
ASTR 601: Problem Set 5, due Thursday, November 16

1. This is your computational problem, although most of your work will be analytic. We

show in the notes that because, obviously, no energy state has a lower expected energy than

the ground eigenstate, any trial wavefunction gives an upper bound to the ground state

energy if the expected energy of that wavefunction is minimized over the wavefunction’s

parameters. Here we’ll give you an opportunity to explore a wavefunction family different

from the true family. In particular, let the wavefunction family be a Gaussian, ψ = Ce−r
2/2r20 .

Using this family:

a. Determine the normalization constant C.

b. Determine the integrand that needs to be integrated to get the expected energy (explicitly,

i.e., do the derivatives).

c. Perform the integral and minimize the energy as a function of r0. How close do you get

to the true answer?

d. Finally, the computational part: plot (i.e., include a hardcopy with your submission) the

energy (in units of mee
4/~2) versus the characteristic radius r0 (in units of ~2/(mee

2)) for

the correct waveform family (see the notes) and for the e−r
2/2r20 family that you computed

here. The radius should go from 0.5 to 3 in your units of ~2/(mee
2). What trends do you

notice? For example, is the energy as a function of r0 a pure parabola? As usual, I need

you to send me your code (in any language but in a form that can be compiled [please send

instructions!] and run on my departmental desktop) before the class starts.

2. Shortly before the appendix in the Lecture 20 notes we discuss dipole selection rules. Let’s

phrase this in terms of parity, where we’ll consider one dimension for simplicity. A function

f has positive parity if f(−x) = f(x) for any x, and negative parity if f(−x) = −f(x) for

any x. a. Show that whether f has positive or negative parity,
∫∞
−∞ f(x)xf(x)dx = 0.

b. More generally, show that for any two functions f and g that have definite parity (meaning

either negative or positive parity),
∫∞
−∞ f(x)xg(x)dx is nonzero only if f and g have opposite

parity.

c. Even more generally, show that for any two functions f and g with definite parity,∫∞
−∞ f(x)xng(x)dx is nonzero only if the product of the parities of f and g equals (−1)n.

This underlies many selection rules.

3. You have discovered an expanding molecular bubble in our galaxy, at a distance of 400 pc.

You are observing an emission line, specifically 13CO(2 → 1). The bubble is optically thin

to this line, i.e., you see emission from the back side as well as the front side.

(a) The observed full fractional width of the line is ∆λ/λ = 2.3×10−4. What is the expansion

velocity of the bubble, as measured from its center? Be careful of your factors of 2!



(b) The angular diameter of the bubble is 20”, and the inferred column depth of H2 through

the bubble’s center is 4× 1023 cm−2. Assuming that essentially all of the mass is in H2 and

that the molecular bubble is a perfect sphere of uniform density, what is the mass of the

bubble to within 10%?

(c) From parts (a) and (b), derive limits on the initial kinetic energy and current age of the

bubble, assuming that after the event that created the bubble it has expanded passively into

the interstellar medium. In each case, state whether the limit is an upper limit or a lower

limit, and explain your reasoning.

4. Ordinary cosmologists believe that after a redshift of z ∼ 1000 the universe became

nearly neutral (because it had cooled substantially). But Dr. Sane has realized that such

people are all foolish dupes: the universe will continue to have a high ionization even after

this period! His point, which is obvious after it is raised, is that if an electron and proton

combine to form a hydrogen atom (we’ll ignore helium and other elements), then the photon

that is released of course has enough energy to ionize a neutral hydrogen atom. Thus the

net ionization will remain high. A university that you dislike is considering hiring Dr. Sane

onto their faculty, and they have asked for your opinions.

(a) Give two qualitatively distinct arguments for why Dr. Sane’s logic is flawed. These

need to be arguments at a microscopic level: that is, we are not allowed to use equilibrium

arguments (a la the Saha equation). One of the arguments could be specific to the expanding

universe, but the other would also have to be valid for an isolated box with photons and an

initially highly ionized set of electrons and protons.

(b) Suggest an observational disproof of Dr. Sane’s idea. To do this, note that (i) the

number density of electrons (total, including bound and free) in the universe at redshift z

is about ne = 2 × 10−7(1 + z)3 cm−3, (ii) the locally measured distance between redshifts

z and z + dz, at the high redshifts that are most important, is ds = 7.8 Gpc (1 + z)−5/2dz

(consider z > 100), and (iii) we can see sub-degree angular structures in the cosmic microwave

background, which has z = 1090.

Computational challenge problem

I think the four problems above are plenty for the homework, but for those of you who

enjoy writing code I have a challenge for you. Note that this will not count in your grade

at all; you don’t need to do this as part of your homework, and even if you complete the

challenge successfully you won’t get any extra credit.

The challenge is to partially automate the problem of identifying lines in spectra. We will

assume that our observations involve so many photons that we can use χ2 statistics (which



as you recall require Gaussians) with a clear conscience. Someone measures the wavelengths

of n lines from a source, and also quotes their standard deviations. Thus your data are

λ1, δλ1, λ2, δλ2, . . . , λn, δλn. Assume that the probability distribution for each wavelength

measurement is Gaussian. You happen to know, somehow, that these are hydrogen atomic

transitions, and by the wavelength ratios you are able to figure out the initial and final

principal quantum numbers ni and nf for each transition.

Your task is to write a code to determine the redshift z to the source, plus the 1σ

uncertainty on the redshift. Recall that if you have n measurements of data di with standard

deviation σi and your model predicts mi, then

χ2 =
n∑

i=1

(mi − di)2

σ2
i

(1)

and that for one model parameter (z in this case), ∆χ2 = 1 for one standard deviation,

∆χ2 = 4 for two standard deviations, and generally ∆χ2 = m2 for m standard deviations

(note that these numbers change if you have different numbers of parameters). To run your

code you will also need to generate synthetic data; I recommend that you use the function

“gasdev” from Numerical Recipes to draw from a Gaussian. We have the Numerical Recipes

functions in C and FORTRAN on our system.

If this task is too easy for you, you could consider extending it to the case where you do

not know the initial and final principal quantum numbers. If you pursue this in depth you

will encounter some subtle statistical issues, and might learn a good deal about the necessity

for astronomers to have priors when they try to identify lines.


