
Particle acceleration and generation of high-energy photons

For acceleration, see Chapter 21 of Longair

Ask class: suppose we observe a photon with an energy of 1 TeV. How could it have

been produced? In particular, could it have been produced thermally? No, because the

temperature equivalent is E/k ≈ 1016 K, and nothing in the universe is that hot. So, it

must have been produced nonthermally. Ultimately, that means that the photon must

have been produced by a high-energy particle. Let’s narrow down how it could have been

accelerated. Ask class: could the particle have been accelerated via the strong force? No,

because the distance over which the strong force acts is too small. It would need to have an

unbelievable acceleration over the ∼ 10−13 cm distances. Same with the weak force. Ask

class: could the particle have been accelerated via gravity? No, but this takes a little more

argument. Ask class: how does something get accelerated by gravity? Think in particular

of boosts given to planetary probes. The boost actually comes from the velocity of the

planet in its orbit, not the gravity per se. In fact, gravity is a conservative field, so in an

isolated system a particle can’t get any net energy from gravity alone. This means that

only electromagnetism can accelerate particles.

Now let’s think about how electromagnetism can accelerate particles. Ask class: what

kind of particles are accelerated? In particular, tell as joke a proton, a neutron, and an

iron nucleus walk into the Bar of Electromagnetic Fields. Which one gains the most energy,

assuming no losses? The iron nucleus, being most charged, will. The proton is next in line.

The neutron is uncharged, so it gains the least.

Ask class: what happens if a proton goes into a region with static magnetic fields

but zero electric field? What happens to its speed and direction? Direction can change,

but speed won’t. Ask class: what happens to the energy of the proton in a reference

frame in which the magnetic field is moving? Since the proton energy in the field frame is

unchanged, you get a Doppler shift in the laboratory frame. Therefore, moving magnetic

fields can also increase the energy of protons. Another way to get high-energy particles is to

have acceleration of some type along an electric field. Ask class: how could this happen?

It could be a potential drop or it could be acceleration by Compton scattering (which is

indeed a form of electric field).

Therefore, to summarize, the only way to get very high energy photons is to produce

them using high-energy charged particles, and to get high-energy particles either moving

magnetic fields or electric fields are required. We will soon discuss some specific mechanisms

of this type, but first we need to know what we have to explain. The spectra of high-energy

particles (such as cosmic rays) or high-energy photons are often power laws, typically with an

index of between 2 and 3 (that is, the number at a particular energy is N(E)dE ∝ E−αdE,



where α=2 to 3). These can extend up to extremely high energies; for example, cosmic rays

have been seen at energies up to 3 × 1020 eV! This is an example of acceleration of a small

fraction of particles to ultrahigh energies. There is also evidence in active galactic nuclei for

bulk motion with Lorentz factors up to 10-30, so in some cases all the matter in a region

may become significantly relativistic, but not ridiculously so!

This means we’d like to explain (1) power-law spectra and ultrahigh energies for a small

fraction of particles, and (2) relativistic bulk motion. In this lecture we’ll talk only about

the first problem. When we get to accretion disks, we’ll talk about how relativistic bulk

motion may be produced. We’ll consider three types of acceleration: Fermi acceleration,

radiative acceleration, and acceleration by a potential drop, to see if these can do it. We

will then look at energy losses, which pose serious constraints on many of the models.

Second-order Fermi acceleration

Note: this mechanism is no longer favored, but it does show the

principles of collisionless plasmas and Doppler acceleration. See also

http://sol.physics.usyd.edu.au/sosp3 2000/node5.html for Fermi mechanisms. Sections 21.3

and 21.4 of Longair have good descriptions of Fermi acceleration.

