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Coding in advance of the Apr 16, 2018 class

For the final three coding exercises, we will analyze the same data set: the set is given

as data11 1.txt on the website, and is taken from Table 1 of Ambrosi et al. 2017, Nature,

552, 63. The lure here is the possibility that the bump at around 1.4 TeV in that data might

represent something meaningful, e.g., dark matter. Odds are it doesn’t, but we’ll analyze it

to find out!

The file data11 1.txt describes the data; essentially, we have columns that give the

average energy in an energy bin (Eavg), the flux in that bin (F ), the reported statistical

uncertainty for that flux (σstat), and the reported systematic error in that bin (σsys). We

have been handed already-processed data; we thus are forced to make assumptions regarding

the nature of those uncertainties. In particular, we will assume that σstat and σsys both

represent Gaussian uncertainties, to an arbitrary number of standard deviations, and that

these uncertainties add in quadrature so that the total uncertainty is

σtot =
√
σ2
stat + σ2

sys . (1)

In a real analysis, if we came up with apparently strong evidence that the bump is a real

feature, we would want to proceed via the actual, raw, data, so that we didn’t have to make

these simplifying assumptions.

Your first task will be to use the affine-invariant MCMC code you developed last time

to fit a simple power law model to the data, for which the flux is

Φ = Φ0(Eavg/100 GeV)−γ (2)

and thus the two parameters in your model are the normalization Φ0 and the power-law index

γ. Yes, for a two-parameter model you could do a grid search, but as we proceed we’ll need

to explore more complex models with more parameters, so please use your affine-invariant

code even for this simple model.

Note that the output of your code would allow us to do full explorations of the posterior;

for example, we could get the full two-dimensional posterior probability density, we could

find ways to represent the 68% (or other) credible region in two dimensions or for each

parameter separately, and so on. If you feel like performing such analyses, more power to

you! But for this particular purpose, let’s just aim to get the maximum likelihood for this

model; what values of Φ0 and γ maximize the log likelihood, and what is the value of that

maximum log likelihood? In the next two weeks we’ll compare that value with what we get

with more complicated models, and will use Wilks’ Theorem to judge whether the additional

model parameters are needed.

As a check on your fit, please plot your best fit against the data; is it reasonable?

Good luck!


