
Polarization and Stokes Parameters

In the last class we had some discussion about the polarization of a plane wave, but

now we need to go into it in more detail. Shu has more on this than Rybicki and Lightman

do, so we’ll follow Shu.

Let’s first consider a single, monochromatic, wave. Ask class: if the wave is propagating

in the z direction, what are the possible directions of linear polarization at any given

instant? Since the wave is transverse, the linear polarization must be in the x-y plane. We

could therefore break down the electric field into x and y components:

E = x̂Ex + ŷEy (1)

where x̂ and ŷ are unit vectors in the x and y directions. Ask class: is there a unique way

to define the x and y directions? No, in general there isn’t. That means that angles defined

with respect to a specific choice of the axes are to some extent arbitrary. However, if one

sticks with a particular definition of axes, the differences in angles between different sources

can be meaningful. It’s an important distinction to make.

Ask class: have we exhausted the possible description of the polarization of a

monochromatic wave? Specifically, since we can describe the electric field vector by a

particular combination of linear polarizations, will it stay with that combination forever?

No, in fact there can be a time variation as well. If the frequency of the wave vector is ω,

then we have

E = x̂Ex cos(ωt − φx) + ŷEy cos(ωt − φy) . (2)

Here φx and φy are the phases at time t = 0. Ask class: are these phases independently

meaningful? Again, no. Picking a different zero for the time doesn’t change anything

physically measureable, but it would change φx and φy. Ask class: Is there a combination

of these phases that is meaningful? Yes, the difference is independent of the particular zero

of time. Once again, it is important to keep these kinds of things straight; if you like, it’s a

form of symmetry.

Anyway, our general form of the electric field vector will trace out an ellipse over time.

The major axis of the ellipse will have a tilt angle χ with respect to the x axis. We can then

define new principal axes x̂′ and ŷ′ along the axes of the ellipse, and write the electric field

E = x̂′E1 cos ωt + ŷ′E2 sin ωt . (3)

There is also an axis ratio; we can identify E2
0 ≡ E2

1 + E2
2 = E2

x + E2
y , and define another

“angle” β so that E1 = E0 cos β and E2 = E0 sin β. For a monochromatic wave we can

then define the Stokes parameters, which are four quantities quadratic in the electric field



components:
I = E2

x + E2
y = E2

0

Q = E2
x − E2

y = E2
0 cos 2β cos 2χ

U = 2ExEy cos(φy − φx) = E2
0 cos 2β sin 2χ

V = 2ExEy sin(φy − φx) = E2
0 sin 2β

(4)

Again we emphasize that this is for a monochromatic wave; we’ll get to what happens with

superpositions of waves in a bit.

Note that, as expected physically, only the phase difference ∆φ = φy − φx matters

rather than the independent phases. Note also that since the three parameters E0, β, and χ

determine the four parameters I, Q, U , and V , there must be a relation between the Stokes

parameters. It’s I2 = Q2 + U2 + V 2 (again, this only holds for 100% polarized waves). One

also has the relations

tan 2χ = U/Q, sin 2β = V/I . (5)

Ask class: if V = 0, what does that mean for β? It means that β = 0 or ±π/2. Ask

class: what does that tell us about the electric field? It means that it stays along one of

the principal axes, meaning it’s linearly polarized. If instead Q = U = 0 (so that V = I),

then β = ±π/4 and the axes are equal, so the electric field traces out a circle on the sky

and the light is circularly polarized. It is called right-circularly polarized or left-circularly

polarized depending on whether β = π/4 or −π/4, but different conventions exist so be

really careful if the handedness matters to you!

In a practical sense, we can’t really measure the electric field vector of monochromatic

light cycle by cycle. The frequencies are extremely high (107 cycles per second even for

decameter radio waves), so we usually have to take a time average. In addition, a detector

will almost always have some finite bandwidth, so in reality we’ll be averaging over a

number of different frequencies. Let’s denote averages over time and bandwidth by angular

brackets. Then what we really measure is

Ī = 〈E2
x + E2

y 〉 = 〈E2
0 〉

Q̄ = 〈E2
x − E2

y 〉 = Ī cos 2β cos 2χ

Ū = 2〈ExEy〉 cos ∆φ = Ī cos 2β sin 2χ

V̄ = 2〈ExEy〉 sin ∆φ = Ī sin 2β

(6)

We’re still making the implicit assumption that the light is 100% elliptically polarized,

otherwise the angles χ and β, as well as the phase difference ∆φ, would change over the

bandwidth.

