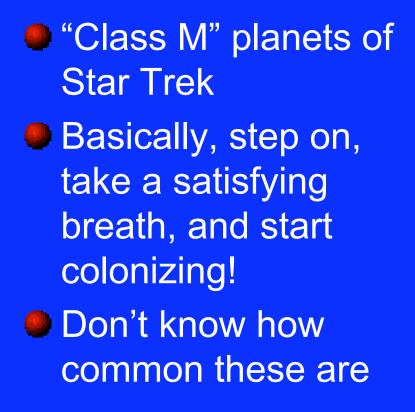
ASTR 380 Terraforming Other Planets

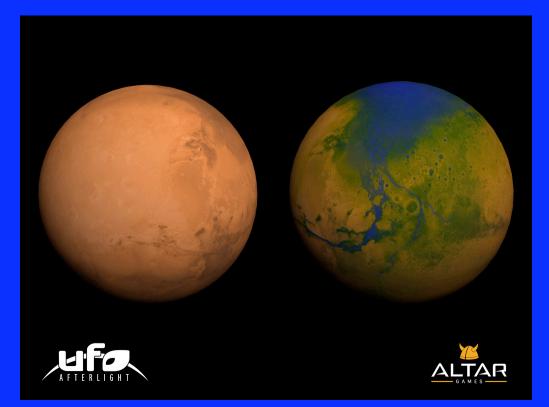


http://mensa-barbie.com/bloggerimages/468-Solarsyst_new_world_gliesesyst

Outline

Definitions and context
Terraforming Mars
The far future

Habitable Planet



Biocompatible Planet

Planet with physical parameters to be habitable
Doesn't have to be life on it now

Classic example: Mars, which we will now consider in detail

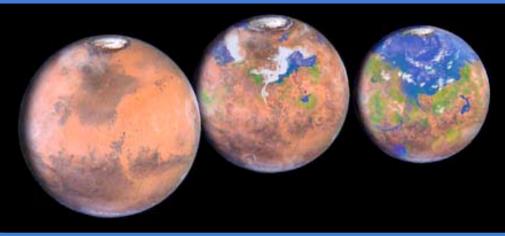
Terraforming Mars

Shaun Moss Mars Society Australia shaunmoss@yahoo.com.au June 2006

Goals of Terraforming

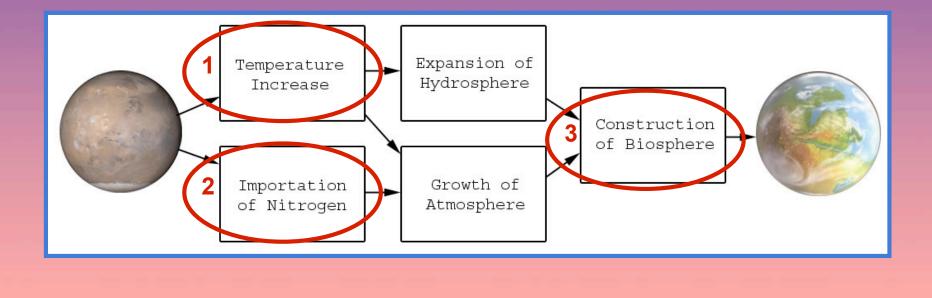
A planet that supports life from Earth:
Temperatures approx. 0±40°C
Abundant liquid water
Breathable air
Fertile soil that supports plant growth
Sunlight
Walk on the surface without a spacesuit.

Why Mars?



Not too far from the Sun
Approx. 24 hour diurnal cycle
Not excessively cold (-140°C .. 20°C, avg -63°C)
Has water, CHNOPS, metals
Has seasons like Earth
Can hold an atmosphere
Because we think we can

Usual Approach


- Warm Mars by several degrees.
- CO₂ and water vapour sublime from polar caps and regolith.
- Greenhouse effect warms planet further, releasing more CO₂ and water vapour, generating more heat and so on: "runaway greenhouse".
- Liquid water becomes more prevalent on the surface.
- Introduce life. Photosynthetic organisms convert CO₂ into O₂.
- Eventually atmosphere and temperature suitable for animals, including humans.

