
Special Relativity: Basics

High-energy astrophysics involves not only light, which is intrinsically relativistic, but

also particles that are accelerated to nearly the speed of light. Newtonian mechanics therefore

has to be supplanted by special relativity. In this lecture and the next, we will go over some

of the principles and applications of the special theory. In later lectures, we will consider

general relativity, which generalizes these principles to accelerated frames and turns out to

be our best current theory of gravity. For basic physics such as this, by the way, my opinion

is that any serious physicist should at some point read the Feynman Lectures on Physics.

His clarity of thought was exceptional, and probably the best way to approach those volumes

is to look at them after you have already had a course in a given subject; it allows you to

appreciate his profound insights better.

Philosophy

First, let’s start with a little philosophy. After the fact, it is easy to present physical

principles as if they are self-evident and derivable from pure mathematics. This is not the

case. We can marvel at the brilliance of Einstein and the other pioneers of relativity, and

appreciate the philosophical way that they drew their conclusions, but to be scientific one

must at some point have contact with experiments. Therefore, ultimately, we have to point

to the universe as a whole (or at least, what we’ve probed observationally) to argue that the

theory is correct.

A second philosophical point that many people mistakenly derive from relativity, prob-

ably because of the name of the theory, is that the essential point is “everything is relative”.

In fact, one of the postulates of relativity, and one of its deepest points, is that there are

some quantities that are invariant, meaning that all observers will measure the same value

for those quantities. We’ll try to emphasize such invariants when we derive aspects of special

relativity.

Galilean Relativity

We should also not get the idea that Einstein was the first one to suggest a principle of

relativity. In fact, Galileo used thought experiments quite similar to Einstein’s to show that

something coasting along at a constant velocity should experience all the same local effects

as something at rest. He asked his readers to consider experiments performed by someone in

a ship’s cabin if the ship is moving at a constant speed. He notes that a ball tossed straight

up will appear to come straight down; a tank of water will remain level; and in general the

experimenter will not be able to tell that the ship is moving. From our standpoint a more



familiar and extreme example is traveling in a plane. We might be going 75% of the speed

of sound relative to the ground, but we can still be served bad food without it ending up in

our faces!

Put more formally, all local experiments we do in an inertial frame will turn out the

same independent of our velocity relative to a given frame. However, note the restrictions to

local experiments and inertial frames. If you somehow opened the window of your plane and

stuck your head out, it would be the last thing you ever did; there is a quite clear difference

in physical effects when you have contact with other frames! In addition, when the plane

accelerates (e.g., by hitting turbulence) it is sickeningly clear that you are not at rest. In

more benign situations, such as experiments on a rotating Earth, the non-inertial nature of

the frame leads one to introduce fictitious forces such as the Coriolis force.

How, then, would we phrase Galilean relativity mathematically? A useful way to do this

is to consider two observers moving at a constant velocity v relative to each other. Let us

set up Cartesian coordinate systems for both: for one frame the coordinates are (t, x, y, z)

and for the other are (t′, x′, y′, z′). We will refer to these as, respectively, the unprimed and

primed frames. Here t means time, and we will make our lives easier by ensuring that the x

axis is parallel to the x′ axis, and similarly for y and z.

Suppose that, as seen in the unprimed system, the primed system is moving in the +x

direction with speed v. Note that we can always rotate our coordinate axes so that the x

axis lines up with this speed; if you prefer making your algebra messier you can always do

it more generally, but we won’t bother. If we set up our initial conditions so that at time

t = t′ = 0 we have x′ = 0 (i.e., the origins of the two systems are coincident), this implies

that at time t, the origin of the primed system is at x = vt as measured in the unprimed

system. Of course, in the primed system, the origin is always at x′ = 0. In addition,

the perpendicular directions y and z are equal to their primed counterparts, and t = t′.

Therefore, the coordinate transformation for Galilean relativity becomes

x′ = x − vt

y′ = y

z′ = z

t′ = t .

(1)

We also find that Newton’s laws of motion are invariant in form under these transfor-

mations. This is as expected, and is a consequence of our inability to tell whether we are

moving steadily or not from purely local experiments. Among other things, this law tells us

how velocities should add. Consider, for example, something that moves with speed u in the

x direction as seen in the unprimed frame. Therefore, dx/dt = u. In the primed frame we

have

u′ = dx′/dt′ = d(x − vt)/dt = dx/dt − v = u − v . (2)



This is the simple, intuitive result. If a train goes by me at 100 km/hr and I throw a baseball

parallel to the train at 100 km/hr, someone inside the train sees the ball not moving in that

direction at all. If I throw antiparallel to the train at 100 km/hr, the person in the train sees

a speed of 200 km/hr. Note, by the way, that if we want to transform from the primed frame

to the unprimed frame, all we have to do is reverse the sign of v and switch the primed with

unprimed variables. Very simple.