One mechanism, proposed by Fermi in 1949, involves motion of “clouds” of magnetic

flux. You can essentially imagine these clouds moving randomly, playing tennis with

high-energy charged particles. If the cloud is moving towards the particle, it will scatter the

particle backwards and the Doppler shift will increase the particle’s energy. If the cloud is

moving away, the Doppler shift will decrease the particle’s energy. Ask class: would they

expect a net gain in energy over many collisions? If so, why? Also, what would be the net

fractional energy gain in a power of v/c, where v is the cloud speed? There is a net gain,

because head-on collisions happen more often than collisions when the particle and cloud

are moving in the same direction (call these “tailgate collisions”). To first order in v/c the

energy gain and loss cancel each other, so the fraction energy gain is of order (v/c)2. For

that reason, this is called second-order Fermi acceleration.

More mathematically, consider clouds with an average distance between them of L,

moving at v ¿ c. A relativistic particle moving among stationary clouds would have an

interaction in a distance L. It will have head-on collisions in a distance L/(1 + v/c), which

change the energy of the particle by a fractional amount +v/c, and will have tailgate

collisions in a distance L/(1 − v/c), which change the energy by a fractional amount −v/c.

The net fractional energy change is the sum of the relative rates times the energy change, or

∆E/E = (v/c)(1 + v/c) − (v/c)(1 − v/c) ∼ O(v2/c2) . (1)

Now, in this simple argument we’ve neglected (1) the factor of γv = 1/
√

1 − v2/c2 in the

Doppler shift, and (2) averaging over angles instead of considering just head-on and tailgate



collisions. Both of these simply change the factor in front of v2/c2, and a more careful

calculation gives (see Longair, §21.3)
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Consideration of diffusion (see Longair) shows that the loss (or escape) probability is a

constant in each scattering, so that the resulting spectrum of particle energies is a power

law. If the escape time from a cloud is τesc and we define α = (4/3)v2/cL, then the spectrum

is

N(E) ∝ E−x (3)

where x = 1 + 1/ατesc. Getting a power-law spectrum is certainly a good thing, but there

are some problems with Fermi’s original suggestion, which was that interstellar clouds

would play the tennis. Ask class: given that v/c ∼ 10−4 and L ≈1 pc for intestellar clouds,

how long would it take to accelerate a particle from ∼ 109 eV to ∼ 1015 eV, as required for

many cosmic rays produced in the Galaxy? e-folding time is about 1/[(8/3)(v/c)2] times

one collision time, which is about three years, so would need around a billion years. That’s

long enough to suffer many losses. Better to accelerate with a region of more tangled fields.

However, even then, no reason why the spectral index should be in a preferred range (why

would τesc and L have the same relation in all clouds?).

First-order Fermi accleration

Fortunately, in the late 1970’s several people came up with an improvement on Fermi’s

idea of acceleration by repeated Doppler shifts. Consider a strong shock. Fluid mechanics

tells us that if the shock is traveling at a velocity U and is composed of an ideal gas, the

material behind the shock (which the shock has passed through) is traveling at a velocity

3U/4. Let us assume that both behind and ahead of the shock there are tangled magnetic

fields strong enough to isotropize the distribution of particle propagation directions (this is

a likely consequence of shock propagation in a plasma). Also assume U ¿ c and that the

shock front is extremely thin, so that the particle does not interact with the shock itself.

Then, as seen in the rest frame of the unshocked fluid (ahead of the shock front), what

happens is (1) a particle in the unshocked fluid goes through the shock and scatters in the

shocked fluid, (2) this fluid is moving at a relative velocity 3U/4, so there is a Doppler shift

of order 1 +O(U/c), (3) after scattering, the particle makes its way back through the shock

to the unshocked fluid, where it scatters again, (4) the process repeats, and every time it

does a fractional energy ∆E/E = O(U/c) is gained. This is first order in the velocity, so

this is called first-order Fermi acceleration. Averaging over angles it turns out that it’s

simply ∆E/E = U/c per round trip! Ask class: given that we know the average energy

gain per scattering, what else do we need to know to determine the spectrum? We need

the probability of escape per round trip. That probability can be calculated due to a clever

argument by Bell (1978). Go into the shock frame. Ask class: for relativistic, isotropically



moving particles of number density n, what is the flux (number per area per time) across

the shock front? Flux is number density times average velocity. Half the particles are

moving away from the shock front. The average velocity of the rest is c/2, so the flux is 1

4
nc.

