
Frame-dragging: occurs generally around rotating objects. It’s just that the exact

Kerr form only applies to black holes.

See Longair 16.3 Also see Novikov+Thorne contribution to the “Black Holes” 1972

proceedings, ed. de Witt and de Witt (our library has it).

Accretion Disks

Angular momentum

Now let’s go back to black holes. Black holes being what they are, something that falls

into one disappears without a peep. It might therefore seem that accretion onto a black

hole would release no energy. It isn’t the case, however, and the reason has to do with

angular momentum.

Thinking in terms of Newtonian gravity, suppose you have a point source of mass. Ask

class: taking gravity into effect, is it possible to hit the mass with another point particle?

No, it isn’t. Your aim would have to be perfectly good. In reality, however, there will

always be some lateral component of the motion of the projectile (i.e., there will always be

nonzero angular momentum). This will cause the projectile to deviate more and more from

a radial trajectory as it gets closer; this is a consequence of the `2/r3 term in the radial

equation of motion. In practice, for compact objects and often even for normal stars, the

angular momentum of matter is sufficient to ensure that there is not direct radial accretion.

Of course, along the axis of rotation there is less centrifugal support, so this tends to form

a disklike structure (the accretion disk).

Now, imagine that you have lots of such projectiles moving around the central mass. If

they don’t interact, their orbits will be unaffected by the presence of other projectiles. But

if in reality the “projectiles” are streams of gas, they will collide with each other. This will

tend to circularize the motion. But will anything happen once the motion is circularized?

Disks usually rotate such that each fluid element is moving almost (but not exactly!)

in a circular orbit. If there were no interactions between fluid elements, Ask class: what

would the angular velocity be as a function of radius? Ω ∝ R−3/2, so there is a shearing

flow. This means that coupling between adjacent radii exerts a force. Ask class: given

that the outer parts rotate more slowly, in which direction will the force be and what will

be the effect on the angular momentum and on the movement of mass? Inner tries to speed

up outer, giving it a higher velocity. This increases the angular momentum of the outer,

decreases the angular momentum of the inner, so net result is that angular momentum is

transferred outwards and mass flows inwards (some subtleties, of course). The disk spreads

as a result. Mention: this has similarities to the effect of “shepherd moons” except there

the coupling is purely gravitational.

So, gas moving towards a massive object has a tendency to circularize, form a disk,



and spread inward and outward. This is an “accretion disk”. If the massive object has a

surface, then often the matter spirals in until it hits the surface or interacts with the stellar

magnetic field, whichever comes first. But a black hole has neither a surface nor a magnetic

field. However, strong-gravity effects of general relativity mean that the gas can’t spiral all

the way to the horizon, either. This is because of the ISCO, which we have discussed before.

Particles spiraling inwards will release little energy inside the ISCO, so the efficiency is just

the binding energy in nearly circular orbits there. This is 6% of mc2 for a nonrotating black

hole, and up to 42% for a maximally rotating black hole.

Therefore, the accretion efficiency for black holes can in principle be the highest

accretion efficiencies in astrophysics. Unlike stars, for black holes all the emitted energy

must come from the accretion disk. We will therefore take a closer look at accretion disks.

Now we’ll think more carefully about accretion disks themselves. One model of disks,

which has many advantages (e.g., it is robust and does not depend on too many parameters)

is one in which the disks are geometrically thin but optically thick. Let’s think about the

conditions for this to occur.

First, we make the assumption (standard for all models of accretion disks) that the

disk itself has negligible mass compared to the central object. One aspect of that is that

the gravity in the disk is dominated by the gravity of the central object, not the gas in the

disk itself. On the other hand, pressure forces within the disk are not necessarily negligible.

Quantifying this, Ask class: what is the equation of hydrostatic equilibrium? In general

it is ∇P = −ρg, where g is the local acceleration of gravity. We make another standard

assumption, which is that the gas is orbiting in almost Keplerian orbits. That means that

we can focus on the z component (normal to the disk plane) of the hydrostatic equation.

If the central object has mass M and the fluid element of interest is an angle θ out of the

plane, then (draw diagram) the equation becomes

dP

dz
= −ρ

GM sin θ

r2
. (1)

Let’s call H the half-thickness of the disk; H ¿ r for a thin disk. To rough accuracy,

dP/dz = −P/H and sin θ = H/r. Then

P

H
≈ ρH/r2

(

GM

r

)

⇒
P

ρ
= c2

s ≈

(

H

r

)2

(GM/r) . (2)

Since v2

K = GM/r, this means that the sound speed is cs ≈ (H/r)vK . Therefore, the

thin disk condition H/r ¿ 1 implies (and is implied by) the condition that the sound

speed is much less than the orbital speed. The sound speed increases with temperature,

which increases with luminosity, which increases with accretion rate, so here we have an

early warning that at high enough accretion rates the thin disk approximation is likely to

break down. “High enough” turns out to mean near the Eddington luminosity. This is



not a surprise, because near the Eddington luminosity radiation forces are strong enough

to significantly modify the behavior of matter, and so having them puff up the disk is

reasonable.

