
ASTR 498: Special Relativity Practice Problems

Part 1: Basics

A four-vector is written with a greek superscript: xµ or xα are examples. This has four

components, one for each of the four spacetime coordinates you have chosen. For example,

in Cartesian coordinates, the differential separation vector is dxµ = (dt, dx, dy, dz).

The invariant interval ds (an interval between events that is the same as measured by

any observer) is related to the differential separation vector dxµ through the metric tensor

gµν :

ds2 = gµνdxµdxν (1)

where we use the Einstein summation convention that for a repeated up and down index,

we sum over all spacetime components. For example, in Cartesian coordinates, µ = t, x, y, z

and the same with ν, so

ds2 = gttdt2 + gtxdtdx + gtydtdy + gtzdtdz + . . . (2)

In this problem set we will opt for simplicity and always use Cartesian coordinates. Note,

though, that in general we could use other coordinate systems (e.g., spherical polar coordi-

nates). We are also focusing on flat spacetime. With these restrictions, we have

gtt = −c2, gxx = gyy = gzz = 1 (3)

and all other components vanish. In general, one writes the metric tensor in a symmetric

way, meaning that gµν = gνµ for any ν and µ. It is not, however, always the case that the

metric is diagonal.

It is common in special and general relativity to use a system of units in which the

speed of light c is set to 1; if it makes you more comfortable, you can think of this as using a

coordinate t̂ that is defined as a length-like quantity, t̂ ≡ ct. In that case, the metric would

be

ds2 = −dt̂2 + dx2 + dy2 + dz2 . (4)

This is sometimes written with the special Minkowski metric tensor ηµν = (−1, 1, 1, 1) along

the diagonal and zero elsewhere. That is, ds2 = ηµνdxµdxν .

To raise and lower indices, we use the metric tensor. In general, for example, uν = gµνu
µ.

Since in this expression we have µ as a lower and upper index, we sum over them:

uν = gtνu
t + gxνu

x + gyνu
y + gzνu

z . (5)

In our case the metric is diagonal, meaning that for any given ν, all but one of these terms

vanishes. For example, ux = gxxu
x. However, for the more general metrics that we will

encounter in general relativity, you’ll need to sum over the terms.



You can also go the other way around: uµ = gµνuν . Here gµν is the matrix inverse of gµν .

For a diagonal metric such as the one we consider, the matrix inverse is another diagonal

metric, where each entry is the reciprocal of the corresponding entry in the original metric.

Therefore, for the Minkowski metric, the inverse is equal to the original. This is of course

not true in general.

Finally, note that if you have summed over all free indices, then you have a scalar, i.e., a

pure number. Pure numbers are the same in all frames, hence they are invariants. These are

very useful indeed in figuring out relativistic problems. As an example, the squared length

of any four-vector is measured to be the same by any observer: AµAµ is a scalar. Now, the

actual value could be different than the squared length of a different vector: AµAµ 6= BµBµ

in general. But everyone will agree on AµAµ even if the individual components of Aµ appear

different in different frames. You can extend this further as well. For example, the metric

tensor gµν has two free indices, so it is a rank two tensor. But gµνg
µν has no free indices, so

it is a scalar and thus an invariant. Similarly, it turns out that there is an electromagnetic

tensor, usually represented F αβ (note that I’m changing µ and ν to α and β, not because

it is important but to show that these are dummy variables; we can call them anything).

The individual components of this tensor, which turn out to be components of the electric

and magnetic fields, are measured differently by different observers. However, F αβFαβ is a

scalar. Let me highlight the importance of scalars:

• Because a scalar is the same in all reference frames, you can go into an especially

convenient reference frame to calculate the value of the scalar. You are then guaranteed

it is the same in all frames. For example, if you want to know something about a

particle, a good frame is the one in which the particle is at rest, i.e., in which the

spatial components of the four-velocity all vanish.

