
Transfer Equation and Blackbodies

Initial questions: There are sources in the centers of some galaxies that are extraor-

dinarily bright in microwaves. What’s going on? The brightest galaxies in the universe with

distributed emission (i.e., we’re not talking about active galactic nuclei) are ultraluminous

infrared galaxies. Why infrared?

We are now in a position to examine what happens to a beam of radiation as it goes

through matter. In general, the things that affect the intensity of the beam are:

Spontaneous emission.—Matter along the path of the beam can spontaneously emit

radiation (e.g., spontaneous transitions of atoms from excited states to lower energy states).

This adds to the intensity.

Stimulated emission.—If radiation passes through matter, the matter can be stimulated

to emit radiation of the same frequency and direction as the initial radiation. This is the

principle behind lasers, and it, too, adds to the intensity.

Absorption.—Radiation can be absorbed by the matter. This takes away from the in-

tensity. Note that both absorption and stimulated emission are proportional to the original

intensity of the beam of matter. They are therefore commonly lumped together (with stimu-

lated emission being “negative absorption”), so we’ll group both of them under the category

of “absorption”.

Scattering.—The photons can be redirected and changed in frequency without being

destroyed.

Spontaneous emission

The monochromatic spontaneous emission coefficient jν is defined as the energy per time

per volume per frequency interval emitted into a solid angle dΩ:

dE = jνdV dΩdt dν . (1)

Note that this is independent of the intensity of the beam. In general one must consider

anisotropic emission, especially when there is a global preferred direction (e.g., set by a

magnetic field). However, in many situations the emission is nearly isotropic, either because

the emission from individual particles/atoms/molecules is isotropic or because the preferred

axes of individual particles etc. are distributed randomly. In that case, jν = Pν/4π, where

Pν is the total emitted power per volume per frequency. On occasion you’ll see the power

expressed as an emissivity ǫν , which is the energy per mass per time per frequency, so

Pν = ρǫν where ρ is the density.

Ask class: considering only spontaneous emission, what is the change in specific inten-



sity Iν after traveling a distance ds in a medium with spontaneous emission coefficient jν?

It is

dIν = jνds . (2)

This can be determined directly from the units. It also makes sense physically: it’s positive,

since intensity is being added; the higher jν is, the more intensity is added; and the farther

one travels in the medium, the more intensity is enhanced.

Absorption (including stimulated emission)

In an analogous way, we define the absorption coefficient αν (dimensions cm−1), by the

equation

dIν = −ανIνds . (3)

Note that, unlike spontaneous emission, absorption is proportional to the intensity of the

beam. This is the intensity removed from the beam after traveling a distance ds. By conven-

tion, αν is positive for net energy removed; note, however, that αν < 0 if stimulated emission

dominates. Phenomenologically, we can understand this if we imagine a number density n

of absorbers of cross section σν at frequency ν. Ask class: based on an analysis of units,

how should αν be related to n and σν? The only combination that gives the required cm−1

is αν = nσν . This can also be written αν = ρκν , where κν is the opacity. This phenomeno-

logical picture is only valid if the distance between absorbers is much larger than
√

σν and

the absorbers are distributed randomly. This is almost always the case for astrophysical

situations, but for a wild violation consider metals. Metals are good thermal and electric

conductors because electrons can travel great distances in them before interacting. However,

if you naively consider the cross section of each atom and multiply by the number density of

atoms, you’d conclude that the mean free path is tiny and so metals are terrible conductors!

The loophole is that atoms in metals are distributed in highly regular lattices, and quantum

analysis of the resulting periodic potential shows that electrons can travel large distances.

Scattering has some subtleties, so we’ll postpone dealing with that for the moment and

consider only spontaneous emission and absorption.

The Radiative Transfer Equation

We can combine the effects of spontaneous emission and absorption into one equation

telling us what happens to the specific intensity along a ray:

dIν/ds = −ανIν + jν . (4)

Ask class: what happens when there is no absorption? Then only the second term on the

right side matters, and dIν/ds = jν . Formally, this may be integrated to get

Iν(s) = Iν(s0) +

∫

s

s0

jν(s) ds . (5)



Ask class: now, what happens when there is no spontaneous emission? Then only the first

term contributes and the formal solution is

Iν(s) = Iν(s0) exp

[

−
∫

s

s0

αν ds

]

. (6)

Thus, if absorption dominates over stimulated emission (i.e., αν > 0) the intensity decreases

exponentially along the path. If stimulated emission dominates then the intensity increases

exponentially, which is one reason why lasers can get to such high intensities.

