
See Chapter 4 in Longair for photon interactions, chapters 2, 3, 5 for particle

interactions

Photon-photon pair production

Ask class: consider a single photon propagating in a vacuum. Given that energy

and momentum must be conserved in all interactions, is it possible for the photon to

spontaneously produce an electron and positron, i.e., to produce a pair? No, it is not.

The energy-momentum relations for photons and for particles with nonzero rest mass are

different, and this ends up meaning that single photon pair production is impossible in a

vacuum. Pair production requires the presence of something else to take up momentum:

another photon, a nearby nucleus, or a magnetic field, for example.

Let’s consider photon-photon pair production of an electron and a positron. Clearly, if

there is not enough energy available, there can be no pair production, so there is an energy

threshold. Ask class: consider two photons moving head-on towards each other. What

would be a reasonable energy condition for pair production to be allowed? You might think

it would be that the sum of the energies exceed 2mec
2, which is the rest mass energy of the

electron and positron produces. However, we then remember that the physics (in particular

whether there is pair production) should look the same in all Lorentz frames. So, consider

a radio photon (low energy) moving head-on towards a gamma-ray photon with energy

just above 2mec
2. Can this produce a pair? Go into a Lorentz frame such that the radio

photon’s energy is doubled, meaning that the gamma-ray photon’s energy is halved. Then

the total energy in that frame is only mec
2 instead of 2mec

2, so it would be stunning if

there were any pair production! Indeed, the condition has to be that in all Lorentz frames

the h̄ω1 + h̄ω2 > 2mec
2 criterion is satisfied. For head-on collisions, this turns out to mean

that (h̄ω1)(h̄ω2) > (mec
2)2.

The cross section for this process is (Berestetskii et al. 1982)
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Will consider single-photon pair production and photon splitting when we

come to neutron stars



Photon-nucleon interactions

Ask class: why haven’t we talked about interactions of photons with protons or other

nuclei? Because protons are much tougher to affect with the oscillating electomagnetic

fields of photons. In particular, since they’re more massive and e/m is smaller, the resulting

acceleration is less and the radiation (hence cross section) is tiny by comparison to protons.

For comparison, though, the scattering cross section off of protons is ≈ m2
e/m

2
p less than

off of electrons. That’s a factor of almost 4 million. So, for most purposes we can ignore

photon-nucleon interactions.

Particle interactions

Previously we considered interactions from the standpoint of photons: a photon travels

along, what happens to it? Now, we’ll think about interactions of particles: an electron,

proton, or nucleus zips along, what happens to it?

Ask class: generically, what could, say, an electron interact with? Photons, protons or

nuclei, magnetic fields, neutrinos. Let’s first consider interactions of electrons with photons.

Ask class: for a low-energy electron interacting with low-energy photons, what is the cross

section (not a trick question)? Just the Thomson cross section. In fact, since this is exactly

the same process as we considered before, the cross section for general energies is again the

Klein-Nishina value.

Compton scattering

In the absence of a magnetic field, the cross section for the interaction of a photon with

an electron is just the Thomson cross section (σT = 6.65 × 10−25cm 2) for low energies, but

becomes more complicated at higher energies. The general Klein-Nishina expression, valid

at all energies, is
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where x = h̄ω
mc2

is the energy of the photon in the rest frame of the electron. For x ¿ 1 this

reduces to the Thomson value, whereas for x À 1

σ ≈
3

8
σT x−1(ln 2x + 0.5) . (5)

Radiation can exert a force on matter, via scattering or other interactions. Radiation

force is often referred to as radiation pressure in the literature. However, let’s give some

thought to this. Suppose that an electron is in an isotropic bath of radiation. The radiation

pressure is nonzero; Pr = aT 4, in fact. Ask class: is there any net radiation force on the

electron? No, because the bath is isotropic. In this situation it would be more accurate



to say that the force is due to a pressure gradient. This is the same reason why we’re not

currently being crushed by the atmosphere, despite the pressure of about 1 kg per square

centimeter (many tons over the whole body). Even more accurately, it’s the net radiation

flux that matters.