Part 2: Practice Problems

1. Write out explicitly the squared magnitude of some four-vector Aµ in Cartesian coordi-

nates and flat spacetime.

Answer:

The squared magnitude is AµAµ. Expanding this, we have AtAt +AxAx +AyAy +AzAz.

We also know that the components with lowered indices are related to the upper via, e.g.,

At = gνtA
ν = gtνA

ν (since the metric tensor is symmetric, we can write it either way).

Since the metric tensor we are using is diagonal, this reduces to At = gttA
t = −At because

gtt = −1. Doing the same thing with the other components, we get

AµAµ = −(At)2 + (Ax)2 + (Ay)2 + (Az)
2 . (6)



This has no free indices, therefore this is a invariant (i.e., a scalar). As a sanity check,

we note that for slow relative motion between frames, the component At is the same in all

frames (i.e., what we expect in normal Euclidean geometry). Our statement is therefore that

(Ax)2 + (Ay)2 + (Az)2 is the same in all frames. This is the familiar point that the length of

a three-vector is independent of the coordinate system, so it makes sense in the slow-motion

limit.

2. Consider two four-vectors A and B. Construct an invariant dot product between them.

Answer:

We can write this in components. For example, we have Aµ and Bν . However, AµBν

has two free indices, so it is not an invariant scalar. We might try something like AµBµ, but

that has two up indices instead of one up and one down, so that doesn’t have to be invariant

either. Forms with one being a vector and the other being a one-form seem more promising,

but it might appear that there are two possibilities: AµBµ and AνB
ν . Are these necessarily

equal?

To determine this, let’s consider the construct

A · B = gµνA
µBν . (7)

Note that this has µ as an up and a down index, and also ν, so there are no free indices and

this should indeed be a scalar. Remembering how we lower indices, we can rewrite this as

gµνA
µBν = (gµνA

µ)Bν = AνB
ν . (8)

But we can also write

gµνA
µBν = gµνB

νAµ = (gµνB
ν)Aµ = BµA

µ = AµBµ . (9)

The forms are indeed the same.

In our particular metric, which is diagonal, the dot product is

A · B = −AtBt + AxBx + AyBy + AzBz . (10)

Let’s check the slow motion limit again. In this limit, At and Bt are the same in all frames,

so we ignore that term. Constancy of our dot product then implies that AxBx+AyBy+AzBz

is invariant, i.e., even if we rotate our axes this answer will be the same. That is indeed true

in Euclidean three-dimensional geometry, so this checks out.

3. The four-velocity uµ of a particle with nonzero rest mass is defined as uµ = dxµ/dτ , where

τ is the “proper time”. The proper time is the time measured by an observer riding along



with the particle. Such an observer therefore sees no motion in the spatial coordinates:

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2. Remember that the time interval dt depends

on the observer; for this special observer (who has dx = dy = dz = 0), we call the time

coordinate τ . The proper time interval dτ is therefore related to the invariant interval ds by

ds2 = −c2dτ 2. With this in mind, what is the squared magnitude of the four-velocity?

Answer:

The squared magnitude of any vector Aµ is AµAµ. With lowering of indices, this can be

rewritten as gµνA
µAν . Therefore,

uµuµ = gµνu
µuν = gµν(dxµ/dτ)(dxν/dτ) = (gµνdxµdxν)/dτ 2 = ds2/dτ 2 = −c2 . (11)

Let’s try to look at this from another point of view. Consider an observer riding along with

the particle, who therefore sees dx = dy = dz = 0. The only coordinate that is changing

is t. Therefore, after some time dt, the spacetime “distance” traveled (i.e., the interval) is

given by ds2 = −c2dt2. Recall that the minus sign, which I admit seems counterintuitive,

is the result of our choice of metric signature (we could have chosen a positive sign for the

time component and a negative sign for the rest; it’s just a convention). This implies that

the squared four-velocity is −c2. However, since the squared four-velocity, like the squared

magnitude of any vector, is a scalar, this must be the answer in any reference frame.

