
Measuring Ages

Now that we have a framework with which to calculate the time since the Big Bang

in different cosmological models, how does that age stack up against measured ages? Here

we will discuss a few methods by which ages can be estimated. In a way similar to dis-

tance estimates, we note that any age of cosmological interest cannot be measured directly,

since we haven’t been around that long! We therefore require ways to extrapolate, an-

chored at small ages with direct measurements. We will start with radiometric dating,

then follow it with discussions of fitting main sequence turnoffs and white dwarf cooling

curves. Some of this information came from Ned Wright’s excellent cosmology tutorial:

http://www.astro.ucla.edu/∼wright/age.html.

Radiometric Dating

Some atomic nuclei are completely stable in isolation as far as we know. If you let a

carbon-12 nucleus alone, it will apparently sit there unaltered until the end of time. In

contrast, other nuclei change spontaneously with time. For example, carbon-14 (with six

protons and eight neutrons) reaches a lower energy state via the decay

14

6
C →

14

7
N + e− + ν̄e . (1)

That is, carbon-14 decays into nitrogen-14, an electron, and an electron antineutrino. Lab-

oratory experiments demonstrate that it is not possible to predict when any given nucleus

will decay. In addition, the probability of decay in the next time interval dt is completely

independent of how long the nucleus has lasted up to that point, be it an attosecond or a

billion years. What this means is that the probability that a nucleus will decay at a time

between t and t + dt after its formation is

P (t)dt = e−t/t0dt (2)

where t0 depends on the particular nucleus. This is often phrased in terms of the half-life

t1/2, which is the time by which half the nuclei would have decayed: t1/2 = ln(2)t0 ≈ 0.7t0.

Because nuclei are very compact compared to the distance between atoms, external effects

have negligible impact on the spontaneous decay rates.

There are two points worth stressing here. The first is that the nature of this process

allows half-lives to be measured even if they are extremely long compared to a laboratory

timescale. For example, suppose that you have 1020 atoms of uranium-238. After one hour,

you determine that there have been approximately 1.8 million decays. From the equation

P (t) = e−t/t0 you know that in a time t ¿ t0 a fraction ≈ t/t0 of the nuclei will decay.

Therefore, in this case t0 ≈ 6.43 × 109 yr and t1/2 ≈ 4.46 × 109 yr.



The second point is the somewhat amusing one that regardless of how large t0 is, the

one-second period with the most decays will be the first one-second period after formation.

The reason is that decays are independent of what has gone before (there is no “memory”),

and after that first one-second period there are fewer undecayed nuclei!

This is all very well, but how does it help us determine ages? The simplest case would

be one in which we know the initial amount of the radioactive substance. For later purposes,

we will call the initial amount P , which will stand for “parent nucleus.” Similarly, D will be

the initial amount of “daughter nucleus.” For example, 14
6

C is a parent nucleus, and 14
7

N is a

daughter nucleus. Suppose that Pt is the amount of the parent nucleus at time t. The time

is then simply

t = t0 ln(P/Pt) . (3)

Fine, except that we don’t know the initial quantity of the parent nucleus. Luckily there

is a circumstance in which we can know something almost as valuable: the ratio of the

initial quantity of a radioactive isotope of a nucleus to a nonradioactive isotope of the same

element. I’m talking, of course, about radiocarbon dating, which since its discovery in 1949

by Willard Libby and colleagues has been the workhorse for dates within historical times.

Carbon, with six protons, has a very common stable isotope (carbon-12), an uncommon

stable isotope (carbon-13), and a moderately common unstable isotope (carbon-14). Neu-

trons in cosmic rays entering the Earth’s atmosphere can interact with nitrogen to form this

isotope:

n +14

7
N →

14

6
C + p . (4)

The cosmic rays do most of their work at high altitudes, 9–15 km, but the carbon gets taken

up in carbon dioxide and spreads around all altitudes and latitudes. Plants acquire it during

photosynthesis, and animals acquire it by eating plants. The net result is that for living

things there is an approximately constant ratio

n14

6
C/n12

6
C ≈ 10−12 . (5)

After the animal or plant dies, however, there is no additional intake of 14
6

C, so the ratio

decreases steadily on the carbon-14 half-life t1/2 = 5730 years. As a result, measurement

of the isotopic ratio (most sensitively using mass spectrometry) tells us the age of a given

sample. In practice, ages beyond about 10 half-lives are inaccurate because there are so few

carbon-14 nuclei left. However, within historical times this method is outstanding.