By balancing radiation force with gravitational force we can define the Eddington

luminosity, which is very important for high-energy astrophysics. For a flux F on a particle

of mass m and scattering cross section σ around a star of mass M , the balance implies

GMm

r2
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σ

c
F =

σ

c

L

4πr2
, (6)

where L is the luminosity. The r−2 factors cancel, leaving us with the Eddington luminosity

LE:

LE =
4πGcMm

σ
, (7)

For fully ionized hydrogen, we assume that the electrons and protons are electrically

coupled (otherwise a huge electric field would be generated), so the light scatters

off the electrons with cross section σT and the protons provide the mass mp. Then

LE = 4πGcMmp/σT = 1.3 × 1038(M/M¯) erg s−1. If the luminosity of the star is greater

than this, radiation will drive matter away. This is also the maximum luminosity for steady

spherical accretion.

Ask class: does the dependence on m and σ make sense, that is, should m be in the

numerator and σ in the denominator? Yes, because if gravity is stronger (m is higher) then

more luminosity is needed; if σ is greater, radiation couples more effectively and the critical

luminosity is less. This means that for a fixed density, large things are less affected by

radiation than small things (because for a size a, the mass goes like a3 whereas the area

goes like a2. So, asteroids are not affected significantly by radiation!

Curvature radiation

We know that any accelerated charge radiates. If there is a magnetic field around, there

are two ways the charge can be acclerated. One is if it moves perpendicular to the field

(synchrotron radiation). The other is if it moves along the field, but the field is curved

(curvature radiation). We’ll just state a couple of results here.

The power emitted by curvature radiation is (see, e.g., Jackson 1975)

P ≈
2

3

e2c

R2
γ4 (8)

where γ = (1− β2)−1/2 and β = |v|/c. Ask class: is the dependence on R reasonable? Yes,

because for smaller radius of curvature and a fixed energy, the acceleration is greater and

hence so is the radiation.



The spectrum for curvature radiation is
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up to a limiting frequency of

ωc ≈ 3γ3
c

R
. (10)

Synchrotron radiation

If a particle of charge e and energy E is moving perpendicular to a static magnetic field

of strength B, the frequency of its orbit around the field is

ωc =
eBc

E
. (11)

If the particle has velocity v, this means that its orbital radius is d = v/ωc, so for highly

relativistic particles with v ≈ c, d = E/eB.

A particle may acquire a nonnegligible motion perpendicular to the magnetic field

if, e.g., it is created from a photon which was moving with some angle to the magnetic

field. If γ B
Bc

¿ 1, then a classical treatment of synchrotron radiation is approximately

valid. Ask class: recalling that synchrotron radiation is due to acceleration of a charge,

suppose you have an electron and a proton with the same Lorentz factor. Which would you

expect to lose energy on a faster time scale? The electron, because the proton is not as

easily accelerated, hence the proton does not lose energy as rapidly. That’s why circular

accelerators accelerate protons or ions instead of electrons, and why electron accelerators

are straight: the radiation losses are too significant otherwise. However, when the magnetic

fields are weak, relativistic electrons have a long synchrotron cooling time. In fact, radio

emission from many AGN is dominated by synchrotron radiation.

In the non-relativistic limit, the energy loss rate and rate of angular change due to

synchrotron radiation are

Ė
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= −
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0B
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12 sin2 αs−1 (12)

and

α̇ = −
2
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0B
2 sin α cos α/mcγ ≈ 2 × 1015γ−1B2

12 sin α cos α s−1 , (13)

where r0 = e2

mc2
≈ 2.8 × 10−13cm is the classical radius of the electron and α is the angle

between the magnetic field and the direction of motion. In this limit, the average energy of

the synchrotron photons is

h̄ωave ≈ 0.46
B

Bc

γ2 sin2 αmc2 . (14)



Pair annihilation, e−e+ → γγ

In the extreme relativistic limit, the cross section for two-photon annihilation is

σan ≈
3

8
σT

ln 2γ

γ
. (15)

