
Neutron Star Structure

We now enter the study of neutron stars. Like black holes, neutron stars are one of

the three possible endpoints of stellar evolution (the remaining one being white dwarfs).

Also like black holes, neutron stars are very compact objects, so GR is important in their

description. Unlike black holes, they have surfaces instead of horizons, so they are a lot more

complicated than black holes. We’ll start with an overall description of neutron stars, then

discuss their high densities and strong magnetic fields.

Summary of Neutron Stars

A typical neutron star has a mass of 1.2 − 2 M¯ and a radius of ∼ 10 km, give or take

a few (couple?) of kilometers. It can have a spin frequency up to ∼700 Hz and a magnetic

field up to perhaps 1015 G or more. Its surface gravity is around 2 − 3 × 1014 cm s−2, so

mountains of even perfect crystals can’t be higher than < 1 mm, meaning that these are the

smoothest surfaces in the universe. They have many types of behavior, including pulsing (in

radio, IR, opt, UV, X-ray, and gamma-rays, but this is rarely all seen from a single object),

glitching, accreting, and possibly gravitational wave emission. They are the best clocks in

the universe; the most stable are a million times more stable in the short term than the best

atomic clocks. Their cores are at several times nuclear density, and may be composed of

exotic matter such as quark-gluon plasmas, strange matter, kaon condensates, or other weird

stuff. In their interior they are superconducting and superfluid, with transition temperatures

around a billion degrees Kelvin. All these extremes mean that neutron stars are attractive

to study for people who want to push the envelope of fundamental theories about gravity,

magnetic fields, and high-density matter.

High densities

Let’s start, then, with high densities. An essential new concept that is introduced in high

densities is Fermi energy. The easiest way to think about this is in terms of the uncertainty

principle,

∆p∆x >∼ ~ . (1)

If something is localized to a region of size ∆x, then its momentum must be at least ~/∆x.

That means that in a dense environment, there is a momentum, and hence an energy, asso-

ciated with the confinement. Therefore, squeezing something increases its total energy, and

this Fermi energy acts as a pressure (sometimes called degeneracy pressure). The existence

of this energy has a profound role in the structure of white dwarfs, and especially neutron

stars. In fact, if degeneracy pressure dominates, then unlike normal stars, which get larger

as they get more massive, degenerate stars are smaller at higher masses. In particular, an

approximate relation is that R ∼ M−1/3 for a degenerate star.



First, let’s get some basic numbers. If the energy and momentum are low, then the

Fermi energy EF is related to the Fermi momentum pF ∼ ~/∆x by EF ≈ p2

F /2m, where m

is the rest mass of the particle. Since ∆x ∼ n−1/3, where n is the number density of the

particle, in this nonrelativistic regime EF ∼ n2/3. At some point, however, EF > mc2. Then

EF ∼ pF c, so EF ∼ n1/3. For electrons, the crossover to relativistic Fermi energy happens at

a density ρ ∼ 106 g cm−3, assuming a fully ionized plasma with two nucleons per electron.

For protons and neutrons the crossover is at about 6×1015 g cm−3 (it scales as the particle’s

mass cubed). The maximum density in neutron stars is no more than 1015 g cm−3, so for

most of the mass electrons are highly relativistic but neutrons and protons are at best mildly

relativistic.

Let’s now think about what that means. Ask class: suppose we have matter in which

electrons, protons, and neutrons all have the same number density. For a low density, which

has the highest Fermi energy? The electrons, since at low densities the Fermi energy goes

like the inverse of the particle mass. Ask class: given what we said before, what is the

approximate value of the electron Fermi energy when ρ = 106 g cm−3? That’s the relativistic

transition, so EF ≈ mec
2 ≈ 0.5 MeV. Then at 107 g cm−3 the Fermi energy is about 1 MeV,

and each factor of 10 doubles the Fermi energy since EF ∼ n1/3 in the relativistic regime.

What that means is that the energetic “cost” of adding another electron to the system is

not just mec
2, as it would be normally, but is mec

2 + EF . It therefore becomes less and less

favorable to have electrons around as the density increases.

