
Observational Parameters

Classical cosmology reduces the universe to a few basic parameters. Modern cosmology

adds a few more, but the fundamental idea is still the same: the fate and geometry of the

universe can be characterized fairly simply. It is the evolution of the components that is

complicated and increasingly the focus of research. In this lecture we will follow Chapter 6

in Liddle on the classical parameters of cosmology.

The Hubble Parameter

The first, and in principle simplest, of the parameters is the Hubble “constant” that

we’ve encountered several times. The general idea is straightforward. Since the apparent

recession speed is proportional to distance, all we have to do is measure the apparent speed

and distance for a whole bunch of objects, then figure out the proportionality constant.

Simplicity itself! But how does it work in practice?

The apparent speed really is easy, because it just amounts to measuring a redshift. In

practice, what one does is take a spectrum of an object, identify spectral lines, then figure

out the factor by which they are shifted compared to those same lines at rest. If the factor

is 1 + z, then your redshift is z and (for close objects with z ≪ 1), your apparent speed is

cz. Voila.

Hold on, though. Ask class: how do we know that a particular observed line can be

identified with a given line at rest? If we can’t make such an identification, we’re hosed.

The answer is that typically a single line or edge doesn’t give you enough information.

There are occasions when a lousy spectrum of a very distant galaxy yields only one feature,

and you can guess that this is hydrogen because that’s the most abundant element in the

universe. Most of the time, though, you use multiple lines to make your redshift identifi-

cation. Some lines come in pairs whose relative strengths are fixed by atomic physics, so

that’s enough. If your spectrum is good, though, you’ll see lots of lines. You then shift the

whole thing by a factor that lines up all those features with known lines, and you’re set. It

is true that every now and then something weird happens. For example, the spectrum of the

first quasar (3C 273) looked bizarre until Maarten Schmidt realized that it was just several

hydrogen lines redshifted by a then-unprecedented amount.

In practice, then, the major stumbling point is distance instead of apparent speed. We

can get an idea of how tough this is in the following way. Bright Cepheids are about 10,000

times brighter than the Sun. The absolute visual magnitude of the Sun is about +5, and

since 5 magnitudes is a factor of 100, the absolute visual magnitude of bright Cepheids is

about -5. Absolute magnitudes are calibrated for a distance of 10 pc from us. At 10 Mpc



(slightly closer than the Virgo Cluster), the extra factor of a million means a factor of 1012

less flux. This is 30 magnitudes, meaning that if you want to detect Cepheids directly you

need to get to at least 25th magnitude. That takes seriously big glass on Earth (at least 5

meter mirrors), or space. In addition, to also get the redshift you need spectra. That makes

it tough, but obviously not impossible.

For example, it took a Hubble Space Telescope Key Project to get the total uncer-

tainties under 10% at the one standard deviation level. Ironically, the final best value of

72 km s−1 Mpc−1 is right in between the values of about 50 (advocated by Allan Sandage)

and about 100 (advocated by Gerard deVaucouleurs). About the only point of agreement

between Sandage and collaborators, and deVaucouleurs and his collaborators, was that H0

couldn’t be, say, 75! Many broken careers later, though, that’s where it stands.

We should also point out that there are important systematic errors for which one must

correct. After all, although the average motion of a galaxy is with the universal expansion,

any given galaxy has some motion relative to that, called “peculiar motion”. For example,

Andromeda will run into us in a few billion years. Nearby galaxies are particularly prob-

lematic because their peculiar motions are comparable to the expected apparent recession

speed. In fact, a few years ago in Russia I had a physicist tell me he had disproved Hubble

because several galaxies are coming towards us. His remedy was something called the ψ-

ether. He hadn’t realized that when you go far enough away (in practice, at least 20 Mpc),

every galaxy recedes, and the fractional errors introduced by peculiar velocity go down just

as the statistical errors of measurement go up.

Finally, note that the systematic uncertainty in H0 will be decreased further in the

future, because of the nature of the distance ladder. Recall that we can measure distances in

the Solar System directly, hence with negligible error. The next step out, parallax, is good

for close things but not for distant things. That means that Cepheids, which are rare, are

not easy to measure with parallax. Galactic distances depend on Cepheids (or depend on

things that depend on Cepheids), hence when next-generation astrometric missions such as

GAIA are operational, an important low rung in the ladder will be stabilized.

The Density Parameter

The next classical parameter is the density parameter Ω. To understand this, divide the

Friedmann equation by H2:
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8πG
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ρ −

k

a2H2
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From this we note that if ρ = ρcrit = 3H2/(8πG), then k = 0 and the geometry is flat (recall

that we are still ignoring the possibility of dark energy). Therefore, let’s define Ω ≡ ρ/ρcrit. If

Ω = 1, then k = 0 and the universe has a flat geometry. Heck, while we’re at it, we can define



Ωk ≡ −k/(a2H2), so that Ω + Ωk = 1. We can similarly define separate density parameters

for nonrelativistic matter, radiation, neutrinos, photinos, and boogley boogley particles,

although those last are not thought to constitute a significant fraction of the universe.

