
The Cosmological Constant

No more teasing: we’re finally here! In this lecture we will introduce the cosmological

constant (and some more general versions of dark energy) and discuss a few of its implica-

tions.

Early Motivation

After Einstein introduced the final version of his field equations in November 1915,

people got to work on them and discovered fairly quickly that they implied that the universe

as a whole is dynamic (either expanding or contracting). However, aesthetic biases and the

astronomical observations of the time suggested that the universe was actually static as a

whole. As a result, Einstein introduced a new term into his equations: the cosmological

constant Λ. This comes into the Friedmann equation as
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Note that Λ has units of time−2 in these equations. Note also that it is supposed to be a

genuine constant, independent of time or space.

What does this mean? If all you wanted was that the universe happened not to be

expanding or contracting at this moment, then your only requirement is that ȧ = 0, which

you could manage with Λ = 0. However, that’s like saying that if you throw a rock straight

up into the air, there will be a moment when it isn’t moving; you know it will come down

soon!

To have a truly static universe, you need ȧ = 0 and ä = 0. Assuming a pressureless

universe 3p/c2 ¿ ρ, ä = 0 gives Λ = 4πGρ. Substituting this into the Friedmann equation

with H = 0 then gives k/a2 = 12πGρ/3. Therefore, only a positive Λ and a positive k (i.e.,

a closed universe) can give Einstein’s static solution.

The problem, though, is that this solution is unstable to small perturbations. Look at the

acceleration equation: the matter term decreases the expansion speed with time (negative

ä), whereas a positive Λ increases the expansion speed with time. Suppose you have the

static balance. Now imagine that the universe gives a little burp and increases a slightly.

The density goes down as ρ ∝ a−3, but Λ stays constant. As a result, ä > 0, leading to

ȧ > 0. This further expansion of the universe increases ä yet more, and the universe just



keeps on expanding. If the fluctuation had decreased a slightly, it would collapse. This

is akin to balancing a sharpened pencil on its tip: maybe you could do it, but any tiny

fluctuation (e.g., a stray air molecule) would cause it to deviate exponentially from that

state. Therefore, Λ does not do what Einstein wanted it to.

When Edwin Hubble established in 1929 that the universe is in fact expanding, Einstein

bitterly regretted adding the cosmological constant to his theory, calling it “the greatest

mistake of my life.” Would that I could make such a mistake! Λ is making a comeback based

on the observations we have discussed.

To put the cosmological constant on the same footing as other terms, one commonly

defines ΩΛ ≡ Λ/(3H2), in addition to Ωk ≡ −k/(a2H2). The Friedmann equation then

becomes simply

Ω + Ωk + ΩΛ = 1 . (3)

It is important to note that although this equation always holds, the three components have

different dependences on a and therefore the value of any one of them is not constant with

time. We’ll get to that more a bit further on.

Fluid description

We can abuse our notation a bit more by defining

ρΛ ≡
Λ

8πG
(4)

to put the Friedmann equation into the form

H2 =
8πG

3
(ρ + ρΛ) − k/a2 . (5)

This means that ΩΛ = ρΛ/ρc. It also means that the fluid equation for Λ becomes

ρ̇Λ + 3
ȧ

a

(

ρΛ + pΛ/c2
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= 0 . (6)

To be a true constant this means

pΛ = −ρΛc2 . (7)

Whazzat??? How on earth could the pressure for anything be negative? Amazingly,

particle physicists have a ready-made answer for that, and even some experiments to back

them up.

Quantum mechanics predicts that the vacuum isn’t really empty. Instead, it is chock

full of “zero point energy.” Remember the quantum harmonic oscillator? The energy of the

oscillator can be (n + 1/2)~ω for some frequency ω, with n = 0, 1, 2, . . ., but this means



that even the ground state n = 0 has an energy ~ω/2. For nongravitational purposes only

differences in energy are meaningful, but gravity is supposed to couple to all forms of energy.

That means that this energy should matter, summed over all frequencies ω. Examination of

the effect indicates that it could well give us the ρΛ we need.

In addition, it actually does give us a negative pressure. Experimental confirmation

of this comes from something called the Casimir effect: if you put two uncharged parallel

metal plates close to each other in a vacuum, they feel an attractive force that is produced

by an effectively negative pressure between them. The physical idea behind this is that

although modes of all wavelengths can exist outside the plates, in the region between them

only some can exist (the ones whose wavelengths fit into the region), hence there is more

pressure outside than in and the plates go together. There is even a real-world analogy that

I haven’t personally observed but am told can be seen. Suppose you have two ships next to

each other (with some separation), just floating along and initially not in relative motion.

They will gradually come together. As in the Casimir effect, the waves between the boats

are limited in wavelength, but outside are not, so the pressure between the boats is decreased

by comparison.