Now, in free space neutrons are unstable. This is because the sum of the masses of an

electron and a proton is about 1 MeV short of the mass of a neutron, so it is energetically

favorable to decay. Ask class: what happens, though, at high density? If mp + me + EF >

mn, then it is energetically favorable to combine a proton and an electron into a neutron.

Therefore, at higher densities matter becomes more and more neutron-rich. First, atoms get

more neutrons, so you get nuclei such as 120Rb, with 40 protons and 80 neutrons. Then, at

about 4×1011 g cm−3 it becomes favorable to have free neutrons floating around, along with

some nuclei (this is called “neutron drip” because the effect is that neutrons drip out of the

nuclei). At even higher densities, the matter is essentially a smooth distribution of neutrons

plus a ∼ 5 − 10% smattering of protons and electrons. At higher densities yet (here we’re

talking about nearly 1015 g cm−3), the neutron Fermi energy could become high enough that

it is favorable to have other particles appear.

It is currently unknown whether such particles will appear, and this is a focus of much

present-day research. If they do, it means that the energetic “cost” of going to higher density

is less than it would be otherwise, since energy is released by the appearance of other, exotic

particles instead of more neutrons. In turn, this means that it is easier to compress the star:

squashing it a bit doesn’t raise the energy as much as you would have thought. Another way



Fig. 1.— Figure showing many aspects of neutron stars that are discussed in this lecture. Originally

due to Dany Page.



of saying this is that when a density-induced phase transition occurs (here, a transition to

other types of particles), the equation of state is “soft”.

Well, that means that it can’t support as much mass. That’s because as more mass is

added, the star compresses more and more, so its gravitational compression increases. If

pressure doesn’t increase to compensate, in it goes and forms a black hole. What all this

means is that by measuring the mass and radius of a neutron star, or by establishing the

maximum mass of a neutron star, one gets valuable information about the equation of state,

and hence about nuclear physics at very high density. This is just one of many ways in which

study of neutron stars has direct implications for microphysics.

Comment: the extra “squishiness” of matter when it is near a density-induced phase tran-

sition may also have importance in the early universe. It’s been pointed out that when the

universe goes from being a quark-gluon plasma to being made of nucleons (at about 10−5 s

after the Big Bang), this is a density-induced phase transition, so it may be comparatively

easy to form black holes then. Perhaps this led to the formation of so many black holes that

they form dark matter; incidentally, because this event happened before big bang nucleosyn-

thesis, no baryon number constraints are violated. This is not the leading model for dark

matter, but it is thought-provoking.

Big Honking Magnetic Fields

In addition to ultrahigh densities, another unique aspect of neutron stars is their mag-

netic fields. By a factor of around 107, neutron stars have the strongest magnetic fields in

the known universe. The fields can therefore have extremely important effects on matter in

ways not approached anywhere else. Here we’ll concentrate on “ordinary” fields of ∼ 1012 G,

and will postpone discussion of higher fields to the special lecture on magnetars.

As we have discussed, magnetic fields tend to have a minor impact on the structure of

ordinary stars, and even a minor impact on their spectra (fields less than 105 G or so are

difficult to detect in stars other than the Sun). For neutron stars, however, their effect on

the spectrum is dominant, as is their effect on radiation transport properties, which are in

turn the most important energy transport mechanisms near the surface of the star.

Let’s start the treatment by thinking of a free electron spiraling in a magnetic field.

Suppose that it is moving at an angular frequency ω in a circle of radius r, and apply the

classical force balance equation. Ask class: what is the centrifugal force for an electron, of

mass me? It’s just meω
2r. Ask class: if it is moving at an azimuthal velocity vφ, what is

the magnetic force on the electron for a magnetic field B? Simply eBvφ/c. Equating the

two, and using vφ = ωr, we find the frequency (the cyclotron frequency)

ωc =
eB

mec
= 11.5 keVB12 , (2)



where as usual the convention is that B12 = B/1012 G. Another important quantity is the

scale length of the radius of the orbit, which is given by the Bohr-Sommerfeld quantization

rule:

Lz = meωr2 ∼ m~ (3)

where m = 0,±1,±2, . . . is the azimuthal quantum number. Therefore, the radius of the

mth orbital is something like

rm ∼ r̂
√

|m| , (4)

where r̂ = (~c/eB)1/2 = 2.5 × 10−10 B
−1/2

12
cm is the Landau radius. More exactly, rm =

r̂
√

2|m| + 1.