The Problem with Maxwell’s Equations

In the mid-1800s, however, a problem emerged. After many people had for several

decades experimented with electricity and magnetism, James Clerk Maxwell came up with

a compact set of equations that beautifully described all the phenomena. To this day,

Maxwell’s achievement ranks among the very greatest in the history of physics. Surprisingly,

though, Maxwell’s equations are not invariant under a Galilean transformation. For example,

a blatant contradiction emerges when one tries to determine the speed of light in different

frames with this theory. According to this theory, the propagation speed was the same

whether the source was moving or not, which violates the velocity addition law that we

derived above. This is a result that could be obtained if light propagated through a medium,

similarly to how the speed of sound is independent of the motion of the source (although

the frequency isn’t). However, the famous Michelson-Morley experiment found no evidence

of any “luminiferous ether” through which light traveled. Given the overwhelming success

of Newton’s theories in the previous two centuries a number of people very logically tried

to find formulations of Maxwell’s equations that obeyed Galilean relativity. None, however,

could be squared with experiment. What could be done?

The Postulates of Special Relativity

Lorentz, Poincaré, Fitz-Gerald, and others suggested essentially ad hoc ways of explain-

ing the above results. Einstein, however, was the one who put it on a more axiomatic

footing, which is why we reasonably give him the lion’s share of the credit. He suggested

two postulates:

• The laws of physics as derived from local experiments are the same for all inertial

observers.

• All such observers measure the same speed for light in a vacuum.

The first postulate is the same one as before. The second, however, seems contradictory;

how is it reconciled with normal velocity addition?



To understand this, and to adopt a perspective that has tremendous utility in gen-

eral relativity, we will consider the fundamental concept of the invariant interval. As our

first step, recall distance invariance in Euclidean geometry. Suppose we have two points

in a three-dimensional space, and in a particular Cartesian coordinate system the points

have coordinates (x, y, z) and (x + dx, y + dy, z + dz). For the situations we consider here,

dx, dy, and dz need not be infinitesimal quantities, but we write it this way for later

compatibility with general relativity (where it is clearest to restrict oneself to infinitesimal

distances). The distance ds between the two points is then given by

ds2 = dx2 + dy2 + dz2 . (3)

This distance is absolutely invariant with respect to coordinate transformations. If you rotate

the axes to some new x′, y′, z′ then in general dx′ 6= dx and so on, but ds′2 = dx′2+dy′2+dz′2 =

dx2 + dy2 + dz2 = ds2. This is also true if you go for a non-Cartesian system, e.g., spherical

polar coordinates. The separation is an invariant.

What about when time is involved? Einstein’s second postulate says that the distance

light travels in a given time is measured to be the same in all frames. It’s easier to deal

with the squares of distances, so if at time t = t′ = 0 the ray started out at the origin of the

unprimed and primed systems (where, remember, the primed system can move relative to

the unprimed system), we would find that

dx2 + dy2 + dz2 = c2dt2

dx′2 + dy′2 + dz′2 = c2dt′2 ,
(4)

where c is the speed of light in a vacuum.

In fact, let’s make a powerful generalization of this. Define an event to be something at

a specific place and time, which must therefore be designated by four coordinates (t, x, y, z).

Consider a nearby event (t+dt, x+dx, y+dy, z+dz), and let the four-dimensional “interval”

ds between the two events be given by

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (5)

We then postulate that, just as in Euclidean geometry the separation between points is

independent of the coordinate system, the interval as defined above is an invariant, so all

inertial observers measure the same interval between the same two events. Note that if the

events are two points on the trajectory of a light ray, ds = 0.

To explore the consequences of this, let us again consider an unprimed frame (t, x, y, z)

and a primed frame (t′, x′, y′, z′). Suppose that, as seen in the unprimed frame, the primed

frame is moving with speed v in the +x direction (see Figure 1). Also suppose we have set



Fig. 1.— Geometry for a boost along the x-axis, and the result for a Lorentz transformation. From

http://www.bun.kyoto-u.ac.jp/∼suchii/lorentz.tr.jpg



up the axes so that initially the unprimed and primed frames are coincident (i.e., x parallel

to x′ and so on) and t = t′ = 0. Our postulate says that

−c2dt2 + dx2 + dy2 + dz2 = −c2dt′2 + dx′2 + dy′2 + dz′2 . (6)

