
Geodesic Deviation and Spacetime Curvature

Previously we talked about geodesics, the paths of freely falling particles. We also

indicated early on that the only “force” that gravity can exert on a particle is a tidal force.

This is also another way to characterize the curvature of spacetime. In flat spacetime, two

particles infinitesimally close to each other that are initially moving freely along neighboring

paths will not deviate from each other. Similarly, two lines that are initially parallel in a

plane remain parallel indefinitely. However, we know that tidal effects separate two particles

in a gravitational field, in the same way that in a two-dimensional surface with curvature

(e.g., a sphere or a hyperboloid), the separation between two initially parallel paths will

change. It is this observation that initiated the study of non-Euclidean geometry in the

early 1800s. We can therefore use geodesic deviation to study curvature (see Figure 1 for a

pictorial representation of geodesic deviation on a sphere).

For our purposes, we don’t need to go into details. Let’s just say that one can define

a fourth-rank (!) tensor called the Riemann curvature tensor, which describes the way that

initially nearby geodesics deviate from each other. This tensor can then be manipulated

to form a second-rank tensor called the Einstein curvature tensor, which in a mathematical

sense is divergence-free and symmetric. This is written G, or Gαβ in contravariant (up-index)

form or Gαβ in covariant (down-index) component form. This tensor involves derivatives of

the metric tensor and, unfortunately, is nonlinear in them (that is, it involves products of the

gs), which means that in very strong gravity there are significant complications. The tensor

G, which depends on the curvature of spacetime, is what must be related to the presence of

matter or energy, which curves spacetime. To do this, we introduce the stress-energy tensor.

The Stress-Energy Tensor

So far we have concentrated on the motion of test particles in curved spacetime. But

“matter tells space how to curve”, so we need a machine to quantify that as well. We’ll

examine this by defining the stress-energy tensor and looking at its components, then doing

a couple of examples of what the stress-energy tensor is in a particular circumstance.

That machine is the stress-energy tensor, sometimes called the energy-momentum tensor.

It is a symmetric second-rank tensor written T, or in component form T αβ. At a given

location, the meaning of the components is as follows. Consider an observer with four-

velocity uα. That observer will see a density of four-momentum (i.e., four-momentum per

unit of three-dimensional volume), of

dpα/dV = −T α
βuβ . (1)

This can also be thought of as inserting the four-velocity into one of the slots of the stress-

energy tensor: T(u, . . .) = T(. . . ,u). That means that the nα component of the four-



Fig. 1.— Because a sphere’s’ surface is curved, nearby geodesics deviate from each other. From

http://upload.wikimedia.org/wikipedia/commons/thumb/2/24/Earth geo.gif/250px-Earth geo.gif



momentum density is n · dp/dV = −Tαβnαuβ. Inserting the four-velocity into both slots

gives the density of mass-energy measured in that Lorentz frame:

T(u,u) = Tαβuαuβ . (2)

Finally, suppose we pick a particular Lorentz frame and choose two spacelike basis vectors ej

and ek. Then T(ej, ek) = Tjk is the j, k component of the stress as measured in that Lorentz

frame. That is, Tjk is the j-component of force per unit area acting across a surface with a

normal in the k direction, from xk − ε to xk + ε. Symmetrically, it is also the k-component

of force per unit area acting across a surface with a normal in the j direction, from xj − ε to

xj +ε. This means that the diagonal components (j = k) are the components of the pressure

as measured in that Lorentz frame, and the off-diagonal components are the shear stresses.

Suppose we pick a particular observer with a particular Lorentz frame. Then what do the

components mean? Here we’ll use the notation (fairly widespread) that the “0” component

is the time component.

T 00 = −T 0
0 = T00 is the density of mass-energy measured in that frame. T j0 = T 0j is the

volume density of the j-component of momentum, measured in that frame. Alternatively

(and equivalently), T 0k is the k-component of the energy flux. Finally, T jk is as defined

before, which can also be thought of as the k-component of flux of the j-component of

momentum.

