
Line Broadening

Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give

them finite width, and some of those mechanisms contain significant information. We’ll

consider a few of these in turn, then have a detailed discussion about how line shapes and

profiles have given information about rapidly rotating accretion disks around black holes.

First, Ask class: why can’t a spectral line be arbitrarily sharp? Ultimately, it comes

from the uncertainty principle in the form ∆E∆t > h̄/2. If a line were arbitrarily sharp,

this would imply perfect knowledge of E, which can’t happen unless the atom spends an

infinite amount of time before decaying into a lower state. If instead the decay time is finite,

say τdecay, then the approximate width of the line is ∆E ∼ h̄/τdecay. This is called natural

broadening, and represents the limit on how sharp a line can be. If one has an atom in state

n, and the spontaneous decay rate to a lower energy state n′ is Ann′ , then the spontaneous

decay proceeds at a rate

γ =
∑

n′

Ann′ , (1)

Ask class: Is this the only contribution to the decay? No, there are also induced decay

processes (stimulated emission). These should be added to the spontaneous rates. The

energy decays at a rate exp(−γt). The energy is proportional to the square of the coefficient

of the wave function, so that coefficient decays at a rate exp(−γt/2). The decaying sinusoid

that is obtained for the electric field then gives a line profile of the Lorentz form, as we saw

in the semiclassical picture:

φ(ν) =
γ/4π2

(ν − ν0)2 + (γ/4π)2
. (2)

Ask class: from the above discussion, can they name a state that will have zero breadth

because it can persist indefinitely? The ground state is stable, so its energy can be defined

with (in principle) arbitrary sharpness. If instead the level n′ is itself an excited level, that

energy level has breadth as well. Then, approximately, the effective width of the transition

is γ = γu + γl, where γu and γl are respectively the widths of the upper and lower states.

Ask class: what’s a way to broaden this line further for a single atom? Collisions will

do it. Effectively, a collision produces an abrupt change in the phase of the wave function.

Suppose that collisions occur at random times with an average frequency νcol. Then the

resulting profile still looks like a Lorentzian:

φ(ν) =
Γ/4π2

(ν − ν0)2 + (Γ/4π)2
, (3)

where now Γ = γ +2νcol includes contributions from both natural broadening and collisions.



Now suppose we have a collection of many atoms, and we are measuring the line profile

from all of them combined. Ask class: what is another mechanism that will broaden the

observed line? Doppler shifts are one way. Each atom, individually, will emit a line that has

the natural width plus a collisional width, but its motion towards us or away from us will

produce blueshifts or redshifts, so its line center will be displaced. Many atoms, moving in

different directions with different speeds, will produce a line blend with significant width.

For example, suppose the atoms are thermalized and thus have a Maxwellian distribution of

velocities with some temperature T . Then if the line center frequency is ν0, the line profile

is Gaussian:

φ(ν) =
1

∆νD

√
π

e−(ν−ν0)2/(∆νD)2 (4)

where ∆νD, the Doppler width, is

∆νD =
ν0

c

√

2kT

ma

. (5)

A similar profile is obtained if one has microturbulence. However, if the Doppler shifts are

from ordered motion (e.g., orbits), the profile will be different. Fundamentally, one calculates

the Doppler profile by adding up the Doppler shifts from all the atoms individually. One

can imagine a situation in which collisions and Doppler shifts are both important. If the

Doppler shifts are due to isotropic thermal motion, the resulting line profile is called the

Voigt profile, and is a convolution of a Lorentzian and a Gaussian. Note that because a

Lorentzian dies off like a power law, whereas a Gaussian dies off exponentially, the line

wings sufficiently far from the center will always be dominated by the Lorentzian.

Let’s examine a couple of examples in which the line profile gives us physical information.

Suppose you are observing stars moving in the center of a distant galaxy. Ask class:

If there is a supermassive black hole in the center of the galaxy then what, qualitatively,

do you expect to see when you focus on a particular spectral line? It depends on whether

the motion near the black hole is ordered or random. If the motion is ordered, then as

one scanned across the central regions one would expect the net velocity (as measured by

the redshift or blueshift of the line) to increase quickly towards the center, then abruptly

change sign when the center was crossed. If the motion is random, then the line would

have a width that increased towards the center. Either way, one can define a velocity or

velocity dispersion that indicates the mass of the black hole. In more distant galaxies, other

methods are used to estimate or constrain the mass of the black hole, because one can’t

observe the optical lines of stars with enough spatial resolution.

