
Clusters: Observations

Last time we talked about some of the context of clusters, and why observations of them

have importance to cosmological issues. Some of the reasons why clusters are useful probes

of cosmology are (1) their formation happened relatively recently, and hence depends on a

variety of cosmological parameters, (2) they can be observed in many different wavebands,

and (3) the dominant components of their mass are relatively simple (dark matter and

smoothly distributed hot gas; galaxies can be thought of as tracer particles to first order).

Now we need to determine what the observations actually are, and what they say about

cosmology, structure formation, and the composition of the universe. To do this we need to

determine what we want to measure about clusters and how to measure those properties.

Measurement of important quantities

Ask class: what are some quantities that we want to measure? Mass and luminosity

distribution as a function of radial location in the cluster and of the redshift; separate

distribution of the gas and the dark matter, shape of the cluster, optical depth are examples.

Redshift dependence of these is an especially important cosmological probe (because it

reflects the evolution of clusters), and it is also important to measure these for a large

sample of clusters, to understand the luminosity and mass distribution.

The next thing we need to know is how to measure these quantities. As always, our

measurements are somewhat indirect, so we need to have a handle on how they’re done.

Let’s take the mass as an example. Ask class: what are ways to measure the mass of an

individual cluster? One way is by determining the velocity dispersion of the galaxies. That

means that you take the spectrum of many separate galaxies, determine the redshift of

each, then compare to the average redshift of the cluster. From these velocities, the mass

is estimated assuming that the motion of galaxies has been virialized. Another method

is measurement of the temperature of the gas. If the temperature of the gas is close to

the virial temperature, this also indicates the mass. Finally, there is gravitational lensing.

Measurement of the gravitational effect on light from background galaxies is a qualitatively

different indicator of the mass.

Measurement biases

Let’s consider each of these individually, to understand possible problems or selection

biases. First, measurement of cluster mass by galaxy motions. Ask class: what effects

might complicate mass determination by this method or bias the results? One point is

that if the velocities are not virial (i.e., due to the gravity of the cluster alone), the mass

measurements can be inaccurate. This is related to the report several years ago that there

was a 1011 M¯ black hole in the center of a galaxy; the velocities turned out to be due



to a collision with another galaxy instead of just the orbital velocity. Another problem is

cluster membership. The typical orbital velocities are around 1000 km s−1, so that would

be the velocity dispersion, but in redshift space this would correspond (using Hubble’s law)

to a distance of about 14 Mpc! This produces two effects. One is the “finger of God”

effect. Suppose you have a large number of galaxies in a cluster, and that they move with

a typical velocity of 1000 km s−1, in random directions. The angular width of the cluster

isn’t changed by the velocities, so it looks 1 Mpc wide. However, the apparent length of

the cluster along the line of sight is 20-30 Mpc, so the effect is of a giant finger in redshift

space pointing at you! The other effect is one that seems to enhance the membership

of clusters. Say you have a cluster, or for that matter a long filament oriented with the

long axis perpendicular to the line of sight. Galaxies not associated with the cluster or

filament tend to fall in towards it. If the galaxy is closer to us than the cluster is, this

increases its recession velocity, making it seem closer to the cluster in redshift space. If

the galaxy is farther away, the fallback velocity towards the cluster decreases its recession

velocity, again making it seem closer to the cluster in redshift space. Therefore, there is

an artificial enhancement of the density. These effects are all linked to the fact that many

times our only indicator of distance is the redshift. Ask class: how might these problems

be circumvented? If the true distance, rather than just the redshift, can be measured, this

would provide an independent check. This is tricky, but measurements of standard candles

(e.g., the Tully-Fisher relation for spirals or the fundamental plane for ellipticals) can help.

The next method is gas temperature. Ask class: what effects might mess this up? If

the temperature is not the virial temperature, then the mass estimate will be bad. Ask

class: what are some things that can change the temperature? Cooling of a variety of types

(bremsstrahlung, atomic recombination, molecular cooling, metal line cooling) can lower

the temperature, whereas shock heating can increase the temperature. Thinking about our

galaxy, for example, the virial temperature for hydrogen is about 107 K, but many regions

of the ISM are much cooler. The advantage with clusters is that at 108 K and the observed

densities, cooling is relatively slow, so the temperature is a reasonable indicator of the virial

temperature. In particular, Ask class: what is the dominant emission process at such high

temperatures? It’s bremsstrahlung. The volume emissivity at an electron number density

ne cm−3 and a temperature T = 108T8 K is

jbremss = 1.5 × 10−23n2
eT

1/2
8 erg cm−3s−1 . (1)

At typical densities n = 10−3, this is about 10−29 erg cm−3 s−1, compared with an energy

density nkT ≈ 10−11 erg cm−3, so the cooling time is around 1018 s, which is longer than

the current age of the universe. Note that temperature measurements are independent in

some ways from the galaxy velocity method; redshift determinations aren’t necessary, just

a measurement of the spectrum.