4. The four-momentum of a particle with nonzero rest mass m is pµ = muµ. Note that “rest

mass” means the mass measured by an observer riding along with the particle. What is the

squared magnitude of the four-momentum?

Answer:

pµpµ = m2uµuµ = −m2c2 . (12)

We can motivate this further if we realize that in a given frame, pµ = (E/c, px, py, pz), where

E is the total energy including rest mass and px etc. are the normal linear momentum

components. Since pµpµ is a scalar, we can pick an especially convenient reference frame,

in which the particle is at rest. Then px = py = pz = 0, and the energy is just the rest

mass energy E = mc2. Therefore, in this frame, pµ = (mc, 0, 0, 0). Writing things out in

components,

pµpµ = gµνp
µpν = gtt(p

t)2+gxx(p
x)2+gyy(p

y)2+gzz(p
z)2 = gtt(p

t)2 = −(pt)2 = −m2c2 . (13)

5. Consider a particle with nonzero rest mass m moving in the x direction with a speed that



gives a Lorentz factor γ. The energy is then E = γmc2. What is the momentum in the x

direction?

Answer:

We have pµ = (E/c, px, py, pz) = (γmc, px, 0, 0). Then from the previous problem,

pµpµ = −m2c2 = gµνp
µpν

= gttp
tpt + gxxp

xpx

−m2c2 = −γ2m2c2 + (px)2

(px)2 = (γ2 − 1)m2c2

= [1/(1 − v2/c2) − 1]m2c2

= [1/(1 − v2/c2) − (1 − v2/c2)/(1 − v2/c2)]m2c2

= [(v2/c2)/(1 − v2/c2)]m2c2

= [1/(1 − v2/c2)]m2v2

= γ2m2v2

px = γmv .

(14)

6. Consistent with our general pµpµ = −m2c2 formula, it is the case that for photons (which

have zero rest mass), pµpµ = 0. Given this, can an electron absorb a single photon in free

space?

Answer:

We are asked whether the process e+ γ → e is possible with nothing else around, where

here we use γ to represent a photon and not the Lorentz factor. The four-momentum must

be conserved in this interaction. Let us represent the four-momentum of the initial electron

(on the left hand side) by p, of the final electron (on the right hand side) by p′, and of the

photon by q. Four-momentum conservation then implies pµ + qµ = p′µ. Squaring gives us

(pµ + qµ)2 = (p′µ)2

(pµ + qµ)(pµ + qµ) = (p′µ)(p′µ)

pµpµ + 2pµqµ + qµqµ = −m2
ec

2

−m2
ec

2 + 2pµqµ + 0 = −m2
ec

2

2pµqµ = 0 .

(15)

Note that pµqµ = qµpµ, as we demonstrated before, which is why we were able to com-

bine the two terms. We are left with a scalar equation, meaning that we can go into a

convenient frame. The one we choose is the one in which the initial electron was at rest.

Then pµ = (mec, 0, 0, 0). Suppose that in this frame the energy of the photon was E; then

qν = (E/c, qx, qy, qz). The product is then

pµqµ = gµνp
µqν = gttp

tqt + gxxp
xqx + gyyp

yqy + gzzp
zqz = −(mec)(E/c) = −meE . (16)



Therefore, our condition for four-momentum conservation in the e + γ → e process reduces

to

−2meE = 0 . (17)

But since −2me 6= 0, this means E = 0, i.e., there can’t be a photon there. The process is

not possible in free space. The process can occur if there is something else around, e.g., a

nucleus or magnetic field.

7. Can a single photon in free space split into an electron and positron?

Answer:

We are asked whether γ → e− + e+ can occur with nothing else around. Call the four-

momentum of the photon q, of the electron p−, and of the positron p+. Then four-momentum

conservation means qµ = (p−)µ + (p+)µ. Squaring gives

qµqµ = ((p−)µ + (p+)µ)((p−)µ + (p+)µ)

0 = (p−)µ(p−)µ + (p+)µ(p+)µ + 2(p−)µ(p+)µ

0 = −2m2
ec

2 + 2(p−)µ(p+)µ .