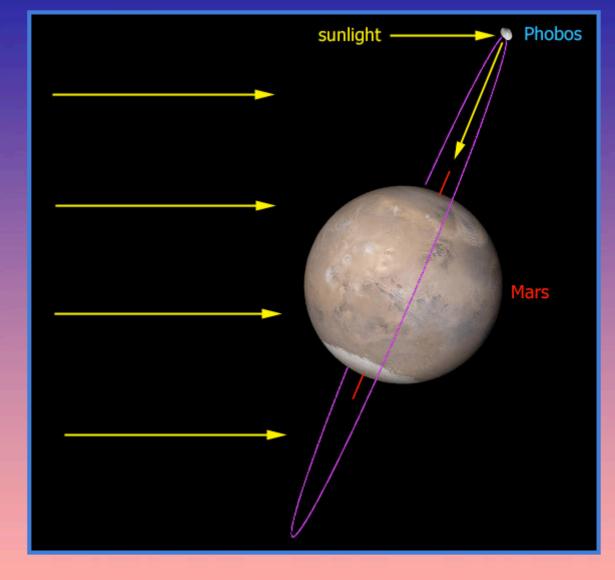
Flowchart

Goal is a <u>self-regulating equilibrium</u>, probably best achieved by a well-designed, stable, global biosphere.
 Note addition of N₂ importation – to be discussed.
 3 primary planetary engineering tasks:

Task 1: Increasing Temperature

Bulk of T increase comes from greenhouse effect.
Some initial warming required to kick-start.
Popular ideas:

Space-based mirrors
Greenhouse gases
Albedo reduction


The New Phobos: Mars's 2nd Sun

Phobos's orbit in decay.

- Move Phobos into a higher, stable orbit. Repositioning minor planets already examined in context of NEOs.
- Better yet, move Phobos into a stable polar orbit, and cover its near side with array of mirrors.
- Sunlight reflected down onto both poles ~3 times per day, all year round. Triggers sublimation of CO₂ and water vapour.
- Each mirror on a 2-axis mount, computer-controlled to track the Sun. Solar-powered system.
- Phobos only 22km diameter, but could extend mirror array wider by building a framework into space.
- Primary advantage: Phobos provides a source of material for mirror fabrication, e.g. Fe, Al
- Phobos appears like a second sun with half diameter of Sol, travelling from N to S.

Phobos Mirror

Greenhouse Gases

- CFCs excellent GHG, but short-lived in high-UV, also ozone-depleting.
- PFCs much longer-lived, 6500-9200 times more effective than CO₂ and non O₃-depleting. Could build PFC factories.
- O₃ good greenhouse gas which increases with O₂ levels, and also needed to provide radiation protection.
- NH₃ obtainable from asteroids.
- Methane: CH₄ is 23 times more effective GHG than CO₂
 - Cheap: can be produced industrially from H_2 and CO_2 (ISPP).
 - Can also be manufactured biologically.
 - Non-toxic and increases ozone production.

Introduce Methanogens

- Extremophilic methanogens could be engineered to live on Mars and produce methane. Stage 1 of biosphere.
- Subsurface first (chemotrophic), surface later (phototrophic).
- Might already be there. CH₄ in Martian atmosphere is a clue.
- If so, extant organisms could be made more prolific and/or, might spread as planet warms and more H₂O.
- Methanogens are anaerobic and will die out as O₂ levels rise, unless new strains are engineered.

Albedo Reduction

Prev suggestions:

 Dark-coloured algae/lichen.
 Spreading black dust on poles – unfeasible in Martian winds.

 Longer-term solution:

 Engineer plants with dark-green leaves.
 Can offset T drop as CO₂ levels decrease.