It should also be mentioned that temperature or galaxy velocity measurements give



the standardly inferred masses if Newtonian gravity operates on large scales, ∼1 Mpc, but

if gravity is modified at low accelerations (as advocated by Stacy McGaugh), the masses

could be less. This is a dark horse explanation, but should be kept in mind unless future

observations definitively rule it out.

The last type of bias to mention pervades extragalactic astronomy. It is called

Malmquist bias. Suppose you have a survey that is flux-limited, that is, the set of objects

includes all those above some flux. You will therefore include close low-luminosity sources

as well as distant high-luminosity sources. As a result, your inferences about the population

of interest can be severely biased. A local example is that if you take all stars in the Milky

Way, their numbers are dominated by M stars. But if you take all stars visible to the naked

eye, their numbers are dominated by A stars because you can see them to much greater

distances. One can try to deal with this in various ways, such as by doing volume-limited

samples instead; for example, you could decide to include only objects out to a certain

redshift, such that you can detect all objects to that distance. This means that you throw

away a lot of data, namely, the brighter things farther away, but it makes your sample more

uniform. Malmquist bias comes in many forms, one of which has a particularly severe effect

on a type of gravitational lensing statistic.

Gravitational Lensing

Gravitational lensing is a tool that has been applied to clusters comparatively recently,

and it provides information in a relatively clean way, so we’ll go over it briefly. The basic

physics, of course, is that light is deflected by the presence of mass, since light follows a

null geodesic in curved spacetime. In clusters one essentially never has to deal with strong

curvature, so we can use the lowest-order limit: a light ray with a nearest approach distance

x relative to a mass M is deflected by the angle α = 4GM/xc2. This is twice the Newtonian

value. One can relate this to the velocity dispersion σ of gas or galaxies; when the various

factors are put in, assuming an isothermal sphere (ρ ∼ 1/r2), one gets α = 4π(σ/c)2. This

deflection redistributes light, but does not create it. Specifically, that means that if you

went to a large distance from a source of radiation, and measured the total luminosity from

that source over 4π steradians, it would be unchanged by the presence of matter between

you and the source, assuming absorption and scattering could be neglected. However, in a

given direction, the flux could be increased or decreased. This is the effect of gravitational

lensing. Two types of lensing can be usefully distinguished: strong lensing, in which multiple

images are produced, and weak lensing, in which they are not. If the impact parameter of

the light ray is small enough, multiple images can be produced. For example, consider light

from a source that is deflected by a spherical object. There is a focal point beyond that

object, so if you are on that optic axis you see a ring of radiation. More generally, suppose

that the lens is at an angular diameter distance Dl from us; the source is at an angular



diameter distance Ds from us; and the angular diameter distance between the two is Dls. If

the angular impact parameter β is less than the Einstein radius

θE =
4πσ2Dls

c2Ds

= 2.6”σ2
300Dls/Ds , (2)

then there will be multiple images seen. Here σ = 300 km s−1σ300. The effective angular

cross section for multiple imaging is πθ2
E. For weak lensing, the images are sheared and

distorted.

Lensing provides a direct measure of the mass, and hence is free from many of the

biases that affect mass estimates from gas temperature or galaxy motions. The only tricky

thing is that usually the shearing is not obvious, and galaxies have a diversity of shapes

anyway, so care must be taken to measure averaged shear and rotation. Once this is done,

a mass map of the whole cluster is possible. Tony Tyson at Bell Labs has been particularly

successful with this work. On a smaller scale, one can also do detailed reconstruction of

multiple imaging in particular cases, and from it estimate the Hubble constant and other

cosmological parameters (typically from single galaxy lenses, not clusters). Another possible

use of lensing is statistical: for a given cosmological model one can calculate the fraction

of background objects at a given redshift that will be multiply imaged. The caveat here is

that Malmquist bias (called magnification bias in this case) can be really strong. That is,

since lensed objects are brighter than unlensed objects, a flux-limited sample will have a

much higher fraction of multiply lensed objects than is really representative.

Masses, luminosities, etc.

Here, then, is a summary of the observed properties of clusters. Some recent references

are: Schindler, S. 1999, A&A, 349, 435; Wu, X.-P. 2000, MNRAS, 316, 299; Allen, S. W.

2000, MNRAS, 315, 269.

Radial dependence of luminosity.—The luminosity as a function of radius is well-

described by the so-called “beta model”, in which the surface brightness S(r) is

S(r) = S0

[

1 + (r/rc)
2
]−3β+1/2

, (3)

where rc is the core radius (rc ∼ 0.05 − 0.3 Mpc) and β is the slope (β ∼ 0.4 − 1).

