
Special Relativity: Tensor Calculus and Four-Vectors

Looking ahead to general relativity, where such things are more important, we will now

introduce the mathematics of tensors and four-vectors.

The Mathematics of Spacetime

Let’s start by defining some geometric objects. Bear with me for the first couple, which

seem obvious but lay the groundwork for the less obvious sequels.

Scalar.—A scalar is a pure number, meaning that all observers will agree on its value.

For example, the number “3” is a scalar. Okay, that one’s trivial, but there are others that

aren’t so obvious, and we’ll get to those in a bit.

Event.—Next we have an event. An event is effectively a “point” in spacetime. More

generally, if you have an N-dimensional space, you need N numbers to label it uniquely. For

example, in two dimensions you need two numbers; e.g., x and y for a plane, or θ and φ for

the surface of a sphere. For spacetime, you need four numbers: e.g., t, x, y, and z. Naturally,

the essence of the event isn’t changed if you relabel the coordinates. I want to stress this,

because something that is obvious for events but may not be obvious for some other geometric

objects is that although when you finally calculate something you may choose a coordinate

system and break things into components, there is also an independent reality (well, within

the math at least!) of the objects. Going with the coordinate-free representation has proved

very helpful in proving theorems about spacetime, but when doing astrophysics it is usually

best to investigate components in some given system.

Vector.—Next, consider a vector. Normally we think about three-dimensional vectors,

but here we have to consider four-vectors. This is something that has four numbers; for

example, the location of an event can be written as xµ = (ct, x, y, z). You can also imagine

a line segment drawn between two events: this is a vector as well. Four-velocities are also

vectors.

In the geometric sense, it is important to work with four-vectors rather than the more

familiar purely spatial three-vectors. The reason is just as an event can be thought of as a

purely geometric object with existence independent of the coordinate system, so can a four-

vector. This is not the case with three-vectors. For example, consider an electric field at a

given location. This is a three-vector. You know from electromagnetism that under many

circumstances you can boost into a frame where the electric field vanishes. Three-vectors,

then, are not coordinate-independent geometric objects.

One-form.—Events and vectors are pretty familiar. Not so with the next object. This

is a one-form. Think again about a Euclidean plane, and two points very close to each



Fig. 1.— Vectors and their corresponding one-forms. From
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other. You can define a vector between them. But you could equally well define something

perpendicular to that vector (see the figure). If you imagined two points in three dimensions,

then after drawing a vector you could draw a plane perpendicular to it. In four dimensions

(spacetime), you would have a three-dimensional thing perpendicular to the vector. This

is called a one-form. One-forms are written differently than vectors. For example, consider

the radial component of a velocity v. It is written vr, with a superscript. The r-component

of the corresponding one-form would be written vr, with a subscript. These are also called,

respectively, contravariant (up) and covariant (down) components. In the GR lectures will

get into how to transform between the two, by raising and lowering indicies.

Tensor.—One can generalize with the further concept of tensors. Think, for example, of

the gradient of an electric field: K ≡ ∇E (this isn’t a tensor itself, because it involves just the

spatial components, but we’re using this as an analogy). At a given point, if you want to know

the components of this you can’t just specify its x or y component, for example. Instead, you

need to specify things like the gradient of the x component of E, in the y direction. Then

K might have components like Kxy or Kzz, depending on whether one wanted to go with

a contravariant or covariant description. We’ll get to how to manipulate tensors and their

indices a little later. For now, it is also useful to think of a tensor as a machine that can take

vectors or one-forms as inputs in its “slots”, one slot per index, and return a number. It is

a linear machine. As with vectors and one-forms, a tensor has a mathematical existence of

its own, independent of coordinate systems, but when calculating it is usually convenient to

select a particular coordinate system and compute with components.

The “rank” of the tensor is the number of separate indices it has. For example, T µν is a

second-rank tensor and Rα
βγδ is a fourth-rank tensor. One especially important second-rank

tensor is the metric tensor, which we’ll talk about now.

Metrics

Now let’s move a little from those basic definitions to how they are used in curved

spacetime (yes, we’re dealing with flat spacetime now but we want an easy generalization

to other spacetimes). A great way to characterize the curvature is through the use of a

metric. This effectively tells you the “distance” between two events. For example, in two

dimensions, what is the distance between two events separated by dx in the x direction and

dy in the y direction? The distance ds is just given by ds2 = dx2 + dy2. In polar coordinates

we would write ds2 = dr2 + r2dθ2, but it’s the same thing. One point (obvious here, not so

obvious later) is that this distance is the same for two given events even if the coordinates

are redefined (e.g., by rotation of the coordinate system). Therefore, as we did in the last

lecture, we call this the invariant interval between the events.

In four dimensions and flat space, special relativity tells us that the invariant interval is



defined as

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (1)

For two arbitrary events, ds2 can be positive, negative, or zero. Ask class: consider just

dt and dx, so that ds2 = −c2dt2 + dx2. What is the condition that ds2 = 0? This is the

condition that the two events could be connected by a photon going from one to the other.

Therefore, ds2 = 0 is the path of a light ray.

We can represent this more compactly, using the metric tensor gαβ, as

ds2 = gαβdxαdxβ . (2)

Here we have introduced two conventions. The first is the use of greek indices to represent

indices that might be any of the four in spacetime (for example, t, x, y, and z). The second

is the Einstein summation convention. Whenever you see a symbol used as an up and a

down index in the same expression, you are supposed to sum over the four possibilities. For

example, vαuα = vtut +vxux +vyuy +vzuz. This also means that if you sum over indices, you

don’t count them in the rank of the tensor. For example, vαuα is a scalar, T αβuα is a rank

one tensor, and Rα
βαγ is a rank two tensor. This means that ds2 is a scalar, so for example it

transforms as a scalar does under Lorentz transformations, i.e., it’s unchanged (that’s why

it is an “invariant” interval!).