The pure absorption case is particularly simple if we use the optical depth, which we

discussed in an earlier class. Ask class: remembering that the optical depth is basically the

number of mean free paths traversed by the beam, how should it be related to αν? It is just

dτν = αν ds, so Iν(s) = Iν(s0) exp(−τ) in the pure absorption case.

Using the optical depth as a new variable, it is convenient to divide the radiative transfer

equation by αν to get

dIν/dτν = −Iν + Sν , (7)

where Sν ≡ jν/αν is called the source function (note that jν and αν are both local properties

of the material, so Sν is as well). This equation may be solved formally to get

Iν(τν) = Iν(0)e−τν +

∫

τν

0

e−(τν−τ
′

ν
)S(τ ′

ν
)dτ ′

ν
. (8)

We can get this result qualitatively from the principle that radiation may be superposed

linearly as follows. The initial radiation (intensity Iν) is attenuated by a factor e−τν . There

is also radiation generated along the way, and it too is attenuated by the end, by the

appropriate factor exp(−∆τν), where ∆τν = τν −τ ′

ν
for radiation generated at the “position”

τ ′

ν
. These contributions add linearly.

For example, consider a constant source function Sν . Then

Iν(τν) = Iν(0)e−τν + Sν(1 − e−τν )

= Sν + e−τν [Iν(0) − Sν ]
(9)

Ask class: what does this mean for a very optically thick medium? High optical depth

means τν ≫ 1, so the exponential factor goes to zero and Iν → Sν . This is important: it

means that at high optical depth, if Sν doesn’t vary much then Iν approaches Sν .

If you include scattering things get more difficult, because the source function depends

on Iν at all directions through a given point. For example, consider coherent, isotropic

scattering (i.e., the photon energy doesn’t change but its direction is completely randomized

by scattering). Then jν = αν(scatt)Jν , where αν(scatt) is the scattering coefficient (similar

to an absorption coefficient; R+L use σν for this but I don’t want to confuse it with the



cross section σ) and Jν is the mean intensity within the emitting material. Dividing, Sν =

jν/αν = Jν , so the transfer equation for pure scattering is

dIν/ds = −αν(scatt)(Iν − Jν) (10)

and the transfer equation including thermal emission, absorption, and coherent, isotropic

scattering is

dIν/ds = −(αν + αν [scatt])(Iν − Sν) , (11)

where the source function is the weighted average of those for absorption and emission:

Sν = [ανBν + αν(scatt)Jν ] / [αν + αν(scatt)] , (12)

where here we use the source function for thermal emission Bν (see below). This is an

integro-differential equation and although some progress may be made using the Eddington

approximation (see section 1.8 in R+L; we won’t focus on this), in practice one solves this

numerically.

Thermal Emission

A special and important case is one in which the radiation and matter are in thermal

equilibrium. This gives a universal and exact solution and was the problem that let to the

first glimmerings of quantum mechanics. Still, in any given problem you need to consider

carefully whether the radiation and matter are in thermal equilibrium or whether nonthermal

processes are important.

Let’s imagine an enclosure at temperature T. We have radiation in the enclosure, and

we wait a long time until equilibrium has been achieved. Note that there is no conservation

law for photons, so they can be created or destroyed by many processes (equivalently, we

say that photons have zero chemical potential). From thermodynamics, the specific intensity

that we get must be independent of the shape of the enclosure. Otherwise, you could take

two enclosures at the same temperature but with different shapes, and when you put them in

contact energy would flow from one to the other, in violation of thermodynamics. Thus, the

specific intensity in thermal equilibrium depends only on the temperature. This argument

also shows that the specific intensity in equilibrium must be isotropic. Therefore,

Iν = Bν(T ) (13)

in thermal equilibrium.