Radial distribution of dark matter.—Found first in numerical simulations, and confirmed

by observations, the virialized dark matter halo density follows the Navarro, Frenk, and

White (NFW) profile

ρ = ρs/
[

(r/rs)(1 + r/rs)
2
]

, (4)

where ρs and rs are respectively the characteristic density and radius. Therefore, at r ¿ rs,

ρ ∝ r−1, whereas at r À rs, ρ ∝ r−3. Note that this is a volume density, whereas the beta



model is a surface brightness, so they can’t be compared directly. Nonetheless, the dark

matter and the gas do appear to have different distributions.

Mass-luminosity relation.—The gas mass within 500 kpc is fairly tightly correlated with

the bolometric X-ray luminosity:

Mgas(< 500 kpc)/1014 M¯ ≈ 0.3Lx/10
45erg s−1 . (5)

Within 500 kpc, the gas mass is typically a fraction 0.1–0.3 of the total mass.

Cluster-cluster correlation function.—The spatial distribution of clusters is self-

correlated, i.e., a cluster is more likely to be near another cluster than far away. This

is often expressed in terms of a two-point correlation function. The probability that a

randomly chosen cluster has a neighbor at a distance between r and r + dr is

dP = 4πnr2dr [1 + ξ(r)] , (6)

where n is the number density of clusters and a good fit to ξ(r) appears to be

ξ(r) ≈ [18 Mpc/r]1.8 . (7)

There are therefore many close clusters, and in fact there are many clusters in the process

of merging.

Luminosity function.—The differential number distribution of cluster luminosities, like

the differential number distribution of galaxies, is well-described by a Schechter function:

dn

dLx

(Lx) = A exp(−Lx/L
∗

x)L
−α
x , (8)

where for the brightest clusters in the ROSAT sample (Ebeling et al. 1997, ApJ, 479,

L101), the bolometric parameters are α = 1.84+0.09
−0.04 and L∗

x,44 = 37.2+16.4
−3.8 . Note that the

clusters in this sample are at relatively low redshifts, z < 0.3, so the cosmological constant

doesn’t play much of a role. For higher redshift, it would, so the luminosity would have to

be quoted for a specific Ωm and ΩΛ.

Evolution of luminosity function?—A major cosmological question is whether the

luminosity function and mass function of clusters has evolved recently (for z < 1, say)

or not. Ask class: with all else being equal, would they expect more evolution if there

is more total mass in the universe, or less? More, because gravitational clustering drives

the evolution. Therefore, if Ωm = 1, one would expect recent evolution in cluster masses

and luminosities; that is, one would expect fewer bright clusters in the past. Whether this

occurs is a matter of current debate. A note of caution: here’s a case where you have to be

careful about what you are really comparing. For example, Vikhlinin et al. (1998) said they

found strong evidence of evolution in the ROSAT survey because there were significantly

fewer bright clusters at z > 0.3 than one would expect for no evolution. However, they



computed the expected number for no evolution in an Ωm = 1 universe. If instead Ωm = 0.3

and ΩΛ = 0.7, then the luminosity distance to a given redshift is higher, meaning that at

a given flux one needs a greater luminosity, meaning that even for no evolution one then

expects far fewer clusters! The evidence can then cut both ways. The right thing to do

(and this is a matter of statistics) is to calculate consistently the flux number distribution

with redshift in two different models: a strongly evolving Ωm = 1 universe and a weakly

evolving Ωm = 0.3, ΩΛ = 0.7 universe, and see which does the best at reproducing the data.

Cooling flows.—The final observation we’ll mention today is cooling flows. This is an

issue of great current interest, and is being studied extensively with high angular resolution

X-ray satellites such as Chandra and, to a lesser extent, XMM-Newton. The point is that

since cooling is dominated by bremsstrahlung, which has a volume emissivity j ∝ n2T 1/2,

then the cooling time goes as nkT/j ∝ n−1T 1/2. Therefore, in the inner, denser regions of

gas, the cooling time can be much less than the age of the universe. That means that the

temperature drops, which decreases the cooling time further. But a decreasing temperature

decreases the pressure, so hydrostatic equilibrium no longer holds. Then gas from outer

regions flows into the inner regions and cools in turn, producing therefore a cooling flow.

Right now it isn’t clear where the gas goes. It seems to disappear after cooling to about

1 keV. Does it form stars? Does it cool catastrophically? No! Instead, something appears

to heat the gas. The best candidate now is the kinetic luminosity from SMBH jets in the

central bright galaxy in the cluster, but simulations are at early stages and there are still a

lot of uncertainties.