Summary: Warming

1. Phobos mirrors. Triggers global warming.
2. Early biosphere: methanogens.
3. Long-term warmth: plants with dark-

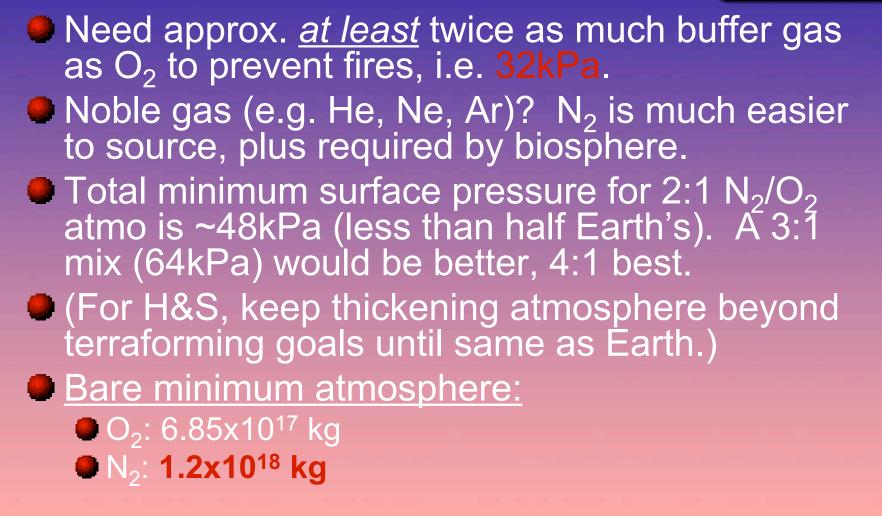
green leaves; also aerobic methanogens.

Atmosphere Engineering

Task 2:

- Mars's atmosphere almost wholly CO₂, small amounts of N₂ and Ar, trace elements of other gases.
- However, very thin: only ~0.8kPa.
- Ideally, terraformed atmo will be like Earth's: 79kPa N₂, 21kPa O₂. What's the minimum?
- Require at least 16kPa O_2 = minimum safe breathable partial pressure of oxygen.
- Equivalent to altitude of about 3km on Earth. (About 20% of newcomers would experience altitude sickness.)
- \bigcirc O₂ manufactured from CO₂ by photosynthetic organisms.

Nitrogen



Mars has only 2.7% atmospheric N₂ and unknown quantities of other N compounds.

- Importance of N₂ frequently overlooked by terraformers.
- Nitrogen fundamental to all DNA-based life, component of amino acids & nucleic acid bases. Probably insufficient nitrogen for planet-wide biosphere.
- On Earth, N₂ also serves as a buffer gas, reducing oxygen toxicity, fires and corrosion. O₂ levels higher than 35% cause spontaneous combustion of biosphere.
- We need more N_2 .

How Much Nitrogen?

Where to get all this N₂?

- 3 options:
 - Earth
 - Venus
 - Titan

Earth – unlikely, probably cause global climate change.

 Venus – close, but requires separation of 3.5% N₂ from 96.5% CO₂. (This option better if simultaneously terraforming Venus.)

Titan – atmo 98.4% N₂, remainder CH₄ (which we like).
 Far away, but robotic atmosphere-mining tankers would have simple design. Just fly through atmo and fill the tanks.

Mining Titan's Atmosphere

- Titan's atmo contains approx. 9x10¹⁸ kg N₂ and we want 1.2x10¹⁸ kg N₂, so we are talking about transporting about ~13% of it to Mars.
- How long will it take?
- Let's say, 1st year we build 5 spherical tankers with r=100m. Est. round-trip to Titan = 10y.

- Tech improves yearly. On average, every year we build 10% more ships than the previous year, with 10% larger radius, & decrease round-trip time by 10%....
- Have obtained required N_2 in just <u>4 decades</u>.
- Even if it takes 2-3 times this long, this is not excessive compared to other tasks.

Managing CO₂ & O₂ Levels

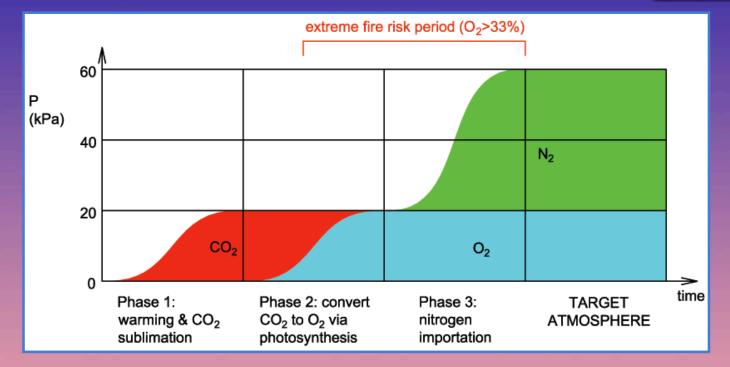
Will we have enough CO₂?

