
Implications and rejection: black holes and the expanding universe

Reference webpages:

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

http://cosmology.berkeley.edu/Education/BHfaq.html

and Chapter 3 in Thorne. For far more details about cosmology, at an undergraduate major

level, my lectures are at http://www.astro.umd.edu/∼miller/teaching/astr422/

Questions to keep in mind are:

1. Is the cosmos infinite?

2. Some current theories (e.g., superstrings) imply lots of other wild things, e.g., many

extra dimensions. How much should we believe these implications?

3. How much evidence do we need about a theory to believe its currently unobserved

predictions? One point of view is that we can never believe any unobserved predictions,

the other is that beyond some threshold of success it is reasonable to accept such

predictions.

The fourth of our debates will be on the last of these topics.

Introduction

Last time we discussed general relativity, which was driven by largely philosophical con-

cerns but had comparatively little observational support until the last few decades. Nonethe-

less, a (small!) band of physicists explored various consequences of the theory, and it became

generally accepted by physicists after Eddington’s 1919 eclipse expedition. Among the con-

sequences of the theory were that the universe had to be dynamic (expanding or contracting

as a whole), and that black holes were a possibility. Remarkably, Einstein resisted both

conclusions, but for different reasons. To understand his point of view, we need to reach

back in history to explore pre-Einsteinian concepts and to determine whether the universe

is finite or infinite.

Newton and the infinite universe

When Newton came up with with his concept of universal gravitation, he realized after

some contemplation that there was a potentially serious problem. Suppose that the universe

is finite, and let’s consider a star on the outer edge of the universe. Then there is a gravita-

tional acceleration that pulls it in, but none that pulls it out. As a result, we would expect

matter to collect towards the center. Given that the strength of gravity increases as matter

gets closer, you might think that this would continue, meaning that in a finite time all the



matter in the universe would be collected in one spot. This hasn’t happened, so there is a

contradiction.

We do have to be careful, though. Consider our galaxy, the Milky Way. Suppose that

this was all there is. Would it collapse? Certainly not in a short time. Our galaxy rotates,

and this helps support it against collapse. Investigations long after Newton have revealed

that if you wait long enough, the system isn’t completely stable. Ultimately (and by that we

mean more than 1020 years!), the outer parts will move away and the inner parts will grow

ever denser.

Perhaps guided by such an instinct, Newton felt that the better solution was to imagine

that although on local scales the universe is clearly not homogeneous (each region the same

as any other region of the same volume) or isotropic (all directions look the same), that on

large scales this is the way it is, and that the universe is infinite. These are, incidentally,

assumptions made by modern-day cosmologists to simplify their predictions. To understand

why this might appear to solve the problem, note that if you are in an infinite, homogeneous

universe then all directions are the same and therefore the pull is the same in all directions as

well. As a result, you will feel no net force and therefore there is no propensity for matter to

cluster. You can think of this as a variant of the classic Buridan’s Ass thought experiment:

a donkey exactly between two equally enticing piles of hay would starve to death because it

could not decide which way to go.

The problem is that, just as with the donkey, the solution is unstable. Suppose the

donkey sneezes, and that is enough to move it slightly closer to one pile of hay than the

other. Then the difference is small, so the donkey might make only slow, tenuous steps

towards the nearer one, but as it moved the decision would become clearer and thus it would

eat after all. In a similar way, unless the universe is mathematically, perfectly homogeneous,

a given parcel of mass will always be attracted slightly more in one direction than another.

Therefore, even in an infinite universe that is close to homogeneous, matter will collapse and

form structure.

This by itself is therefore not a convincing reason why the universe has to be infinite.

We need to determine what can be said observationally.

Why is the sky dark at night?

To address whether the universe is infinite, we can appeal to an argument called Olbers’

paradox, which is so named because (as my advisor Sterl Phinney liked to say) Olbers was

the fourth person to state the paradox and the second to give the wrong answer!

The question can be phrased simply: why is the sky dark at night? Basically, if the

universe were infinite, then every line of sight would eventually hit a star, and thus the

entire sky would have the same surface brightness (meaning energy per time per area per



solid angle) as the Sun. We’d notice that! In the remainder of this lecture we will explore

this paradox quantitatively.

First we’ll start with the fundamental idea.

Ask class: Suppose that the universe is populated randomly with stars, but homoge-

neously, so that a typical volume will contain a typical number of stars and this number

does not change as you go far away. The flux (energy per area per time) from a given star

dies away as the inverse square of the distance: F ∝ 1/r2. If we consider a spherical shell of

radius r from us and thickness h ≪ r, then the volume of the shell is roughly 4πr2h. The

number of stars in that volume is proportional to the volume, so N ∝ 4πr2h. Thus the total

energy per area per time we get from this shell is equal to the number of stars in the shell

times the flux per star. When you multiply these together, you see that the r2 cancels the

1/r2, and we get a flux Fshell ∝ h. Thus every shell contributes equally. If we can go out to

infinite distance, then, the flux should be infinite, in rather stark contrast to what we see!

One way out, of course, is that the universe is not infinite, not eternal, or both. If we

could conclude this, it would represent a fantastically important inference about the cosmos.