Will consider one-photon annihilation in neutron star section

Bremsstrahlung

The energy lost per unit length to bremsstrahlung radiation by an electron or positron

traversing a region of number density n fixed charges per unit volume is

dE

dx
= n

∫ ωmax

0

dχ(ω)

dω
dω , (16)

where ωmax is the maximum frequency of the radiation, and in the extreme relativistic limit
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(e.g., Jackson 1975). In this expression, m is the mass of the electron, E is the original

energy of the electron, E ′ is the energy after interaction, and it is assumed that h̄ω ¿ E and

E, E ′ À mc2. We’d like to know approximately how far an electron of energy E À mec
2

can travel before it loses a significant amount of energy. We could do the integral, but

we can get a rough answer by making a couple of approximations. First, logarithms vary

slowly, so we can take it to be about constant and take it out of the integral. Second,

“all logarithms are 10” to within a factor of a few, so we’ll just call that factor 10. Third,

we need to determine ωmax. Ask class: can h̄ω > E? Of course not! So, let’s say that

h̄ωmax = E. Then we can write the energy loss per distance as
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(18)

This expression contains two combinations of symbols that are useful to remember.

e2/h̄c = 1/137 is the fine structure constant, and is dimensionless. e2/mec
2 = 2.8×10−13 cm

is the classical radius of the electron. Evaluating this, we find the column depth for

significant interaction, where d(ln E) ≈ 1, is about 3× 1025 cm−2, roughly constant for large

E.

Electron-neutrino interactions

See http://www.sns.ias.edu/∼jnb/ (John Bahcall’s home page) for many

details about neutrino astrophysics.



Neutrinos interact very weakly; in fact, their existence is the hallmark of the weak force.

Typically, a neutrino of energy Eν has an electron scattering cross section of

σν ≈ 10−44

(

Eν

mec2

)2

cm2 . (19)

This is what is technically known as an itsy bitsy cross section. Now, particle physicists

have a lot of time and a fondness for alcohol, leading to interesting terminology and names

for units. In this case, they’ve dubbed 10−24 cm2 a “barn” and 10−48 cm2 a “shed”, so a

typical neutrino cross section is some ten thousand sheds! This compares with the Thomson

cross section, which is close to one barn; indeed, hitting an electron with a photon is like

hitting the broad side of a barn compared to hitting an electron with a neutrino. For people

without a sense of humor, 10−44 cm2=10−48 m2 is one square yoctometer. Pretty small, no

matter how you slice it.

Let’s figure out the fraction of neutrinos interacting in certain circumstances. First, the

Sun. Ask class: to order of magnitude, what is the density of the Sun? About 1 g cm−3.

That means that the number density is about 1024 cm−3. Ask class: so, what is the mean

free path of ∼ 1 MeV neutrinos? About 1020 cm. The Sun is about 1011 cm in radius, so

only about 10−9 of the neutrinos interact.

Now let’s think about the dense core in the center of a star just prior to a supernova.

Ask class: if you crush the Sun down to a radius 1000 times less than it actually has,

what happens to the optical depth to neutrinos? Density is 10003 = 109 times greater, but

the length traveled is 1000 times less, so optical depth is 106 times greater. That suggests

an optical depth of about 10−3. The neutrinos in supernova are actually somewhat more

energetic as well, about 3–5 MeV, so a fraction ∼ 10−2 of the energy is absorbed. This

seems to be enough to be the crucial driver of the supernova, since a good 1053 erg is

released in neutrinos.

Proton-proton interactions

Because of their relatively large mass, protons do not interact significantly in the ways

discussed above. However, at high energies proton-proton collisions may produce photons,

neutrinos or other products through strong interactions. At TeV energies or higher, more

than 99% of the interactions are of the form

p + p → π + X , (20)

where π indicates a pion (charged or neutral), and X indicates the other products. At a

few TeV, the interaction length is roughly 20g/cm2, or a column depth of ≈ 1025cm−2. The

pions can decay to produce photons or neutrinos. Slane and Fry (1988) found the optimum

column depth for photon production is ≈ 50g/cm2. At this column depth, a proton will

typically produce about 10 photons of average energy ≈ 1

30
that of the proton.