Now consider another example. The inner regions of accretion disks around black holes

are hot places, and various processes mean that there are photons of energies reaching

up to many keV to tens or even hundreds of keV. When a photon with an energy of 6-7

keV or more hits the accretion disk, it can photoionize the inner K shell electrons of iron,



which is relatively abundant for a metal and has a high cross section for this effect. When

an electron drops down into the K shell from the next shell up, it emits a line that, in

the rest frame of the atom, is relatively sharp and has an energy of 6.4 keV. Motion of

the atoms in an accretion disk can change this sharp rest-frame line into a broader line.

Detailed interpretation of this line has given a tremendous amount of information about

the properties of accretion disks and strong gravity. Let’s try our hand at it. Suppose that

the observed line looks like:

Ask class: What effects might account for this profile? We’ll need to identify important

parts and interpret them separately to put together the picture. We see that the line is

(1) broad, (2) asymmetric, (3) sharply peaked. We also note that the line goes a little bit

above the rest-frame energy, but a lot below. All this can be understood in terms of a

relativistic disk. Emission from deep in a gravitational well can be redshifted significantly,

which is why the emission can get to half(!) of the rest-frame energy. If matter is moving

in a disk, then when the fast (half the speed of light or more) motion is towards us, then

there is significant beaming. Put another way, since the specific intensity scales as Iν ∝ ν3,

blueshifts can increase the intensity a lot, whereas redshifts decrease it a lot. Thus, the

emission is strongly peaked where there is a slight blueshift, and it is asymmetric. The

sharp cutoff is also understandable, given some details of a relativistic disk model; deep

in the gravitational well, orbital motion produces little if any net blueshift. These results,

worked on by Chris Reynolds and Andy Young at Maryland (among others) have provided

evidence for rapid rotation of supermassive black holes, and possibly of extraction of the

spin energy of black holes in a couple of cases!



Now, since we didn’t quite finish the statistics lecture, we’re going to shift gears

and talk about model comparison. To recall, we talked about parameter estimation last

time. But, one cautionary point: since the value of the likelihood never enters, one can

happily calculate maximum likelihoods and credible regions for models that are awful!

It’s an automatic procedure. That’s why Bayesians draw a distinction between parameter

estimation and model comparison, which we will now treat.

Suppose we have a data set, and two models to compare. How do we determine

which model is favored by the data? At first glance this may seem easy: just figure out

which model matches the data better. But think about models with different numbers of

parameters; intuitively, we should give the benefit of the doubt to the model with fewer

parameters, based on Ockham’s principle. In addition, one could imagine a situation in

which the parameters of two models are qualitatively different. For example, some of the

parameters could be continuous (e.g., temperature), and some could be discrete (e.g., the

quantum spin of a particle). How are these to be taken into account?

This, in my opinion, is where Bayesian statistics shines. It provides a simple procedure

that automatically takes into account different numbers of parameters in an intuitively

satisfying way. As before we’ll give the general principles, then try some examples.

Say we have two models, 1 and 2. Model 1 has parameters a1, a2, . . . , an, and a prior

probability distribution P1(a1, a2, . . . , an). Model 2 has parameters b1, b2, . . . , bm and a

prior probability distribution P2(b1, b2, . . . , bm). For a given set of values a1, a2, . . . , an, let

the likelihood of the data given the model (defined above) for model 1 be L1(a1, a2, . . . , an),

and similarly for model 2. Then the “odds ratio” of model 1 in favor of model 2 is

O12 =

∫

L1(a1, a2, . . . , an)P1(a1, a2, . . . , an)da1 da2 . . . dan
∫

L2(b1, b2, . . . , bm)P2(b1, b2, . . . , bm)db1 db2 . . . dbm

(6)

where the integration in each case is over the entire model parameter space. Therefore, it’s

just a ratio of the integrals of the likelihoods times the priors for each model.

What does this mean? Don’t tell a real Bayesian I explained it this way, but consider

the following. Suppose you and a friend place a series of bets. In each bet, one has

two possible models. You compute the odds ratio as above, and get O12 in each case.

Ultimately, it will be determined (by future data, say) which of the two models is correct

(we’re assuming these are the only two possible models). If your friend puts down $1 on

model 2 in each case, how much money should you place on model 1 in each bet so that

you expect to break even after many bets? You put down $O12. That is, it really does act

like an odds ratio. The reason a hard-core Bayesian might get agitated about this analogy

is that Bayesian statistics emphasizes considering only the data you have before you, rather

than imagining an infinite space of data (as happens in more familiar frequentist statistics).

Still, I think this is a good description.