Now, what is the flux that escapes? In the shock front, the shocked fluid is moving away

from it at a speed U/4. By the same argument, that means that the escape flux is 1

4
nU .

Therefore, a fraction U/c escapes. As before, then, there is a constant fractional energy

gain and a constant fractional number loss per scattering. In this case, though, the fraction

is U/c in both cases. That means that the spectrum is N(E)dE ∝ E−2, remarkably close

to what is observed.

This is encouraging: this method can accelerate things quickly to high energy, and it

gives a spectral index close to what is seen. In general, this also depends on the compression

ratio in the shock; we’ve considered an ideal gas, with a compression ratio of 4 (compression

ratio is equal to r = (CV + 1)/(CV − 1), where CV is the adiabatic index; for example, 5/3

for an ideal gas, 4/3 for radiation-dominated matter). The shocked matter has a velocity

−U/r relative to the shock wave. Ask class: given this, would they expect that for r = 7

(for radiation-dominated matter) the spectral index would be harder (more high-energy

particles) or softer? Hint: think about how the escape probability would change. It’s

harder, because a smaller fraction of particles escapes. The spectral index you get turns out

to be (r +2)/(r− 1). The dependence on just the compression ratio, and not details like the

size of the region, strength of the magnetic field, injection spectrum of particles, ... means

that it is robust. The fact that the spectral index is not exactly in the 2-3 range observed

suggests that some modifications would be necessary: thick or weak shocks, tangled or

oblique field, energy losses, and so on. But the general idea is good.

This is an outstanding acceleration mechanism. It is thought that supernova shocks

are especially promising: the shocks are strong and thin, and sweep up a lot of magnetic

field that can scatter particles. However, detailed investigations show that above 1014−15 eV

this mechanism can’t produce particles via SN shocks; the SN slows down by sweeping up

matter. So, something else would have to produce higher-energy particles. We’ll consider

one of those now.

Acceleration by potential drops

Let’s turn our attention to another completely different acceleration mechanism. Ask

class: if you have an electric field E over a region of size d and put a particle of charge

e in it, how much energy does the particle gain by going across the region? E = eEd. If

the potential drop Φ = Ed is large enough, particles can be accelerated to extremely high

energies. The highest energy cosmic rays have E ≈ 1020 eV, so the potential drop needs

to be Φ ≈ 1020 V. It turns out that a good way to get large potential drops is to have a

magnetic field in the same region as a spinning conductor: for example, an accretion disk or

rotating neutron star. Lenz’s law says that if a magnetic field of strength B is moving with



a velocity v through conducting matter, it generates an electric field E = (v/c)B. Over

a closed circuit of length ∼ d, this produces an electromotive force Φ ≈ Ed = (v/c)Bd.

The net result is that a potential drop of magnitude Φ opens up along the field lines, and

acceleration can take place there. Physically, what can happen is that charges are drawn

apart from each other and separate, leaving a low-density region surrounded by mostly

positive charges on one side and negative charges on the other.

We can calculate potential drops in some representative situations. When making

conversions, we have to be a little careful: sadly, the cgs unit of potential is a “statvolt”,

which is 300 Volts(!) You can also look in a book to find that e = 4.8 × 10−10 in cgs units

and do it that way. Anyway, let’s think first of a strongly magnetized, rapidly rotating

neutron star. If B = 1013 G on the surface, d = 106 cm (the size of the star) and v = 0.1c

(about a 3 ms spin period) then Φ = 1017sV = 3 × 1020 V. If we instead are interested in

a supermassive black hole, we might have d = 1014 cm (radius near the inner edge of the

disk), B = 104 G, and v = 0.5c. Then Φ = 5 × 1017sV ≈ 2 × 1020V .