Note that if Ω = 1, then it is that way forever, because this implies k = 0 and k is

constant. If instead Ω < 1, you can show as we did in the last lecture that Ωk becomes

progressively more dominant as the scale factor increases, meaning that Ω becomes closer

and closer to zero as time goes on. Similarly, if Ω > 1 then it becomes larger and larger with

time until finally the expansion halts and reverses. Indeed, given how much the universe has

expanded, Ω had to be staggeringly close to 1 at very early times. This coincidence (the

“flatness problem”) was one of the puzzles that motivated inflationary theory, which we will

discuss later in the course.

What is the critical density today? Putting in the parameters, we get ρcrit ≈ 10−26 kg m−3.

This is a ridiculously small number. It means, more or less, that at this density a typical

cubic meter of the universe contains just a few hydrogen atoms. In fact, the real density

of the universe is even less than this. This is a value that gives significant mass over large

regions (about 1.4× 1011 M⊙ Mpc−3), but it gives us an idea of roughly how far out we have

to go to get a good measure of the density of the universe.

In our solar system, say out to Pluto, we have about one solar mass in a 40 AU sphere.

There are about 200,000 AU in a parsec, so this radius is 2 × 10−10 Mpc and the average

density is 〈ρ〉 ≈ 3×1028 M⊙ Mpc−3. Even our Galaxy contains some 1011 M⊙ within a radius

of 0.01 Mpc, so the density is still far larger than average. Indeed, we would need to get to

distances of 100 Mpc or so for a fair sample. Again, we need difficult measurements at large

distances to estimate the density. In addition, as we will discuss in far more detail when we

get to Chapter 9, measuring masses is itself tricky and full of controversy. To jump to the

answer, it appears that the density parameter for “normal” matter (nuclei and electrons) is

a paltry 0.04, most of which is difficult to see, and the density parameter for any matter is

another 0.23. To the surprise of most cosmologists, it doesn’t add up to 1, even though Ωk

is very close to zero. See Figure 1 for a snazzy diagram of current constraints, with a sneak

look at the cosmological constant.

The Deceleration Parameter

The last of the classical parameters is the deceleration parameter q0. The point is that

if we can measure the change in the Hubble parameter (or alternatively, the second time

derivative of the scale factor) then we have important leverage to determine the nature and

fate of the universe.



Fig. 1.— Plot showing constraints on the matter density parameter (horizontal axis)

versus the effective density parameter for the cosmological constant (vertical axis), tak-

ing into account several types of data. This is the “cosmic concordance” model. From

http://scipp.ucsc.edu/∼haber/ph171/cosmo.jpg



To see how this works out, let’s expand the scale factor in a Taylor series:

a(t) = a(t0) + ȧ(t0)[t − t0] +
1
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2 + · · · , (2)

where t0 is the time today. If we divide through by a(t0) and remember that H0 = ȧ(t0)/a(t0),

we can write
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which defines the deceleration parameter q0 as
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To see what this gives, we go back to the acceleration equation
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which gives
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For example, for nonrelativistic matter with p = 0, q0 = Ω0/2, and for radiation with

p = ρc2/3, q0 = Ω0.

Note, therefore, that q0 is not independent of our other two classical parameters. In

principle, though, it provides another way to measure the density parameter. That is, if we

are confident that most of the mass-energy in the universe is nonrelativistic (p = 0), then a

measurement of the deceleration parameter can tell us Ω0 without our having to go through

the difficult procedure of weighing distant things.

When I was a young, innocent graduate student back in the last millennium, it was

thought that eventually it would be determined that Ω0 = 1 and q0 = 1/2. Yes, it was true

that those foolish astronomers persistently failed in finding Ω0 close to 1, but it was pointed

out that the value of the effective density parameter seemed to get larger and larger once one

considered bigger scales, and extrapolation to Ω0 = 1 seemed possible. More compellingly,

Ω0 = 1 and Ωk = 0 is a special point. If we are exactly at the critical density, we will stay at

the critical density forever. If we are slightly above or below the critical density, then we will

deviate from critical more and more as the universe expands. Given how much expansion

has gone on, the density had to be amazingly close to critical in the very early universe.

How likely would it be that the density was that close to critical, yet just at this very epoch

in the universe it had significant deviations?

In retrospect, cosmologists were guilty of arguments from aesthetics, similar to the

ancient Greeks. Yes, it would have been pretty that way, but the universe appears to



have other ideas. Indeed, strong evidence in the last decade or so indicates that in fact

q0 < 0, meaning that the expansion of the universe is accelerating, so the term “deceleration

parameter” is incorrect! This has caused a revolution in cosmology. We will discuss this and

other evidence in the next lecture.

Intuition Builder

Suppose there is a component of the universe with an equation of state

p = wρ such that if it is the only thing around, q0 < 0. Demonstrate that this

component will dominate the dynamics of the universe at sufficiently large

scale factor a.


