated by nondegenerate nucleons

but the degenerate electrons provide the pressure.

But there may still be hope for me! Suppose that I have some small fraction of free

electrons running around in me. In particular, suppose that there are about 10 electrons

per molecule, and that about 1% of molecules have donated 1 electron to the general

environment. The density of free electrons is therefore 10−3 times the density it would be if



all atoms were completely ionized. For the purpose of this calculation, therefore, it’s as if I

were completely ionized but had a density of about 10−3 g cm−3. Using the same approach

as before, we know that for electrons the density at which relativistic degeneracy starts is

about 106 g cm−3, and that below this the Fermi energy scales as p2 ∼ n2/3. Therefore,

at 10−9 of this density the energy is 10−6 of the electron rest mass energy, or 0.5 eV.

This equates to ∼5000 K, meaning that my electrons would be degenerate by a factor of

more than 10! Woohoo! Unfortunately, J. Norman Hansen, professor of chemistry and

biochemistry at Maryland, says that in biological systems free electrons essentially don’t

exist, because as soon as one would be stripped off of a molecule it would go to another

one, and hence electrons spend time in one orbital or another. Thus, tragically, I’m not

degenerate :).

Let’s try another application. In this one, we will derive a maximum mass for white

dwarfs and neutron stars, which are supported by degeneracy pressure. What we mean by

that is that the Fermi energy is so much larger than the thermal energy in the bulk of the

star that we may as well ignore thermal effects. Then, the star is in hydrostatic support

with a pressure gradient based on Fermi effects rather than, say, ideal gas pressure.

Suppose there are N particles supplying the pressure in a star of radius R, so

that the number density is n ∼ N/R3 (note that we are dispensing with factors of

order 4π/3). Ask class: what is the typical distance between particles? It’s about

∆x ∼ n−1/3. Ask class: therefore, what is the approximate Fermi momentum? Roughly

pF = h̄/∆x = h̄n1/3. Ask class: if the material is nonrelativistic and the mass of the

particles supplying the Fermi pressure is m, what is the Fermi energy per particle? It is

EF ≈ p2

F /2m ≈ h̄2n2/3/2m ≈ h̄2N2/3/(2mR2). We now consider the gravitational energy;

note that most of the mass is in baryons (neutrons and protons), even if the particles

providing the Fermi energy are electrons. Therefore, the mass per particle of interest is

roughly mB, the mass of a baryon. If the star has mass M and radius R, Ask class:

roughly what is the gravitational potential energy per particle? It is on the order of

EG = −GMmB/R = −GNm2

B/R. Therefore, the total energy per degenerate particle in

the nonrelativistically degenerate case is

Etot ∼
h̄2N2/3

2mR2
−

GNm2

B

R
. (1)

The star will minimize its total energy given the constraints, and since the radius is the

only free variable here, the radius will change so that E is as low as possible. Note that

the positive term goes like R−2 whereas the negative term goes like R−1, so the star can’t

contract indefinitely. Therefore, in the nonrelativistic regime, the star is stable.

What about the relativistic regime? Ask class: when the Fermi momentum is

relativistic, what is the approximate Fermi energy? It is EF ≈ pF c ≈ h̄cN 1/3/R. Then the



total energy per relativistically degenerate particle is

Etot ∼
h̄cN 1/3

R
−

GNm2

B

R
. (2)

Now, the radial dependences are the same for both terms. If this energy is positive, the star

minimizes its energy by increasing R. In doing so, it eventually becomes nonrelativistic,

at which point it becomes stable. However, if the total energy is negative, then the star

decreases its energy by decreasing R, making the particles even more relativistic, so the star

contracts further, and so on. This is unstable. The stability threshold is therefore reached

when Etot = 0, which happens when the particle number reaches

Nmax ∼ [h̄c/(GmB)2]3/2 ∼ 2 × 1057

Mmax ∼ NmaxmB ∼ 1.5 M¯ .
(3)

This is called the Chandrasekhar limit. White dwarfs or neutron stars much more massive

than this can’t exist. We have cheated a little in the numerical factors, and for neutron

stars in particular there are other effects that may move the maximum mass up to 2.2 M¯

or so, but this is the basic physics.