Great! Sounds like we’re basically home free. As a quick check, though, we should

probably make a rough estimate of the magnitude of the effective density ρΛ that we ex-

pect. If you ask a particle physicist to do this you’ll probably hear something like (I’m

paraphrasing): “mumble mumble quantized modes mumble ultraviolet divergence mumble

Planck cutoff mumble mumble.” As it turns out, though, we can make an estimate on di-

mensional grounds that is about right to within paltry factors such as 16π2. The expected

density ρΛ has to be constructed out of the basic constants G, ~, and c. The only such

combination is

ρΛ(expected) ∼
c5

~G2
≈ 5 × 1096 kg m−3 . (8)

The present best estimate for the actual value is

ρΛ(measured) ∼ 0.73ρcrit ≈ 7 × 10−27 kg m−3 . (9)

Even by the standards of cosmology, this is a pretty hefty error! A lot of work has gone

into trying to figure out whether there are natural effects that would cancel most of this out,

but 120-odd orders of magnitude is rather substantial and at this point there is no particular

agreement on what the answer might be. If ρΛ were exactly zero that might be attributable

to some perfect cancellation, but for it to be cancelled out to this degree yet be big enough

to have an impact now? Egad.



Cosmological models with Λ

If Λ 6= 0, how does the universe evolve? Thinking about the Friedmann equation,

remember that:

• The radiation term (or relativistic matter) scales as a−4.

• The pressureless matter term scales as a−3.

• The curvature term scales as a−2.

• The cosmological constant term scales as a0.

As a result, we are guaranteed that radiation and relativistic matter will dominate for

sufficiently small a and that any cosmological constant will dominate for sufficiently large a.

It therefore turns out that at large scale factors some of our previous conclusions about

the relation between geometry and the fate of the universe need not apply. For example,

we had previously said that an open universe (for which Ωk > 0) would expand forever.

However, consider a universe in which Ωk > 0 but ΩΛ < 0. The cosmological constant then

acts as an extra attractive force. As the universe expands this will eventually take over,

reverse the expansion, and cause a collapse. Similarly, you could arrange parameters such

that Ωk < 0 yet the universe expands forever because a positive ΩΛ takes charge. It is still

the case, though, that an open or flat universe is spatially infinite.

What if we are in a phase in which ΩΛ is the only important term? In that case the

Friedmann equation becomes
(

ȧ

a

)2

≈ Λ/3 (10)

with the solution a ∝ exp(t
√

Λ/3) = exp(Ht). That is, this produces an exponentially

expanding universe.

We can also generalize further to equations of state of the form p = wρc2, where w need

not even be a constant with time. We call this “dark energy”. If w is constant and w > −1,

the evolution equations imply
ρ(a) ∝ a−3(w+1)

a(t) ∝ t2/3(w+1)

ρ(t) ∝ t−2 .

(11)

If w < −1/3 then this component will dominate the evolution of the universe at sufficiently

large a. See Figure 1 for some past and future implications of a cosmological constant.

Dicke Coincidences



Fig. 1.— Effects of a cosmological constant on the evolution of the universe. From

http://physics.uoregon.edu/∼courses/BrauImages/Chap27/IN27 101.jpg



There are some philosophical implications of dark energy that were first stressed by

Robert Dicke in 1970. Note that Ω, Ωk, and ΩΛ all scale differently with a. Note also that a

has gone through many orders of magnitude of evolution. That means that during almost all

of that time (in a logarithmic sense), and in the future as well, only one of the three can be

remotely significant. Dicke thus argued that it would be really amazing and anti-Copernican

if, just at our epoch, more than one of the three is measurably nonzero.

What, then, can we make of Ω = 0.27 and ΩΛ = 0.73, which are the best current values?

There is as yet no satisfactory answer. A lot of people appeal to an anthropic argument;

we don’t want to be silly and announce that the presence of humans in particular is of any

consequence, but we can note that only a universe with life could produce creatures who

wonder about it, so our presence in a universe that can support life is not surprising! If

different universes have different values of Λ, it might therefore be reasonable that ones with

very much larger Λ don’t produce life, because those universes blow up before any matter

can get together to form complex entities such as stars and planets. It is, however, not at

all clear why a lower Λ would be a problem, or why in particular it is essential to have a

value of Λ that has significant impact on the universe at around the same time that stars

and galaxies form.

Maybe we’re making too much of this. As another example, note that the angular size of

the Moon from Earth is very close to that of the Sun, meaning that total eclipses can happen

but they are so rare in any given location that they cause great awe. The Moon is drifting

away because of tidal forces, meaning that for most of Earth’s history this close equality

didn’t exist. Is our appearance on the world stage at this special time just happenstance?

Well, yes! Going back to Λ, I think it’s fair to say that we won’t be able to make intelligent

comments on the level of coincidence until particle physicists have a handle on its origin,

and therefore on the range of its possible values.

Intuition Builder

The theoretical calculation of ρΛ we did involves a cutoff energy beyond

which zero-point energy does not exist. What if, for some reason, that cutoff

energy is much lower than we assumed? To get ρΛ to the observed range

would require a cutoff energy of about 0.01 electron volts. Is this possible, or

are there experiments that might rule out such a low cutoff?