We can argue from symmetry that dy = dy′ and dz = dz′; this will be left as an intuition

builder at the end of the class (Hint: consider viewing the same situation from different

perspectives, and see if you can arrive at a contradiction if dy 6= dy ′). Therefore, we are left

with

−c2dt2 + dx2 = −c2dt′2 + dx′2 . (7)

We now look for a transformation between the unprimed and primed frames that maintains

this invariance. The simplest such transformation is linear, so that

x′ = axxx + axtt

t′ = atxx + attt .
(8)

We also know that when x = vt, x′ = 0, because the primed frame is moving with speed

v in the x direction. Therefore, it must be that x′ ∝ (x − vt). Calling the proportionality

constant γ, we find
x′ = γ(x − vt)

t′ = γ(ax + bt) .
(9)

We choose the proportionality in the second line because we happen to know it will be simpler

that way! In turn, this means that dx′ = γ(dx − vdt) and dt′ = γ(adx + bdt). Substituting

this into our expression for the invariant interval, we get

−c2dt2 + dx2 = −c2γ2(a2dx2 + 2abdxdt + b2dt2) + γ2(dx2 − 2vdxdt + v2dt2) . (10)

Collecting terms, we have three equations: one for the dx2 term, one for the dxdt term, and

one for the dt2 term. This is encouraging, because we have three unknowns: γ, a, and b.

The equations are
−c2γ2a2 + γ2 = 1

−2c2γ2ab − 2vγ2 = 0

−c2γ2b2 + γ2v2 = −c2 .

(11)

Solving gives γ = 1/
√

1 − v2/c2 (the famous Lorentz factor), a = −v/c2, and b = 1. Our

transformation is therefore
x′ = γ(x − vt)

y′ = y

z′ = z

t′ = γ(− v

c2
x + t) .

(12)

This is a Lorentz transformation. The generalization to arbitrary directions is straight-

forward. As before, to change back, we simply flip the sign of v and exchange primed for

unprimed variables.



Consequences

As was discovered well before Einstein proposed special relativity, Maxwell’s equations

are invariant in form under a Lorentz transformation. That’s good news. However, there

are other implications that may make the cure seem worse than the disease:

Length contraction.—Suppose that in the unprimed frame we measure the length of a

stick, oriented along the x axis, that is moving in the primed frame and in that frame has

length l. As you may remember from other exposures to special relativity, we have to be

precise in how we specify our measurement: in this case, it will be at a single time t as

measured in the unprimed frame, meaning dt = 0. We then have

dx′ = γ(dx − vdt)

l = γdx

dx = l/γ .

(13)

Noting that γ ≥ 1 for all speeds v, this means that we measure a shorter length in the frame

in which the stick is moving. If instead the stick is at rest in the unprimed frame and has

length l as measured there, what do we see in the primed frame? The transformation is

x = γ(x′ + vt′)

⇒ dx = γ(dx′ + vdt′)
(14)

hence for dt′ = 0 we again get that in the frame in which the stick is moving, the length is

contracted to l/γ.

Time dilation.—Now suppose that in the unprimed frame we look at a clock in the

primed frame. In the primed frame, a time T elapses. How much time goes by in the

unprimed frame? For this problem, we note that

t = γ( v

c2
x′ + t′)

⇒ dt = γ( v

c2
dx′ + dt′) .

(15)

If the clock is at rest in the primed frame then dx′ = 0, so dt = γdt′ = γT . Therefore, the

elapsed time is longer as seen in a frame in which the clock is moving. Note that “clock”

here is very general indeed, and refers to anything that takes time. It could be a wristwatch,

a chemical process, a nuclear decay, anything at all. At this point, many people like to

consider the “twin paradox”: consider identical twins, one of whom stays on Earth and the

other of whom blasts off in a rocket, accelerates to nearly the speed of light, travels for a

year in her reference frame, then turns around and comes back. The “paradox” is posed

as follows: since both twins consider themselves to be at rest, which one should be older

when they meet after the journey? The resolution, which I’ll let you ponder, is to determine

whether there is any way that you could tell which twin you were. If something breaks the

symmetry, one can be older than the other. If not, they have to be the same age.



What does it mean?.—The effects discussed above are counterintuitive, to put it mildly.

The reason, of course, is that we don’t travel anywhere near the speed of light relative to

everyday objects, so we have evolved to be used to Newtonian mechanics. As an example,

the fastest speed that most of us have ever traveled is on airplanes, perhaps up to 270 m s−1.