- CO_2 may not come out of regolith easily.
- CO_2 dissolves in water, the colder the better. As hydrosphere expands, CO_2 levels will drop & not replaced by O_2 .
- In water, CO₂ can react with minerals to form carbonates hard to return these to atmosphere. (High acidity may inhibit carbonate formation)

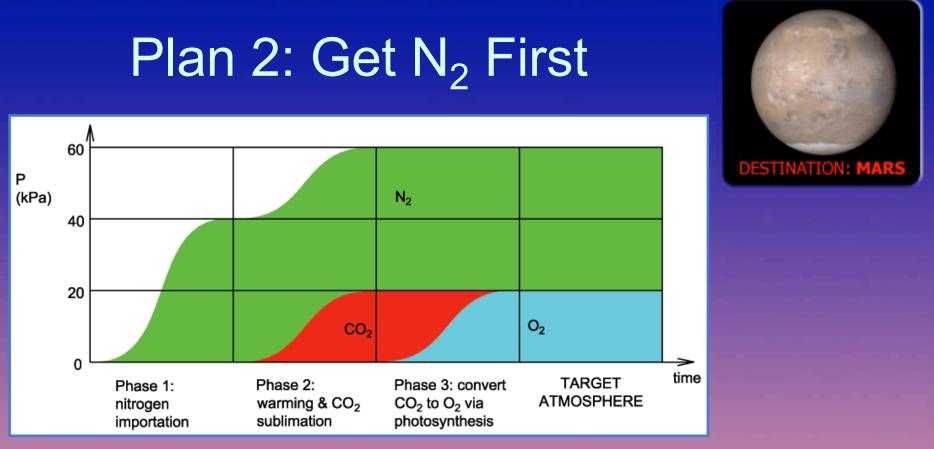
• Will we have too much CO_2 ?

- Estimated 40kPa CO₂ can be sublimated if loosely bound in regolith. But we only need 16 - 21kPa O₂.
- Maximizing phytoplankton mass can offset carbonate production by converting dissolved CO₂ to O₂.
- Some bacteria can liberate CO₂ from carbonate rock.
- \circ O₂ can be produced by electrolysis or metal refining.
- Can always get more CO_2 from Venus.

Get the N₂ first

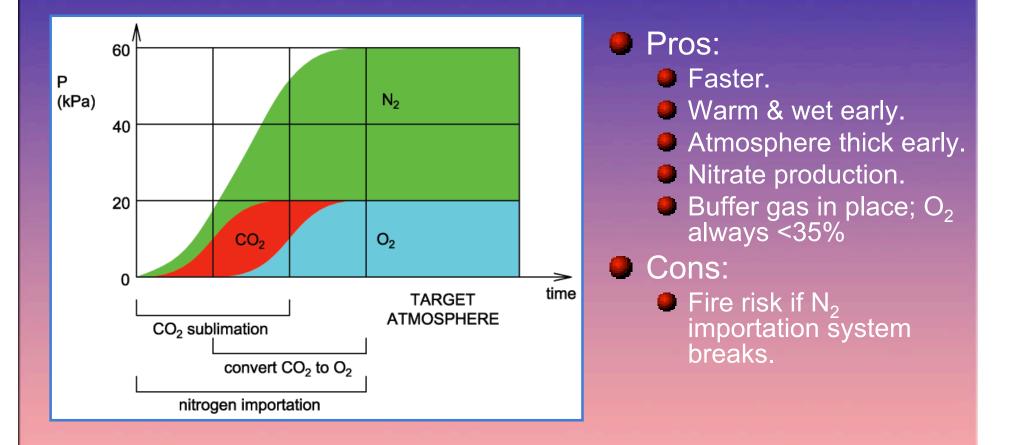


Maximum safety:


- Biological O₂ pump hard to stop/control. If O₂ levels exceed ~35%, risk of fires & damage to biosphere, machinery, bases. Many colonists by this stage.
- Must ensure sufficient quantities of buffer gas during warming and biosphere construction.
- Also: the sooner we can start getting, N compounds into the soil the better.

Plan 1: Warming First

Pros: Warm & wet early. Cons: <u>High risk of fires leading up to and during Phase 3</u>.



Pros:

- Atmosphere thick early (aids construction, improves safety).
- Buffer gas in place.
- Can start getting nitrates into soil sooner.
- Allows for a long period of Mars research before more serious climate change.
- Cons: Cold and dry for a bit longer.

Plan 3: Concurrent Phases

Task 3: Biosphere Construction

Start at the bottom of the food chain and work up:
 Basic chemical nutrients.
 Microbes → Plants → Animals
 Each generation improves environment for next.