If you now put thermally emitting matter at the same temperature T into the enclosure,

the source function must be unchanged because we still have a blackbody enclosure at the

temperature T . Therefore (Kirchoff’s law), the source function in thermal equilibrium is the

blackbody function

Sν = Bν(T ) . (14)



This also means that within the blackbody portion, Iν = Bν . Since blackbody radiation is

homogeneous and isotropic, then from previous results we know that the pressure and energy

density are related by p = u/3. Note that there is a useful distinction between blackbody

radiation, where Iν = Bν , and thermal radiation, where Sν = Bν . Even if all the matter is

radiating thermally (Sν = Bν), you aren’t guaranteed that Iν = Bν unless the medium is

optically thick.

We will now skip ahead a bit. Rybicki and Lightman give some interesting derivations

about blackbody radiation on pages 17-21, from classical thermodynamics as well as quantum

arguments. The quantum argument, which Planck used to derive the blackbody function

(aka the Planck function), is particularly cute, and relies on photon modes being required

to fit exactly (integral number of wavelengths) within a box, hence quantizing the photon

energies. This was the first time that anyone had done that, and it marked a transition from

classical to quantum theory that Einstein followed up five years later with the photoelectric

effect. I recommend that you read the derivation, but let’s focus now on properties of the

function itself.

Properties of the Planck Function

A blackbody emits a flux (energy per area) of σSBT 4, where σSB = 5.67×10−5 erg cm−2 K−4

is the Stefan-Boltzmann constant. The Planck blackbody function is

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1
, (15)

or with wavelength λ = c/ν instead of ν as the primary variable,

Bλ(T ) =
2hc2/λ5

exp(hc/λkT ) − 1
. (16)

Let’s look at some limits of this expression.

Low frequency, hν ≪ kT .—The exponent is much less than unity, so Bν(T ) ≈ 2ν2kT/c2.

Ask class: there is a fundamental constant missing here; what is it? The Planck constant

h, of course! This leads to an important point that will allow you to check some equations.

The Planck constant will appear if and only if quantization is important. In the same way,

c appears if and only if special relativity is important, and G appears if and only if gravity

is important. So why isn’t quantization important here? In the low-frequency, or Rayleigh-

Jeans, limit, there are many photons. We therefore have a classical description. However,

it was noticed immediately that if this expression continued to be valid for arbitrarily high

frequency the energy would diverge (this was called the “ultraviolet catastrophe”). In the

low-frequency limit the form of the Planck function (a power law, logarithmic slope 2 in

frequency) is independent of the temperature.



High frequency, hν ≫ kT .—Here the exponent is much greater than unity, so Bν(T ) ≈
2hν3/c2 exp(−hν/kT ). Now the Planck constant does appear. It’s because in this limit (the

Wien limit), there are very few photons and hence their discrete nature matters.

Here are some other interesting and important facts. First, there is a photon frequency

at which Bν(T ) peaks, and it’s at hνmax = 2.82kT , give or take. Incidentally, you could

derive that the peak energy has to be proportional to kT simply by noticing that the only

way you can get something with dimensions of energy out of h, c, k, and T is by kT ! Score one

for dimensional analysis. Moving on, although the peak frequency changes, Bν(T1) > Bν(T2)

for all frequencies if T1 > T2.

Finally, there are some characteristic temperatures that are defined in astrophysics to

relate a given arbitrary spectrum to the blackbody spectrum.

Brightness temperature.—This is the temperature a blackbody would have to have to

give the observed specific intensity at a given frequency: Bν(Tb) = Iν . This is especially

common in radio astronomy, where because of the low frequencies you’re usually in the

Rayleigh-Jeans limit, so Iν = (2ν2/c2)kTb.

Color temperature.—This is the temperature of a blackbody that gives the same slope

for the spectrum as the observed slope. This is useful whenever you don’t know the absolute

flux, which is the case if you don’t know the distance to the object (as an example).

Effective temperature.—This is the temperature of a blackbody that gives the same

frequency-integrated intensity as the observed one, radiated at the source. That is, σSBT 4
eff =

F =
∫

Iν cos θdνdΩ.

Recommended Rybicki and Lightman problem: 1.8