We are therefore obliged to think about other possible ways out, and how to test them,

before we can draw any confident conclusions. What are some other possible ways out for

us to explore?

As one try to resolve the paradox, we will consider the suggestion of Olbers himself. He

suggested that since there exists gas and dust between the stars, the gas and dust would

absorb and block the radiation. Unfortunately, this does not work if the observable universe

is not only infinite, but eternal. This is because the gas and dust would heat up to the

temperature of the illuminating stars after a finite time, so they would radiate just as much.

You can’t sweep this problem under an absorbing rug!

Another way might be to eliminate the homogeneity of the universe. If at greater

distances the universe has more and larger holes, maybe you don’t add up to unlimited

light. But here observations come into play, and tell us that the universe does actually get

more homogeneous at larger distances.

We can try another couple of possibilities, but eventually we can convince ourselves

that the best solution is that the universe is not infinite. Note, though, that there are two

different ways that this could happen. The universe might not be spatially infinite, or it

might not have existed for infinite time. If the universe is spatially finite but eternal, we’re

back to Newton’s concern. If the universe is spatially infinite but limited in age, however, we

do get around Olbers’ paradox because the finite speed of light means that we can only see

out to a certain distance. That might be the situation we are actually in. It is also possible

that the universe is finite in both space and time.



The expanding universe

Now let’s return to Einstein. After he published the final version of his equations in

1915, various mathematicians and physicists got to work on them. It was pointed out within

a year that his equations suggested that the universe had to be dynamic (either expanding

or collapsing). He asked astronomers about the evidence, and they told him that there was

no evidence for either. As a result, in 1917 he introduced his famous “cosmological constant”

into his equations, erroneously thinking that this would allow a static universe (it doesn’t;

it is like balancing a sharpened pencil on its tip, where any slight push will cause it to go

one way or another). But what would better observations say?

As it turns out, evidence that would tip the scales had already begun to accumulate

when Einstein put in the cosmological constant. In the 1800s people discovered that when

sources of light move away from an observer, the light appears to shift to longer wavelengths.

In visible light, the longer wavelengths are redder, hence this is called a “redshift” and for

the same reason a source coming towards us is “blueshifted”. It is, of course, easiest to see

redshifts if you know the precise wavelength the source would have at rest, so the detection

of lines with spectroscopes was necessary. As early as 1912, the remarkably-named Vesto

Slipher detected such lines from galaxies, and over the next several years it became clear

that, surprisingly, almost all galaxies were redshifted (the few exceptions are all close).

What could cause this? Are we so offensive that all other galaxies flee from us? The key

addition to this information came from measurements of distances to those galaxies. This

is a lot more difficult than you might at first think. The problem is that many methods

of distance measurement are simply not applicable to other galaxies. Direct measurement

(laying down a ruler) is clearly out of the question. Even parallax (farther things appear to

shift less due to the Earth’s orbit) can’t be measured with nearly enough precision at those

distances.

To the rescue came a discovery made by Henrietta Swan Leavitt, who worked on the

Harvard College Observatories photographic plates. She noticed that a particular type of

star called a Cepheid variable, which changes its brightness periodically, had the property

that the longer it took to change its brightness, the brighter it was intrinsically. Therefore,

if an observer could identify a Cepheid in a distant galaxy, they could compare its apparent

brightness with its actual brightness and use that to get the distance to the galaxy. This is

still a standard method today.

Using redshifts and distances and better telescopes, Edwin Hubble (after whom the

telescope is named) managed to establish in 1929 that the apparent speed at which a galaxy

goes away from us (thus producing its redshift) is simply proportional to its distance. This,

as it turns out, is easily explained if the universe is expanding as a whole, just as Einstein’s

theory predicted but Einstein himself did not trust. Einstein called his lack of nerve and



introduction of the cosmological constant the biggest blunder of his life, but now we think

that something like a cosmological constant really does exist! Maybe some day I can make

such a blunder...

Perspective: why did Einstein lose his nerve?

Why did Einstein not say, when the astronomers told him the universe seemed static,

that his theory predicted that it was dynamic? He had shown equally strong confidence in

his theories before. For example, there is an apocryphal story that after his light bending

prediction was confirmed by Eddington, a reporter asked him how he would have felt if it

had been disproved. His reaction, supposedly, was “I would have felt sorry for the good

Lord. The theory is correct.” (!!) I do not have a good answer for this. It could be that even

for such a revolutionary as Einstein, the concept that the entire universe was expanding or

contracting was too much for him, and he balked. We can’t really blame him for that, and

besides, his cosmological constant is at the forefront of much research today.

What is surprising is that he thought the cosmological constant would allow for a static

universe. It is really not that difficult to show that such a universe would be unstable.

Basically, a cosmological constant acts as something that pushes spacetime apart, and there

is a constant amount of it per unit volume. It would act against gravity, which pulls things

together. Therefore, to balance the two you would need a very precise amount of volume for

a given amount of mass. More than that, and the cosmological constant would push more

than gravity pulls. Less, and gravity would pull more than the cosmological constant pushes.