Temperature and frequency distribution of a thin disk

Now let’s take a first stab at what the temperature and frequency distribution of a thin

disk should be. In a moment we’ll do things more carefully, and find a surprising factor of

3. Longair section 16.3 has a different but also careful derivation.

Ask class: suppose that as each fluid element moves inward that it releases its energy

locally, and that its energy is all gravitational. How much energy would an element of mass

m release in going from a circular orbit at radius r + dr to one at radius r? Gravitational

potential energy is Eg = −GMm/2r, so the energy released is GMmdr/2r2. Warning:

presaging here is where the mysterious factor of 3 comes in. It turns out that in reality,

far from the inner edge of a disk, the local energy released is a factor of 3 greater than that,

due to viscous stresses associated with the transport of angular momentum. However, let

us now focus on just the radial dependence, writing dEg ∼ GMmdr/r2. That means that

the luminosity of this annulus, for an accretion rate ṁ, is dL ∼ GMṁdr/r2. Ask class:

what is the temperature, assuming the annulus radiates its energy as a blackbody? For a

blackbody, L = σAT 4. The area of the annulus is 2πrdr, and since L ∼ Mṁdr/r2 we have

T 4 ∼ Mṁr−3, or

T ∼

(

Mṁ

r3

)1/4

. (3)

Therefore, the temperature increases as the fluid moves in. Another point is that from

this equation we can see general scalings with the mass M of a central black hole. Ask

class: suppose we have two nonrotating black holes, of mass M1 and M2, both accreting

at the Eddington rate. What is the scaling of the temperature at, say, r = 10 M with the

mass? The effects of general relativity depend on r/M , so suppose that we are interested

in r = xM (for example, x = 6G/c2 for the innermost stable orbit). Also, as we saw last

lecture, the Eddington limiting luminosity scales with M , so suppose that the luminosity is

L = εLE, implying that ṁ ∝ εM . The temperature is then T ∝ (MεM/(xM)3)1/4 ∼ M−1/4.

This shows that as black holes get bigger, emission from their accretion disks get cooler, all

else being equal. For example, a stellar-mass black hole accreting at nearly the Eddington

rate has an inner disk temperature near 107 K, but a supermassive 108 K black hole

accreting near Eddington has only a 105 K temperature.

Continuing with our simple model, we can also derive the emission spectrum in a

range of frequencies. Because “thin disks” are assumed to be optically thick (the “thin” is

geometrical, remember), we can assume that in each annulus they radiate as blackbodies

with the local temperature T (r). The emission spectrum is this integrated over the whole



disk, which we assume goes from an inner radius rI to a maximum radius rmax. Then

I(ν) ∝
∫ rmax

rI

2πrB[T (r), ν]dr (4)

where B(T, r) is the Planck function B(T, r) ∝ ν3[exp(hν/kT ) − 1]−1. In the region where

T ∝ r−3/4 we can change variables, dr ∝ (1/T )1/3d(1/T ). Then

I(ν) ∝
∫

1/Tmax

1/TI

(

1

T

)4/3

ν3

[

exp

(
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kT
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− 1

]

−1 (
1

T

)1/3

d
(

1

T

)

. (5)

If we now make another change of variables, this time to x = hν/kT , then

I(ν) ∝
ν3

ν8/3

∫ hν/Tmax

hν/TI

x4/3(exp x − 1)−1x1/3dx . (6)

In the middle portion of the spectrum, hν/TI ¿ 1 and hν/Tmax À 1, so we can approximate

the limits as 0 and ∞, respectively. But the integral is then simply a definite integral,

which does not depend on ν. Therefore, in the region of the spectrum with frequencies

corresponding to between rI and rmax, the spectral emissivity simply goes as I(ν) ∝ ν1/3.

Ask class: what is the emissivity at frequencies well below the frequency corresponding

to rmax? Below this frequency, emission from any of the annuli in the disk is in the

Rayleigh-Jeans portion of the spectrum, I(ν) ∼ ν2, so their sum is as well and hence the

emissivity below hν = kTouter goes as I(ν) ∝ ν2. Ask class: what about at frequencies

well above that corresponding to rI? Above the thermal frequency of the inner edge, the

spectrum falls off exponentially for all annuli. The spectrum is then dominated by the

emission from the inner edge (the temperature is highest there, and the luminosity is

greatest), so I(ν) ∝ exp(−hν/kTinner).

Comment: the point of this exercise, and the continuation below, is to see how a simple

model of an accretion disk may be solved. However, real life is (as always) more complicated.