To usual astrophysical accuracy, both of these seem plenty high to get particles to the

∼ 1020 eV observed for the highest-energy cosmic rays. However, as we’ll see now, it’s

actually extremely tough: loss processes of many kinds come in like gangbusters at high

energies. Still, for really high energies this is the best current bet.

Energy loss processes

Now, we need to consider energy loss processes. Ask class: what are ways in which

high-energy particles can lose energy? Generically, can lose energy by interacting with

photons or other particles, or by interacting with a field and radiating. Let’s break it

down. First, interaction with photons (inverse Compton scattering). Ask class: would

they expect protons or electrons to lose more energy by scattering with photons? Electrons

have a much larger cross section, so they do. Now, interaction with particles. Electrons can

interact with other electrons or with protons, but at ultrarelativistic energies these cross

sections are relatively small. For protons, as we saw in the last lecture they can scatter off

of other protons or nuclei. In such interactions the strong force is involved, and the cross

section is something like ∼ 10−26 cm2. Ask class: what does the column depth have to be

for optical depth unity? The reciprocal of this, or about 1026 cm−2. That’s a lot! So, in a

dense environment, collisions with particles can sap energy from high-energy particles. But

what if the environment is low-density? Then, as we’ve argued, acceleration of particles to

ultrarelativistic energies means that magnetic fields are present. In fact, the fields need to

be strong enough to confine the particles as well (otherwise they escape without further

gain of energy). Therefore, interaction of the particles with the field can produce radiation,

diminishing the particle energy.

Curvature radiation.—First, suppose that the particle is forced to move along magnetic



field lines with curvature radius R. As we found in the last lecture, the power radiated by

a particle moving at a Lorentz factor γ À 1 is P ≈ (2e2c/3R2)γ4. A relativistic particle of

charge e moving along an electric field E receives a power eEc from the field. Equating the

power gain and power loss, the limiting Lorentz factor is

γ < 2 × 107R
1/2

8 E
1/4

4 , (4)

where R = 108R8 cm and E = 104E4sV cm−1. For a supermassive black hole with

R = 1014 cm, γ might get up to 2× 1010 (note the weak dependence on E ; also, the required

magnetic field for E4 À 1 would be unrealistically high for a supermassive black hole).

This would give a proton an energy of 2 × 1019 eV, which sounds high but is a factor of 10

short of the highest observed energies. For a neutron star with R = 106 cm and E = 1012,

γ < 2 × 108. So it sounds bad. Ask class: but is curvature radiation always relevant?

What if you have a very high-energy particle? Then, the particle doesn’t follow the field

lines. Remember that curvature radiation and synchrotron radiation are both just types of

acceleration radiation. If a particle is moving in a straight line, it radiates very little. So,

the question is whether synchrotron radiation keeps the particle along the field lines.

Synchrotron radiation.—From the last lecture, proton syncrotron radiation causes an

energy decay at a rate Ė/E ≈ 3 × 105γB2

12
s−1 if the highly relativistic protons move

perpendicular to field lines. If E/Ė is short compared to the time needed to travel across

the acceleration region, the proton will follow field lines. Near a strongly magnetic neutron

star, with B = 1012 G, there’s no chance of highly relativistic protons moving across field

lines. Even for a supermassive black hole, where B ∼ 105 G, a proton with γ = 1011 as

required will be forced to follow the field lines in a time much less than the crossing time of

the region, so in both cases it is likely that protons will be forced to follow field lines.

This is a problem. My best guess is that there are AGN with field geometries such that

the curvature radius is much greater (factor of >100!) than the distance from the hole.

That would just barely allow the observed energies. If future detectors (such as the Pierre

Auger Array) see cosmic rays of energies much greater than the current record holders, this

would be a real problem. We’ll get into other issues with the highest energy cosmic rays

near the end of the course.