Naturally it isn’t quite as simple as that. Various things can alter the steady-state

fraction of 14
6

C in the atmosphere, including fossil fuel burning (adding only 12
6

C to the

atmosphere), volcanic eruptions, and atomic bomb tests. People therefore use calibrated

ages. These are the equivalent of direct distance measurements that are used to calibrate

other methods. The idea is to have independent and exact knowledge of the age of something,



then use that to calibrate radiocarbon estimates. One particularly cool way to determine

ages independently uses tree rings, and is called dendrochronology. This goes back farther

in time than you might at first think, because one can look at patterns of thick and thin

rings and map back longer than any individual tree lived, to more than 10,000 years ago in

some locations.

Isochron Dating

For astronomical purposes, though, radiocarbon dating is worthless because we want

billions of years, not thousands! Luckily there are lots of radioactive isotopes, and some have

half-lives of billions of years. Unluckily, there are no others for which we have independent

measurements of the initial ratio of radioactive to non-radioactive isotopes of an element.

What can be done?

When one does not know the initial concentration of the parent or daughter nucleus,

the key is a method known as isochron dating (isochron=“same time”). Consider strontium,

which has many isotopes. 87
38

Sr is a radiogenic nucleus (i.e., it can be generated by radioactive

decay), and can be produced by beta decay from 87
37

Rb (rubidium). In contrast, 86
38

Sr is non-

radiogenic, so it has no precursors. Both strontium isotopes are stable. The point is to

note that chemically, there is no distinction between isotopes (because it’s the electrons that

do all the reacting), and as a result the isotopes are evenly spread. Therefore, consider a

mineral from which one can extract many samples. In each sample, we measure the current

amounts of (1) the radiogenic daughter isotope, (2) the non-radiogenic isotope, and (3) the

parent isotope. Let us define D as the initial (and thus unknown) concentration of the

radiogenic daughter, Di as the initial, and constant, concentration of the non-radiogenic

isotope, and P as the initial unknown concentration of the parent isotope. Also, define ∆Pt

as the amount of the parent that has decayed into the radiogenic daughter after the unknown

time t. Algebraic manipulation therefore gives

D + ∆Pt

Di

=
∆Pt

P − ∆Pt

(

P − ∆Pt

Di

)

+
D

Di

. (6)

The left side is the current ratio of the radiogenic to non-radiogenic daughter isotope. The

factor in parentheses is the current ratio of the parent to the non-radiogenic daughter. The

factor before the parentheses is just related to how much of the parent has decayed and thus is

a direct indicator of age. Therefore, multiple samples from a given rock should give a straight

line when radiogenic/non-radiogenic is plotted against parent/non-radiogenic. The slope tells

you the age, and the intercept tells you the initial ratio of radiogenic/non-radiogenic.

This method has the advantage that such a plot will give you an idea of its accuracy. For

example, one could imagine a rock that had been heated at some point in its history so that



the parent flows out but the daughter doesn’t. Different places will have different fractional

losses, leading to scatter in the relation. Figure 1 gives an example, using neodymium-

samarium dating of moon rocks. Plagioclase dating is less certain than pyroxene/olivine

dating, probably because a large impact event reheated plagioclase samples.

Measurements such as these have allowed very precise and reliable dating of the oldest

meteorites in the Solar System, to 4.56 Gyr. We can therefore be confident that the universe

is at least this old. How much farther back can we go?

Models of nuclear evolution

Even 4.56 Gyr would have posed problems with Edwin Hubble’s initial measurement of

H0 = 550 km s−1 Mpc−1 (there were dust extinction issues, blah, blah), which would have

implied an age of 2/(3H0)=1.2 Gyr! With the current H0, though, we’re still at least a factor

of 2 away from problems.

But we don’t think that the Solar System formed at the beginning of the universe!

Instead, it formed from a nebula that itself had elements gathered from previous generations

of stars. In a nebula you don’t have chemical differentiation the way that you do in crystals.

This means that there is only one measurement of elemental abundances possible, rather

than the multiple ones that allow the linear fit crucial to isochron dating. We thus have only

the absolute abundances from which to estimate ages.