The speed of light is about c = 3 × 108 m s−1, so the Lorentz factor is γ = 1/
√

1 − v2/c2 ≈

1.00000000000041. That’s four parts in 1013! This actually has been detected using atomic

clocks flying on planes, but in our everyday life we’d never notice it.

Nonetheless, a lot of people are pretty uncomfortable with the implications of special

relativity, which is probably one reason why it is a favorite target of crackpots (another being

that Einstein personally was so famous). It is useful to remember that in the rest frame of

something everything proceeds as normal. Aliens in some distant galaxy might see us appear

to move at 90% of the speed of light, but that can’t possibly affect us at all. This means, for

example, that if I am moving really fast and see a star appear to be contracted by a factor of

10 in my direction of motion, it certainly doesn’t imply that there really are huge pressure

forces inside the star!

There are, however, real effects than can be measured, and it is this experimental con-

firmation that gives us confidence in the predictions of special relativity, counterintuitive

though they might be. For example, consider a muon, which is a subatomic particle that

decays with a characteristic lifetime of τ = 2.2 × 10−6 seconds. Suppose we set one go-

ing at v/c = 0.9 of the speed of light. We would expect it to travel a typical distance

D = 0.9c × 2.2 × 10−6 s=590 meters before decaying. Instead, we find that the typical dis-

tance is 1360 meters. What is happening? We’ll analyze this from two different perspectives:

• From the perspective of the particle, the length of the track on which it is traveling is

smaller by a factor of γ = 2.3. That means that if, in the laboratory frame the track

has a length of 1360 meters, in the particle rest frame it appears to have a length of

590 meters, so in the particle rest frame it lasts the expected 2.2 microseconds and all

is well.

• From the perspective of the laboratory, the lengths are as expected but the muon decay

“clock” runs slowly by a factor of γ and therefore lasts long enough to travel the longer

distance.

Therefore, in both frames, observers agree on the final result. This has to be the case.

In fact, this is a general principle that can help you navigate through tricky situations in

relativity. In a given setup, think about facts or numbers on which every observer must

agree. Examples might include the number of particles in a box, or whether the muon in

the above example reaches the end of a track. These are, if you like, additional examples of

invariants: things that are the same in all frames.



Addition of Velocities

How do velocities add relativistically? For simplicity, consider something that moves at

speed u in the +x direction as seen in the unprimed frame. Then we go back to

dx′ = γ(dx − vdt)

dt′ = γ(− v

c2
dx + dt)

(16)

to find that
dx′

dt′
=

γ(dx − vdt)

γ[dx(−v/c2) + dt]
. (17)

Since dx/dt = u, we can divide the numerator and denominator by dt to find

dx′/dt′ =
u − v

1 − uv/c2
. (18)

Note that if u = c, we get (c − v)/(1 − v/c) = c, meaning that indeed the speed of light is

the same in all frames (it had better be, given that this was one of our starting postulates!).

Incidentally, for this derivation and the others, we find as we should that when v ¿ c,

all the answers reduce to the familiar Newtonian ones. This is a good way to check our

derivations.

Other Relativistic Effects

Aberration of light.—Suppose that in the primed frame something moves with a speed

u′ at an angle θ′ from the direction of motion of the primed frame relative to the unprimed

frame (i.e., relative to the x axis as we’ve set it up here). Then in the unprimed frame the

angle of motion is given by

tan θ =
u′ sin θ′

γ(u′ cos θ′ + v)
. (19)

When v approaches c, this leads to relativistic beaming. Consider a photon (with u′ = c)

emitted at θ′ = π/2. Then we get tan θ = c/(γv). If v ≈ c, then tan θ ≈ 1/γ. But v ≈ c

means γ À 1, so θ ≈ 1/γ ¿ 1. Therefore, radiation that is spread out over half the sky

in the primed frame is beamed into a solid angle ∆Ω ∝ 1/γ2 in the unprimed frame. This

is an effect seen in relativistic jets from active galactic nuclei, and means that jets coming

towards us are vastly more visible than jets going away.

Doppler effect.—Suppose a source that emits light at a frequency νsource comes at us

with a total speed v in a direction that is an angle θ from head-on (i.e., θ = 0 means directly

at us). Then the observed frequency is

νobs =
νsource

γ [1 − (v/c) cos θ]
. (20)



Without the factor of γ, this is just the familiar nonrelativistic expression. With this factor,

though, it means that even for a source moving perpendicular to our line of sight (θ = π/2),

the frequency is altered: νobs = νsource/γ. Again using the example of AGN jets, a jet pointed

towards us has higher frequency radiation than moving away.

Intuition Builder

Show by a thought experiment that distances perpendicular to the direc-

tion of motion are not altered.