Let’s take a moment to emphasize that point a bit more. Scalars are unchanged under

Lorentz transformations! At a given “point” (i.e., event) in spacetime, everyone will agree

on the value of a scalar. If this isn’t clear, just think about a trivial example of a scalar: a

pure number. For example, suppose a box contains 3 particles. The number 3 is a scalar.

Obviously everyone will agree that the number of the count is 3: countest thou not to 2 unless

thou countest also to 3; 5 is right out; and so on. Ask class: what are other examples of

scalars? Since scalars are invariant, it often gives insight to construct scalars out of the

geometrical quantities of interest.

Of course, the particular indices used are dummy indices; we could as well have written

ds2 = gµνdxµdxν . Therefore, dxµ (or dxν or dxα or whatever, it’s the same thing) is the µth

component of the separation between the events, in this particular coordinate system.

The metric tensor is symmetric: gαβ = gβα.

Going back to the particular metric we wrote earlier: gαβ = (−1, 1, 1, 1) down the diag-

onal. This is called the Minkowski metric, and is usually given a special symbol: ηαβ. The

Minkowski metric is of special importance. It describes flat spacetime, which is spacetime

without gravity. Any metric that can be put in the Minkowski form by a transformation

also describes flat spacetime. Here, by the way, is a place to point out the difference be-

tween spacetime and a particular metric used to describe it. Spacetime has some particular

geometric characteristics (for example, it’s flat). A metric is what you get when you pick a



coordinate system to use with that spacetime. Seems trivial, but as we’ll see in a later lec-

ture, sometimes a change in the coordinates (which therefore does not change the spacetime)

has made a big difference in how things are perceived.

So, in flat spacetime one could easily write ds2 = −c2dt2 +dr2 + r2(dθ2 +sin2 θdφ2), and

recover the Minkowski metric by the usual spherical to Cartesian transformation. However,

there are some metrics for which a global transformation to Minkowski is not possible, e.g.,

those applicable outside a massive object.

Important Four-Vectors

There are several especially useful four-vectors to consider. One, which we already

encountered, is the label of an event: xµ = (ct, x, y, z). How about the four-velocity? You

might be tempted to write this as Uµ = dxµ/dt, where t is the coordinate time, but remember

that since t is specific to a given coordinate system, this would not be a geometric object.

Instead, we write

Uµ =
dxµ

dτ
(3)

where τ is the proper time, defined in terms of the invariant interval as

−c2dτ 2 = ds2 . (4)

The negative sign here is because we’ve used a metric “signature” in which the sign of the

dt term is negative. The interpretation of this is the following: suppose that a freely falling

(or freely drifting) observer moves with a particle that goes from one event to another. That

observer’s subjective time (measured, e.g., on a wristwatch) equals the proper time. You

can see this by noting that for such an observer, dx = dy = dz = 0.

One can then define, analogously, the four-momentum

pµ
≡ mUµ (5)

(for particles of non-zero rest mass m) and the four-acceleration

aµ
≡

dUµ

dτ
=

d2xµ

dτ 2
. (6)

Note that the squared four-velocity has a constant magnitude:

UµU
µ =

dxµ

dτ

dxµ

dτ
=

ηµνdxνdxµ

dτ 2
=

ds2

dτ 2
= −c2 . (7)

The square of the four-momentum is thus pµp
µ = −m2c2. Note that neither UµU

µ nor pµp
µ

have a free index (because of the summing), hence these expressions are scalars and therefore

are measured to have the same value by all observers.



What does this mean? The 0th (or time) component of the four-momentum is just

p0 = E/c, and the spatial components are the normal linear momentum, so we find

pµp
µ = −m2c2 = −E2/c2 + ~p2

⇒ E2 = p2c2 + m2c4 , (8)

which may be a familiar equation. For particles of zero rest mass, the concept of proper

time is no longer useful because since ds2 = 0 along the path of a photon or anything else

traveling at the speed of light, dτ 2 = 0 as well. For such purposes, though, we can still

define the four-velocity if we define a parameter along the trajectory. Then, for example, the

four-momentum of a photon of energy E is pµ = (E/c, ~p), where ~p is the three-momentum

of the photon. Note that for a photon, pµp
µ = 0.

Application: Single-photon absorption by electron?

Can a free electron absorb a single photon? If so, then the conservation of four-

momentum implies

pµ
γ + pµ

e = p′µe . (9)

Here the γ subscript means the photon, e means the electron, and the prime is for after the

absorption. We square both sides and use peµp
µ
e = −m2

ec
2 to get

pγµp
µ
e = 0 . (10)

Note that because there are no free indices left, this is a scalar and thus valid in all reference

frames. We are therefore free to choose a convenient reference frame, specifically the one in

which the electron is initially at rest. In this frame, the electron had no three-momentum,

so pµ
e = (mec, 0, 0, 0). The four-momentum of the photon was pµ

γ = (E/c, px, py, pz), so the

dot product between them gives the condition

−meE = 0 . (11)

This requires a photon of zero energy, meaning that this process is not possible. You need

something else around to absorb momentum, e.g., a charged nucleus or a magnetic field.

One last comment before we conclude: as is shown in the text (see the book for a

derivation), it turns out that there is another Lorentz invariant (i.e., scalar) around. This

is the “phase space volume”. Consider a collection of particles that inhabits a small region

in 3-D space, d3r, and has a small spread in three-momenta, d3p. It turns out that d3rd3p

is invariant. This has many applications, some of which we will explore when we look at

radiation processes in the next class.

Intuition Builder



Can a photon spontaneously split into two photons, assuming that the

system is isolated and in flat spacetime?