Symmetry of the Stress-Energy Tensor

The stress-energy tensor must be symmetric. For a clever partial proof of this (involving

the space components only), we can use an argument also used in Newtonian theory. Think

of a very small cube, with a mass-energy density T 00 and dimension L. The moment of inertia

of the cube is I ∼ ML2 ∼ T 00L5. The torque on the cube from various stresses is simply

the sum of the forces times the lever arms. For example, the z component of the torque is

N z = (−T yx)L2(L/2) + (T yxL2)(−L/2) − (−T xyL2)(L/2) − (T xyL2)(−L/2) . (3)

That is, “the torque is the y-component of force on the +x face times the lever arm to the

+x face, plus the y-component of the force on the −x face times the lever arm to the −x

face, minus the x-component of the force on the +y face times the lever arm to the +y face

minus the x-component of the force on the −y face times the lever arm to the −y face”.

Summed, this gives

N z = (T xy
− T yx)L3 . (4)

Ask class: what would this (plus the moment of inertia) imply for the angular velocity

induced as L −→ 0? The ratio N/I −→ ∞, so an infinitesimal cube would be set spinning

infinitely fast unless T xy = T yx. Therefore, the spatial components are symmetric. So are

the space-time components.



Example 1: Perfect Fluid

Let’s think about a perfect fluid. This is defined as a fluid that has no shear stresses

(e.g., no viscosity). In the “rest frame” of the fluid, where fluid motions are isotropic, there

are therefore no off-diagonal components of the stress-energy tensor. Calling the mass-energy

density in this frame ρ, we know that T 00 = ρ. In addition, since fluid motions are isotropic

in this frame, the pressure is the same for all three spacelike diagonal components; call it

T xx = T yy = T zz = p. This gives the stress-energy tensor in that special frame, but what

about in general? The key trick here is to write a general tensorial equation that is valid in

the special frame for which the calculation is easy. In this case, let the four-velocity of the

fluid be uα. In the rest frame of the fluid, recall that u0 is the negative of the specific energy,

which is just u0 = −1. The rest of the four-velocity components vanish in this special frame.

In addition, since this is a Lorentz frame, the spacetime metric is Minkowski, gαβ = ηαβ.

That means that in this special frame the equation

Tαβ = ρuαuβ + p(ηαβ + uαuβ) (5)

holds. Indeed, it still holds if we replace η with g, since g = η in this frame. But then we

have

Tαβ = pgαβ + (p + ρ)uαuβ . (6)

This is the general tensor equation we’ve been looking for, and it is valid in all frames! One

can also write this in the form

T = pg + (p + ρ)u ⊗ u . (7)

This is a neat trick, but it isn’t really all that mysterious. From experience in special

relativity you know that if you have a quantity in one frame you can transform it easily

enough. It’s the same thing here: just remember that the metric tensor is Minkowski in the

local Lorentz frame, and you’re all set!

Test of understanding: suppose that an observer with a different four-velocity wα mea-

sures the mass-energy density of this fluid. What is the result? Simply Tαβwαwβ.

Example 2: Swarm of Particles

Suppose there is a group of noninteracting particles all moving with the same speed β

in the x-direction. In their rest frame their mass density is ρ0. What is the stress-energy as

measured in the lab frame, where they move with velocity β?

We can use the same trick here to start. First, get the stress-energy tensor in a special

frame. Then write it in such a way that it is a generally valid tensorial expression. In this

case, in the rest frame there is no pressure and no shear stress, just a group of static particles



with mass density ρ0. Then T 00 = ρ0 and the rest of the components vanish. This means

one could write T αβ = ρuαuβ, or T = ρ0u⊗ u. Therefore, we also have Tαβ = ρ0uαuβ. This

is valid in general.

The particular problem posed asks for the stress-energy as seen in a different frame. Since

this frame is moving with constant velocity compared to the original Lorentz frame, the four-

velocity of the new frame is found by a special relativistic transformation: w0 = γu0 = γ,

wx = −γβu0 = −γβ, and wy = wz = 0. The stress-energy measured in the new frame

is just T αβ = ρ0w
αwβ. This gives three nonzero components: T 00 = ρ0w

0w0 = ρ0γ
2;

T 0x = T x0 = −ρ0γ
2β; and T xx = ρ0γ

2β2.