(18)

This is a frame-independent equation, so again we can pick a convenient frame. A good choice

is the one in which the electron is at rest, meaning that (p−)µ = (mec, 0, 0, 0). Suppose that

in this frame the positron has Lorentz factor γ, so that (p+)µ = (γmec, (p
+)x, (p+)y, (p+)z).

Then

(p−)µ(p+)µ = gµν(p
−)µ(p+)ν = gtt(p

−)t(p+)t + gxx(p
−)x(p+)x + gyy(p

−)y(p+)y + gzz(p
−)z(p+)z

(19)

or

(p−)µ(p+)µ = −(p−)t(p+)t = −γm2

ec
2 . (20)

Our four-momentum conservation equation therefore becomes

0 = −2m2

ec
2 − 2γm2

ec
2 . (21)

This is impossible, because the right hand side is always negative. Single-photon pair pro-

duction in free space can’t happen. However, with something nearby (e.g., a nucleus or a

magnetic field), it can happen.

8. Suppose two photons hit head-on. In a particular frame, the energies of the photons

are E1 and E2. What is the condition on E1 and E2 such that it is possible to produce an

electron-positron pair?

Answer:



The process is γ + γ → e− + e+. We could go through four-momentum conservation

as before and verify that this process is possible in principle. However, let’s take a slightly

more physical approach in this case.

If pair production happens, everyone must agree that it has happened. It is not possible

that one observer sees two photons enter and an electron and a positron leave, whereas

another observer never sees the production of the electron and positron. Therefore, the

conditions for pair production must exist in all frames. One obvious condition is that the

total energy of the photons must exceed the mass-energy of the electron plus the mass-

energy of the positron (i.e., twice the mass-energy of an electron). That is, we know that

E1 +E2 ≥ 2mec
2 in any frame. We therefore need, in some sense, to find the frame in which

this is most challenging. As always, we look to invariants for some guidance.

Suppose that we call the four-momentum of the first photon q1 and of the second

q2. Then we know that qµ
1 q2µ is invariant. If we assume that the first one is moving in

the +x direction and the second is therefore moving in the −x direction, then qµqµ = 0

for photons means qµ
1 = (E1/c, E1/c, 0, 0) and qµ

2 = (E2/c,−E2/c, 0, 0). Therefore q2µ =

(−E2/c,−E2/c, 0, 0) (using the same procedures we have on previous problems) and

qµ
1 q2µ = −E1E2/c

2 − E1E2/c
2 = −2E1E2/c

2 (22)

is invariant. Given that −2 and c2 are also invariant, it means that E1E2 is invariant for

head-on collisions. We have to be careful here: of course this means that qµ
1 q2µ is equal to

−2E1E2/c
2 in any frame at all (even those in which the collision is not head-on), but when

we say that the product of the energies is invariant, we are specifying to frames in which the

collision is head-on. That is, E1E2 is fixed for observers moving at arbitrary speeds in the x

direction, but not for general observers.

We therefore fix E1E2, and our physical condition was that E1 + E2 ≥ 2mec
2. If this

is true in the frame that minimizes E1 + E2, it will be true in all frames. We thus need to

minimize E1 + E2 given that E1E2 = A, where A is some constant. Rewriting, we need to

minimize E1 + A/E1. Taking the derivative relative to E1 and setting to zero gives

1 − A/E2

1 = 0 ⇒ E1 =
√

A ⇒ E1 = E2 = E . (23)

Then E1 + E2 ≥ 2mec
2 ⇒ E ≥ mec

2. The product is then E1E2 ≥ (mec
2)2, which is the

condition to allow pair production.