In particular, this spectral form is not a particularly good fit to data, and other components

seem necessary (e.g., a hot corona above the disk that reprocesses radiation by Compton

scattering). Also, near the hole one must include GR effects (different angular momentum

and energy distributions, for example). A full GR treatment is given by Novikov and

Thorne in the 1972 “Black Holes” proceedings (de Witt and de Witt, editors; our library

has it). In practice, many people use a “pseudo-Newtonian” potential Φ = −GM/(r− 2M),

which mocks up many GR effects fairly well without slowing down code.

Thin disks; more careful treatment (Longair 16.3.3)

The simple treatment above neglects one very important point: if angular momentum

is transported outwards, energy is as well. That means, qualitatively, that some of the

gravitational energy released in the inner regions emerges as luminosity only in the outer



regions. To derive this, we’ll use an approach in some of Roger Blandford’s notes, focusing

on three conserved quantities: rest mass, angular momentum, and energy.

First, we assume the equation of continuity: the mass accretion rate is constant as a

function of radius, so

Ṁ = 2πrΣvr = const (7)

where Σ is the surface density and vr is the inward radial velocity.

Second, we treat angular momentum conservation. Assume for simplicity that the radial

velocity is small and that the Newtonian form for angular momentum holds. Assume also

that there is an inner radius rI to the disk, and that no more angular momentum is lost

inside that (for example, this might be thought a reasonable approximation at the ISCO).

Then angular momentum conservation implies that the torque exerted by the disk inside

radius r on the disk outside that radius is

G = Ṁ
[

(Mr)1/2
− (MrI)

1/2
]

. (8)

Third, energy conservation. The release of gravitational binding energy per unit time

is, as we already saw, Ėg = −Ṁd(m/2r). In addition there is a term due to viscous

interactions. At a radius r where the angular velocity is Ω = (M/r3)1/2, the rate of work

done on the inner surface of an annulus is −GΩ, and the net energy per time deposited

in a ring is Ėv = −d(GΩ). The sum of the two is the luminosity released in the ring,

dL = Ėg + Ėv. Evaluating this and replacing the Newtonian constant G we have

dL

dr
=

3GṀM

2r2

[

1 −

(

rI

r

)1/2
]

. (9)

Whoa! Hold on here! This is different than what we might have expected. Far away

from the inner edge rI , this means that the local energy dissipation rate is three times the

local release of gravitational energy. Where is the extra energy coming from? If we integrate

L(r) over the whole disk, we find that it gives GṀm/2rI , as expected if the matter ends up

in a circular orbit at radius rI . However, close to rI the energy dissipation rate is less than

the local gravitational release. Therefore, what is happening is that matter near the inner

part of the disk mas much of its energy going into transport of angular momentum rather

than release of energy, and the extra energy is released further out. This factor of three was

missed at first, but was pointed out by Kip Thorne.

Note, by the way, that this expression does not include the viscosity. That’s why it was

possible to do the derivation without specifying the viscosity; Longair does introduce the

viscosity, in part because it is important for other reasons (e.g., to get the radial velocity or

surface density).

Origin of viscosity



The Reynolds number is defined as R = V L/ν, where V is a typical velocity in a fluid

system, L is a typical dimension, and ν is the kinematic viscosity. When R À 1 the fluid

motion is turbulent. The kinematic viscosity is approximately ν = csλ, where cs is the

sound speed and λ is a particle mean free path, so R = (V/cs)(L/λ). In accretion disks,

the density is usually of order 1 g cm−3 (plus or minus a couple orders of magnitude), so

the mean free path λ is much smaller than the system size L. Also, as we found earlier,

the velocity is much greater than the sound speed for a geometrically thin disk, so V À cs.

Then R À 1 and the fluid is expected to flow turbulently. That means that the viscosity

is a turbulent viscosity. Calculations of microscopic viscosity indicate that this is much too

small. However, in the last decade it has been shown that magnetohydrodynamic effects

can do it. In particular, the magnetorotational instability, by which weak magnetic fields

are amplified by differential rotation, gives the required viscosity. This is a large subject.

Jim Stone is one of the world’s experts on this, and has comprehensive computer codes to

treat viscosity and disk physics. However, it is common to simply parameterize the viscosity

by writing it ν = αcsH, where H is the scale height of the disk (this was done by Shakura

and Sunyaev). Here α is a dimensionless constant, less than but comparable to unity, and

the disks are called “alpha disks” as a result.

Caveats and thick disks

Before departing this subject, some caveats. First, note that for high luminosities, with

puffed-up disks, the thin disk approximation is no longer good. Second, there has been a

lot of work in the past decade showing that even at low accretion rates there is another

solution: a geometrically thick, optically thin disk. In particular, the energy release of gas

near the black hole is so large that (at least energetically) it can drive a large wind off of the

outer portions of the disk, meaning that ṁ is not constant with radius. Observations are

inconclusive, and which solution actually operates when is an open question. Keep alert!