Conservation of Stress-Energy

Conservation laws are another of the unifying principles of physics. At various times

mass, energy, mass-energy, momentum, angular momentum, and so on have been added to

the list of conserved quantities. In general relativity all these conservation laws (and more

besides!) are expressed in the general principle that the divergence of the stress-energy tensor

vanishes: ∇ · T = 0 in coordinate-free notation. In flat space the components are T αβ
,β = 0,

where the comma denotes a partial derivative (since T is symmetric, one could also take

the divergence on the other index). In general spacetime, one has to take into account the

twisting of the spacetime coordinates themselves; you can look at the grad lectures for details,

but basically one adds correction terms and denotes the whole generalized derivative by a

semicolon, so T αβ
;β = 0. The meaning of this equation may also be expressed as “there are

no sources or sinks of stress-energy”, which is the same thing as saying that it is conserved.

Let’s look at one example application of this equation, to see just how much information

is bound up in it. Consider a nearly Newtonian perfect fluid, in which velocities are all much

less than c and in its rest frame its pressure is tiny compared to its density. Then from

before we have
T 00 = (p + ρ)u0u0 − p ≈ ρ

T 0j = T j0 = (ρ + p)u0uj ≈ ρvj

T jk = (ρ + p)ujuk + pδjk ≈ ρvjvk + pδjk .

(8)

The time component of ∇ · T = 0 is (since spacetime is almost flat)

T 00
,0 + T 0j

,j = 0 ⇒ ∂ρ/∂t + (ρvj),j = 0 , (9)

or ∂ρ/∂t +∇ · (ρv) = 0, which is simply the equation of continuity! The spatial component

is

T j0
,0 + T jk

,k = 0 ⇒ ∂(ρvj)/∂t + ∂(ρvjvk)/∂xk + ∂p/∂xj = 0 . (10)

Using the equation of continuity, this becomes

∂v/∂t + (v · ∇)v = −(1/ρ)∇p . (11)



This is Euler’s equation. Therefore, the equations for perfect fluids are one consequence of

∇ · T = 0.

The Einstein Field Equation

Now we’re ready to put it all together, since we know how to quantify the presence of

mass and energy and know how to characterized the curvature of spacetime. The final link

is the relation between stress-energy and curvature, and this is provided by the Einstein field

equation:

G = 8πT (12)

where G is the Einstein tensor mentioned earlier. The proportionality constant is fixed by

demanding that the theory agree with the Newtonian limits. This is the basis of all work

in GR; effectively, by using things like the Schwarzschild spacetime we’re using prior work

that has solved the EFE for spherically symmetric vacuum spacetime. Incidentally, since

G is symmetric, it has ten potentially unequal components that are determined by T. You

might think this would be enough to uniquely determine all ten components of the (similarly

symmetric, second-rank) metric tensor. This can’t be, though, since there must be at least

four degrees of freedom (since the local coordinates can be chosen arbitrarily). The resolution

is that the Bianchi identities Gαβ
;β mean that only six components are independent, so there

are indeed four degrees of freedom.

When it was discovered that Einstein’s theory predicted a dynamic universe (in contra-

diction to philosophy at the time and to the best observations), Einstein heavy-heartedly

introduced a modification that he called the cosmological constant. When he introduced it,

it took the form

G + Λg = 8πT (13)

where g is the metric tensor. Current cosmologists prefer to think of it as a vacuum contri-

bution to the stress-energy: G = 8π(T+TVAC), where TVAC = −(Λ/8π)g. Einstein greatly

regretted including this, since the universe is expanding, and called it the greatest blunder of

his life. However, it looks more and more like this really may be the way the world operates!

No one has a clue how this cosmological constant arises, though, and its value is a good 120

orders of magnitude lower than the simplest particle physics estimates would suggest.

Intuition Builder

Is there any geodesic deviation on the surface of a cylinder?