Why does this automatically take simplicity into account? Think of it like this. If

your data are informative, then for a given set of data it is likely that only a small portion

of the parameter space will give a reasonably large likelihood. For example, if you are

modeling the interstellar medium in some region, you might have temperature and density

as parameters; with good enough data, only temperatures and densities close to the right

ones will give significant L. Now, think about the priors. For a complicated model with

many parameters, the probability density is “spread out” over the many dimensions of

parameter space. Thus, the probability density is comparatively small in the region where

the likelihood is significant. If instead you have few parameters, the prior probability

density is less spread out, so it’s larger where the likelihood is significant and therefore the

integral is larger.

If the parameters have discrete instead of continuous values, you do a sum instead of

an integral but otherwise it’s the same. Note that we have to use the full Poisson likelihood

here. When we did parameter estimation we could cancel out lots of things, but here we

have an integral or sum of likelihoods so we can’t do the cancellation as easily. The products
∏

exp(−mi) and
∏

(1/di!) will be the same for every likelihood, so those can be cancelled,

but one still has a sum of likelihoods and so taking the log doesn’t help.

Let’s try an example. Consider a six-sided die. We want to know the probabilities of

each of the six faces. Model 1 is that the probability is the same (1/6) for each face. Model

2 is that the probability is proportional to the number on the face. Normalized, this means

a probability of 1/21 for 1; 2/21 for 2; and so on. We roll the die ten times and get 5, 2, 6,

2, 2, 3, 4, 3, 1, 4. What is the odds ratio for the two models?

We’re starting with an easy one, in which there are no parameters, so we don’t even have

to do an integral, just a likelihood ratio. For model 1 the normalized model expectations

per bin are m1 = 10/6, m2 = 10/6, and so on. For model 2 we have n1 = 10/21, n2 = 20/21,

n3 = 30/21, and so on. Therefore,

L1 =
(

10

6

)1

·
(

10

6

)3

·
(

10

6

)2

·
(

10

6

)2

·
(

10

6

)1

·
(

10

6

)1

= 165.4 (7)

and

L2 =
(

10

21

)1

·
(

20

21

)3

·
(

30

21

)2

·
(

40

21

)2

·
(

50

21

)1

·
(

60

21

)1

= 20.7 . (8)

Thus, from this data,

O12 = L1/L2 = 7.98 . (9)

Model 1 is strongly favored.

Now try another example, with the same data. Model 1 is the same as before, but now

model 2 has a parameter. In model 2, the probability of a 1 is 1 − p, and the probability of

a 2, 3, 4, 5, or 6 is p/5. Therefore, model 2 encompasses model 1, so by maximum likelihood



alone it will do better. But will it do enough better to be favored? Let’s assume as a prior

that p is equally probable from 0 through 1. The numerator is the same as before, but

for the denominator we need to do an integral. For probability p and our given data, the

Poisson likelihood of the data given the model is

L2(p) = [10(1 − p)] · (2p)3 · (2p)2 . . . = 10(1 − p)(2p)9 . (10)

Therefore the denominator is
∫ 1

0
5120(1 − p)p9 dp = 46.5 (11)

and the odds ratio is

O12 = 165.4/46.5 = 3.55 , (12)

so the first model is still preferred. Note that the maximum likelihood for model 2 occurs for

p = 0.9 and gives 198.4, so as expected the more complicated model has a higher maximum

likelihood; it’s just not enough to make up for the extra complication.

Model comparison in Bayesian statistics is always between two precisely defined models.

There is no analogue to the idea of a null hypothesis. Hard-core Bayesians consider this

to be a strength of the approach. For example, suppose that you try to define a null

hypothesis and do a standard frequentist analysis, finding that the null hypothesis can be

rejected at the 99% confidence level. Should you, in fact, reject the null hypothesis? Not

necessarily, according to Bayesians. Unless you know the full space of possible hypotheses,

it could be that there are 10,000 competing hypotheses and of those your null hypothesis

did the best. For example, suppose I think that gamma-ray bursts should come from

isotropically distributed positions in the sky; that’s my null hypothesis. A hundred positions

are measured, and they are all found to cluster within 1◦ of each other. Surely I can reject

my null hypothesis? Well, if I compare it with another hypothesis that says that all bursts

should come from within 1” of each other, my null hypothesis does much better!

I’m not happy with this line of argument. To me, the testing of a null hypothesis as it’s

done in frequentist statistics is important because it gives you a way to tell if your model is

reasonably close or not. That is, a standard chi squared per degree of freedom can give you

an idea of whether you need to work a lot harder to get a good model, or if you’re nearly

there. In my opinion, it’s important to have that kind of information, but there is reasoned

disagreement on this issue.