Either way, once one starts to win, it wins more and more with time, just like in the case of

Buridan’s Ass. Even Einstein was fallible!

Black holes

The other featured prediction of Einstein’s theory that he rejected is the star of this

course: black holes. We encountered an early version of these when we discussed John

Michell and his thoughts of “dark stars”. The modern concept dates from 1916, when Karl

Schwarzschild read Einstein’s publication and, from a trench at the Russian front of World

War I, derived a simplified solution to the Einstein equations. He investigated the situation

outside a spherically symmetric star of mass M . At a distance r from the center of the star,

the metric reads

ds2 = −c2(1 − 2GM/(rc2))dt2 + dr2/(1 − 2GM/(rc2)) + r2(dθ2 + sin2 dφ2) . (1)

Here θ and φ are the normal spherical coordinates (the first is like a latitude, the second

like a longitude), t is the time interval measured by someone at a very large distance, and

r is actually the circumferential radius, that is, the circumference of a circle at that radius

divided by 2π (!). Yes, in these situations you have to resort to convoluted definitions like

that.



So what? It’s a little complicated, sure, but you can use this to get verifiable predictions

about light bending, gravitational redshifts, and the precession of elliptical orbits. In fact,

for more than two decades no one worried too much about the weirder implications.

Eventually, though, and for reasons that we will discuss more fully in the next lecture,

more and more people started to point out that when r = 2GM/c2 (about 3 km for the

Sun) this looked really bad. The coefficient of the dt2 term goes to zero, and that of the

dr2 term goes to infinity! Yikes. On the other hand, maybe this is just because of what

the coordinates do. Think about using latitude and longitude on the Earth, and traveling

to the South Pole. When you get there, you find that all the lines of longitude converge, so

that you can do silly tricks like “walking around the Earth” in a few steps :). It may be cold

there, but no spacetime rips await you.

However the problem at r = 2GM/c2 isn’t quite that innocuous. Investigations by

various scientists showed that if you were a long way away and dropped something in to

an object with that radius, then the redshift would increase without bound. Recalling that

a redshift means a longer wavelength and thus a lower frequency, this means that if you

watched a clock drop towards that distance, it would slow down indefinitely. A consequence

of this is that, in fact, you would never see anything cross the r = 2GM/c2 line. For example,

suppose a star collapsed; its collapse would initially appear rapid to you, but the collapse

would slow down and it would never appear to go inside r = 2GM/c2. Huh??? This radius

is called the “event horizon” because events that happen at smaller radii are not visible to

us, just as objects beyond the horizon are not.

To Einstein and most of his contemporaries, this meant that “Schwarzschild singular-

ities”, as they were called then instead of black holes, implied stars hovering just outside

the r = 2GM/c2 limit. But as Einstein showed, this was not possible. The two ways you

could imagine matter hovering were (1) it had particles in rapid orbits, or (2) it was sup-

ported by internal pressure. But he demonstrated that any orbit with a radius smaller than

r = 3GM/c2 required orbital speeds faster than light, so that doesn’t work. He also showed

that anything more compact than r = 9GM/4c2 could not be supported even by infinite

internal pressure; the problem is that in general relativity all forms of energy (including

pressure!) gravitate, so that the pressure that would support the matter adds to the gravity.

His conclusions were published in a paper in which he indicated that this was a clear physical

demonstration that Schwarzschild singularities do not exist.

This paper was more than three decades after Einstein had published his original equa-

tions. His calculations were correct, but we know now that his interpretation was not. He

had indeed showed that nothing that compact and outside a radius of 2GM/c2 could exist,

but he had not taken the intuitive leap to the possibility that the collapse is not stopped.

Instead, once a star reaches a certain compactness, collapse is inevitable, and you have a



black hole.

Why did he not have this realization? It may be in part for the same reason that he did

not stand by the prediction of the expanding universe: the consequences were too strange for

even Einstein. There is also an important difference, which is that although an expanding or

contracting universe is inevitable given general relativity, you might imagine that black holes

are prevented from forming due to various astrophysical effects. We’ll explore this possibility

in more detail next lecture.

However, a strong reason why Einstein and others did not believe in black holes is

that the Schwarzschild metric was misinterpreted. What it says is that a distant observer

would never see anything fall closer than r = 2GM/c2. It is not as obvious what would

happen from the perspective of the thing that is falling, but in 1958 David Finkelstein

showed (using different coordinates) that if you fell into a black hole you would, from your

perspective, definitely cross inside this barrier and to your squishy doom at the center. This

new mathematical point of view (which does not contain anything physically new; you can

derive it from the Schwarzschild metric as well) freed people’s minds about black holes,

but sadly it happened three years after Einstein died. Incidentally, to forestall a possible

misconception, even as a distant observer you would not expect to see frozen surprised

aliens just outside of black holes. The redshift goes to infinity, remember, so any light from

things that fell in would be redshifted into undetectablity, and this would happen very fast

(microseconds for black holes of a few times the Sun’s mass, up to hours for the supermassive

black holes at the centers of galaxies).

The door was thus open for black holes. But do they really exist, or does nature have

preventive measures against them? To understand this, next time we will explore white

dwarfs and neutron stars.