Ask class: we now want to estimate when the orbitals of atoms are affected significantly

by the magnetic field. What should we compare? We could compare energies (cyclotron

versus Coulomb), forces (magnetic versus Coulomb), or distances (size of atomic orbital

versus radius of mth Landau orbital). All three give approximately the same answer. Using

forces, equality happens when

Ze2

r2
m

=
evmB

c
=

eωcrmB

c
, (5)

giving the critical field for state m of a hydrogenic atom of nuclear charge Z as

Bc =
Z2

(2m + 1)3
B0 . (6)

The critical field for the ground state of hydrogen is B0 = m2

ece
3/~

3 = 2.35 × 109 G, at

which point the cyclotron energy is 2× 13.6 eV. Ask class: given this, are magnetic effects

likely to be most important for ground states or excited states? For hydrogen or for heavier

atoms? Excited states and low-charge nuclei are easiest to get in the magnetically dominated

regime. In fact, lab experiments with high Rydberg level hydrogen (n ∼ 100 − 200!) have

shown some of these effects.

Ask class: consider now a neutron star with a magnetic field ∼ 1012 G. The energy

difference between the ground state and first excited Landau state is ~ωc. At what ap-

proximate surface temperature would one expect excited Landau states to exist? At about

kT = 10 keV, or T ∼ 108 K. This is much hotter than most neutron star surfaces, which

have T ∼ 105 − 106 K.

When B À Bc and kT ¿ ~ωc, atoms become essentially cylindrical (simple when B

is very small or very large, but complicated when B is intermediate). In this limit, the

Coulomb force dominates only along the magnetic field, and the orbitals are tightly bound

across the field. The length across the field for the ground state is therefore r̂, and the length

along the field is greater, with some length ` to be determined. The energy of these orbitals



is

E ∼
~

2

2me`2
−

Ze2

`
ln(`/r̂) . (7)

Minimizing with respect to ` gives

` ∼

(

a0/Zr̂

ln(a0/Zr̂)

)

r̂ (8)

where a0 = 5 × 10−9 cm is the Bohr radius. For example, when B = 1012 G, a0 ≈ 20r̂, so

` ≈ 7r̂ for hydrogen. The energy is then

E ∼ Z2
~

2

mea2

0

ln2 (a0/Zr̂) . (9)

The factor before the log is just the usual ground state energy without any magnetic field.

For B = 1012 G, the multiplying factor in this formula is about 9, predicting about 120 eV

for the ground state energy of hydrogen. The real value is about 160 eV.

This is amazing! It means that for a typical NS magnetic field, the ground state energy

is ten times what it is for no field! This makes a huge difference in many ways. For example,

if we used the zero-field binding energy we would predict no neutral hydrogen in NS atmo-

spheres. In reality, though, the binding energy is so huge that hydrogen can exist at even

∼ 106 K in the neutral state. This means that there is a significant extra source of opacity

here.

Given this, class is almost ready to come up with one of the major results of my thesis.

Cooling of neutron stars is interesting in many ways, for example it gives hints about the

internal structure of these stars (e.g., the presence of weird stuff at high densities, or of

superfluidity, could make a big difference). However, we can’t see all the emission from NS;

cooling emission is predominantly in the X-rays, and X-ray satellites have a limited range

of energies that they can observe. Analyses prior to mine had only considered nonmagnetic

atmospheres. Given that these atmospheres are dominated by nonmagnetic Kramers opac-

ities, Ask class: would we expect higher or lower photon energies to come through more

easily? Higher energies, because of ν−3 effect. This means that in these bands, there is lots

more emission than their would be from a blackbody, given the same effective temperature.

This would mean that NS are a lot cooler than blackbody fits would indicate, and it’s in

that direction that the neat stuff (quarks, hyperons, superfluidity) would operate.