Aquatic vs. Terrestrial Ecosystems

Aquatic ecosystems will develop before terrestrial (land-based). Just like Earth:

- 1. Life began in oceans: protection from UV, availability of nutrients.
- 2. Aquatic plants converted CO_2 atmo to O_2 .
- 3. O_3 layer formed, providing UV protection.
- 4. Life moved onto land.
- Mars cold & dry: aquatic bio-density will be greater than terrestrial. C.f. Earth:

Much more aquatic life at poles than at equator.

Why? CO₂ dissolves better in cold water, improves conditions for phytoplankton, and hence higher organisms.

Much less terrestrial life at poles than at equators.

Why? Too cold and dry.

Martian Microbes

Primary engineers of planet. Role is to prepare environment for plants. Require ecosystem that performs a variety of roles: Nitrogen-fixing Nitrification Methanogenesis Alkalisation Genetic Engineering – combine DNA from: Functional organisms Extremophiles Extant Martian life

Functional Microbes

 Nitrogen-fixing & nitrification: Azotobacter, Rhizobium, Nitrosomonas, Nitrobacter, etc.
 Chemoautotrophs/lithotrophs:

 obtain E from inorganic molecules
 synthesise organic molecules from CO₂.

 Methanogens – anaerobic, suited to low O₂, produce CH₄.

Extremophiles: Categories

Extant Martian Life

- Will have useful genetic material, adapted for Mars.
 Probably lives below surface, and therefore chemotrophic.
- Cryophilic.
- Could be endolithic (living in rocks) or aquatic (subsurface pools).
- Possibly methanogenic (low O₂ levels, plus would account for CH₄ in atmosphere).
- Combining Martian DNA with Terran species to create new organisms preserves genetic heritage – "managed evolution" may address moral question.

Martian Plants

Aquatic species

- Most important these convert atmo. Hence the need to maximize wet areas by warming.
- Phytoplankton (diatoms, dinoflagellates, <u>cyanobacteria</u>).
- Macroscopic algae: kelp.

Tundral species (cryophilic)

- Arctic, Antarctic & Alpine ecosystems.
- Mainly lichen, mosses, grasses, some flowers and woody plants, close to ground.
- Lack of pollenating insects has caused evolution of vegetative methods of propagation, e.g. underground runners, bulbils, viviparous flowers.
- Desert species (xerophilic)
 - Cactii.

Fast Biosphere Propagation: <u>Robotic Gardeners</u>

- Robots very advanced at time of terraforming, esp. on Mars.
- Can greatly increase biosphere expansion rate.
- Colonies maintain farms of algae and other Mars-successful species.
- Satellites in Mars's orbit detect water, measure heat/O₂ output, growth rates.
- Data used to direct highly mobile robots (e.g. helicopters/balloons) to carry seeds/spores to best areas.
- Humans do research, but global gardening system can be fully automated.

Martian Animals

Special purpose: Stingless bees – pollenation Earthworms – soil manufacture Granivorous birds – seed propagation Aquatic: Zooplankton, krill, squid, cold-water fish. Terrestrial: Fish-eating birds, land mammals, etc. from polar environments. First mammals: cats and dogs descended from colonists' pets.

Radiation Protection

Increasing O₂ levels build ozone layer.
 A magnetic field can be created by building a planet-circling conductor. Doubles as backbone for Martian power grid.

Mars Prospects

Terraforming Mars requires a range of solutions. Three basic planetary engineering tasks. Phobos a useful platform for space mirrors. Need to ensure nitrogen levels high enough to dilute O_2 , reduce fire risk. Use Solar System resources, not just Mars. Robotics and genetic engineering key technologies for biosphere construction. Every task affects the whole planet – all parts of process need to be managed concurrently.

Colonies on Venus?

 Terraforming Venus is much tougher!
 But at 50 km, temp, pressure is like Earth
 Normal O₂:N₂ mixture floats
 Could have giant floating cities in

atmosphere!

Methane_Harvester_final_by_gusti_boucher.jpg

Future Nanorobots?

Far future!

Might we make nanorobots that copy themselves and terraform planet?
Exponential increase, so this could be fast
Send out ahead of colony ships!

http://www.acceleratingfuture.com/michael/blog/images/bionanotechnology.jpg

Summary

Terraforming Mars, though extended and hugely expensive, is within reach
What are benefits and costs?
Ethical questions: do we have right to modify planets like this?