At first sight, it seems that we’re out of luck. In particular, if the initial abundances

could be anything, then we would have no information at all about ages. As a result, people

have turned to models of elemental production in supernovae. This is a tricky business, and

it is worth keeping in mind that first-principles simulations of the explosion are a long way

from incorporating all of the relevant physics. However, nucleosynthetic models have a lot

of data from observations of supernovae and their remnants, so all in all it isn’t too bad. A

particularly useful isotope pair for comparison is 238U and 232Th, with respective half-lives

of 4.468 Gyr and 14.05 Gyr. Wright quotes a recent paper by Dauphas (2005, Nature, 435,

1203), which compares abundances in the Solar System with those in metal poor stars to

get an age of 12.3–17.3 Gyr.

The lower limit to that age is well above the age of 9 Gyr that one would get with Ω = 1,

Ωk = ΩΛ = 0 and the best current value for H0. That indicates a problem, but without

independent confirmation we might happily discount this age as systematically uncertain.

Do we have other info?



Fig. 1.— Dating of moon rocks using the isochron method. Pyroxene and olivine

have a higher melting point than plagioclase minerals, leading to less scatter be-

cause they did not have differential leaking of parent and daughter nuclei. From

http://www.psrd.hawaii.edu/WebImg/FAN mafic isochron.gif



Main Sequence Turnoff

Yes, of course we have other info or I wouldn’t mention it! One approach is to look

at globular clusters. These are collections of a few hundred thousand stars within a few to

tens of parsecs that, from all indications, formed together in just a few million years. More

importantly for our purposes, many of them appear to be extremely metal-poor and thus

are excellent candidates for having formed early in the universe.

Therefore, we can use stellar modeling theory. The life of a star (especially one of low

mass) depends primarily on its mass and only secondarily on other characteristics such as

chemical composition. In particular, the time that it leaves the main sequence (where its

energy source is the fusion of hydrogen into helium) is determined by its mass. This means

that one can (1) construct a Hertzprung-Russell diagram for a cluster (plotting color versus

luminosity, so this requires a distance measurement), and (2) use stellar evolutionary theory

to determine the age based on the most luminous tip of the main sequence.

Note carefully that the distance to the cluster is needed for this: at a given flux, a

more distant cluster has more luminous stars, which therefore live a shorter time. In fact,

in the early 1990s the age problem appeared to have reached a crisis, but an overall shift

of the distance scale (to larger distances for all objects) occurred because of more precise

parallax measurements with the satellite Hipparcos. This (a) decreased inferred stellar ages

in clusters, because the stars were more luminous than previously thought, and (b) increased

the inferred age of the universe, because larger distances mean smaller H0 and thus a larger

age. The best current guess is that the oldest stars we can see currently are in the range of

11–13 Gyr.

White Dwarf Cooling

Another independent method comes from observations of white dwarfs. These are the

compact remnants of the evolution of stars with initial mass < 8 M¯, and once formed have

no energy generation. They simply cool down indefinitely. In addition, they are relatively

simple objects, being supported by electron degeneracy pressure, so cooling models are fairly

simple although one does have to be careful about effects such as crystallization (which release

energy due to the phase change). Hansen et al. (2004) estimate that in the globular cluster

M4, the white dwarfs are 12.1±0.9 Gyr old. The white dwarfs also had to have some time

to form, so they estimate the age of the universe as 12.9±1.1 Gyr from this method.

In summary, therefore, we can be pretty confident that the universe is >11 Gyr old. That

is strongly in conflict with an Ω = 1 universe and the best estimate of H0, but in excellent

agreement with the age of 13.7±0.2 Gyr inferred from the cosmic microwave background,

which implies Ω = 0.27 and ΩΛ = 0.73. This is a great test of the overall cosmological



model, and it is a tribute to the efforts of many scientists that we have a reasonably precise

measure of an age that is a million times longer than human beings have had even the most

primitive agriculture!

Intuition Builder

A form of radioactive decay we did not discuss is electron capture. In this

process, an electron in an inner shell combines with a proton in the nucleus

to form a neutron and give off a neutrino and some energy. Would you guess

that such a process is more or less sensitive to environmental effects than

spontaneous nuclear decay?