However, Ask class: what happens when the field is really strong, given that bound-

free and free-free are still important? The weaker frequency dependence, plus the fact that

hydrogen and helium transition energies are closer to the window, means that the opacity

is a lot flatter, and as a result blackbody fits aren’t as bad as people thought, and there is

no evidence for rapid cooling of NS. Sadly for me, no atomic lines have yet been positively

identified from the surface of any NS. This is because the NS that are bright enough to be



seen are hot enough that, in fact, almost all hydrogen and helium are ionized. In addition,

the strong surface gravity of neutron stars puts the light elements on top, so it isn’t easy to

see elements such as iron that would hold onto some of their electrons. There was a report

of an accreting neutron star showing iron lines, but the significance was not high enough to

say just based on that one case.

Optional: Superconductivity and Superfluidity

One of the principles that we just encountered is that nature, being lazy, will go for

the lowest energy state possible in some circumstance. That’s why there is progressive

neutronization of matter at higher and higher densities: it’s a lower energy state. In that

same general spirit, we also can have superconductivity and superfluidity in neutron stars.

General idea: if there is an attractive pairing interaction between fermions, they can

couple to form a state with integral spin, and therefore can act like bosons. At a low

enough temperature, these “bosons” can form a condensate-like state in which all of the

bosons occupy the same quantum state and form a superfluid. If the component fermions

are charged, this forms a superconductor. In normal laboratory experience, the pairing

is electronic and happens only at very low temperatures (other than the ceramic high Tc

superconductors, which do their thing at liquid nitrogen temperatures or a bit above, almost

all laboratory superfluid or superconducting phenomena are observed at temperatures less

than 20 K). However, in the dense core of neutron stars, nucleonic pairing can happen.

As with all highly degenerate systems, pairing occurs between states near the Fermi

surface (recall that in the cores of NS, both protons and neutrons are degenerate, just not

relativistically so). Since there are many more neutrons than protons, neutrons and protons

can’t pair up easily because their momenta are substantially different. So, consider only

n − n and p − p pairings. The first gives a superfluid, the second a superconductor.

Another general principle of phase transitions is that they happen only when it is en-

ergetically favorable. In this case, need to compare the pairing energy ∆ with Ask class:

what other energy? The thermal energy, kT . The pairing energy is extremely difficult to

calculate from first principles; one reason is that the medium in which the pairings takes

place makes a difference (particularly for the outnumbered protons). The value, however, is

somewhere around 1 MeV. Ask class: what does that mean for the approximate transition

temperatures? Since 1 eV is about 104 K, the transition temperature is around 1010 K (these

are the real high-temperature superconductors of the universe!). The interior temperatures

of neutron stars are expected to be less than this for stars older than a few hundred years

at the most, so most of the mass of neutron stars is superconducting and superfluid(!). In

the inner crust, between neutron drip (at about 4×1011 g cm−3) and nuclear density (about

2×1014 g cm−3), the free neutrons are probably paired in the 1S0 state, as in BCS supercon-

ductivity (that is, their spins are opposite). At higher densities, calculations suggest they



are in the 3P2 state, with aligned spins. Protons are probably coupled in the 1S0 state to

form a superconductor.

Ask class: since most of the mass of a neutron star is a superconducting superfluid,

what consequences would this have for some of the bulk properties of the star, such as its

thermal, rotational, or magnetic properties? A superfluid is irrotational, so any rotation

must be quantized in vortices of ordinary matter. However, these vortices are close enough

together (about 10−2 cm for a 30 Hz rotator like the Crab) that for many purposes one can

treat the interior as rigidly rotating. A superfluid also is a perfect thermal conductor, so to

an even greater extent than for normal degenerate matter, the interior of a neutron star is

isothermal. A superconductor excludes magnetic flux, so any magnetic field in the interior

must likewise be quantized in vortices.

Superconductivity and superfluidity, if observed in NS, could tell us a lot about the

pairing and hence inform us about aspects of nuclear physics that are mighty difficult to

get from laboratories. This is an extremely indirect process, and too long a story to go into

here. Suffice it to say that it has been invoked to explain glitches (sudden but small changes

in the spin frequency of pulsars) and the evolution of magnetic fields in neutron stars.

Intuition Builder

Say that a particle exists with rest mass-energy 1200 MeV. How dense

would the interior have to be, if made of pure neutrons (rest mass 939 MeV),

so that the extra particle was stable?