But now let’s forego that assumption. Suppose we’re looking at a general source of

light. It will be a superposition of many different waves, which don’t necessarily have a fixed

phase relation between themselves. Therefore, we can consider the total electric field to be

composed of many independent elliptically polarized waves, E =
∑

n E(n). If we assume that



the different streams add incoherently (like a random walk), then the Stokes parameters

(which are quadratic) are the sums of squares instead of the square of sums, meaning that

Ī =
∑

n

Ī(n), Q̄ =
∑

n

Q̄(n), Ū =
∑

n

Ū (n), V̄ =
∑

n

V̄ (n) . (7)

This incoherent addition means that the relation I2 = Q2 + U2 + V 2 no longer holds in

general, but is replaced by the inequality

I2 ≥ Q2 + U2 + V 2 . (8)

In this case (which is the only one seen in practice), all four Stokes parameters are

independent and must be measured separately. We can then consider the light to be a

combination of completely unpolarized light (with Q̄u = Ūu = V̄u = 0) and 100% elliptically

polarized light in which

Īp =
(

Q̄2
p + Ū2

p + V̄ 2
p

)1/2
. (9)

Then Ī = Īp + Īu and the fractional polarization is Īp/Ī.

The introduction of polarization produces some mild complications in radiative

transfer. The key is to realize that one can think of the four Stokes parameters as different

components of the electric field that propagate independently. Specifically, one can multiply

|E|2 by a factor that converts it into the specific intensity Iν , then do the same for the

other Stokes parameters: Qν , Uν , and Vν . One can then think of the full specific intensity

as a vector with these four quantities. A mild tweak used by Chandrasekhar is to define

I+
ν = 1

2
(Iν + Qν) and I−

ν = 1
2
(Iν − Qν). These represent intensities of linear polarization in

two mutually orthogonal directions. The vector specific intensity is then

~Iν = (I+
ν , I−

ν , Uν , Vν) (10)

and along a particular direction k the equation of radiative transfer is

d~Iν/dτ = ~Sν − ~Iν . (11)

Here the source function also has four components, hence is a vector.

Whew. Time to take stock. Ask class: given the above analysis, can they think

of circumstances in which radiative transfer can convert initially unpolarized light into

something polarized? One way is by scattering. As a specific example, consider normal

Rayleigh scattering of light. As the wave hits a particle, the particle can oscillate in the

plane of polarization of the light. If we are at an angle Θ from the original direction,

however, we don’t see any polarization from the component of the oscillation that is in our

direction. If Θ = 0 then we see the original polarization (none), but if Θ = π/2 we can

see only one component of the polarization, so it’s 100% linearly polarized. In fact, the

fractional polarization is 1 − cos2 Θ. Ask class: suppose they are outside looking at the

blue sky. Armed with only a polarization filter, how might they determine the direction of



the Sun just by looking at the scattered light (rather than taking the easy way and looking

at the Sun!)? One could look at each small patch of the sky with the filter, turning the

filter to see how the intensity varies with filter direction. At the place where the modulation

is maximal, the Sun’s direction is perpendicular to the direction of maximum polarization.

Another application is polarizing sunglasses, which use this principle to remove glare from

water or other places where radiation scatters.

Why are clouds opaque? Molecules are then much closer together than the wavelength

of light, so they act in concert, an N2 instead of an N effect.

Ask class: can they think of a way in which radiative transfer could decrease the

amount of polarization? This one is a lot trickier, and we’ll encounter it later in plasma

effects. Faraday rotation occurs when there is a magnetic field, which (among other things!)

has the consequence that right circular and left circular polarization have different indices

of refraction. That means they travel at different speeds, so over time their relative phase

changes. Now, we can imagine an initially linearly polarized wave as being composed

of some right circular and some left circular polarization. Over time, the superposition

of the two circular components changes because of the relative phase, meaning that the

polarization angle changes. If the length scale over which the magnetic field changes is

small enough, then in a particular beam the polarizations add incoherently, meaning that

the polarization fraction decreases. This decrease in polarization is a major way in which

astrophysical magnetic fields are measured.


