
The COMB Cookbook

Marc W. Pound, John Bally and Robert W. Wilson

August 22, 1990 — for August 1990 version of COMB

Contents

1 Introduction 3
1.1 The COMB Philosophy . 3
1.2 About the Cookbook . 3

2 Getting Started 3

3 Data Formats: Scans and Stacks 4

4 Commands 5
4.1 Argument types . 5
4.2 Command Syntax . 6
4.3 Hand-hold Mode . 6
4.4 COMB’s History Mechanism: Recalling and Editting Commands 7

5 Getting Data Into COMB 7
5.1 tar or dd Tapes . 8
5.2 Stand-alone Programs . 8
5.3 Spectra in FITS Format . 8

6 Manipulating and Plotting Spectra 9
6.1 Baseline Removal . 9
6.2 Sorting and Storing Spectra . 10
6.3 Bad Channel Removal . 11
6.4 Folding Frequency-Switched Spectra . 12
6.5 Do Loops . 12
6.6 Co-adding Spectra . 12
6.7 Redirecting Output . 13
6.8 Obtaining Hard Copies of Plots . 13

7 Making Maps 14
7.1 Relative Coordinates . 14
7.2 Spatial-Spatial Maps . 14
7.3 Spatial-Velocity Maps . 15
7.4 Recontouring Maps with cp . 16
7.5 Reading/Writing FITS images . 16

1

CONTENTS 2

8 Advanced Processing: Macros 16
8.1 Variables . 17

8.1.1 Global Variables . 17
8.1.2 Global Strings . 17
8.1.3 Stack Header Variables . 18
8.1.4 Labelling Inside Plots . 19

8.2 Macro Arguments . 19
8.3 Some Useful Macros . 20

9 Figures 22

A How to Install COMB 32

B FITS Software 34

C List of COMB Commands 35

D For More Info 37

1 INTRODUCTION 3

1 Introduction

COMB is a powerful analysis package for single-dish radio astronomical spectral line data reduction. It can be
installed on any computer using the UNIX1 operating system (see Appendix A). At present, it is most frequently
used on SUN workstations, although it has been installed on VAX and other computers, including 386 machines
running UNIX. The program was written mostly by R. W. Wilson at AT&T Bell Laboratories in C and FORTRAN.

1.1 The COMB Philosophy

COMB (pronounced cäm) has been designed to make spectral line data reduction easy and automatic. As the
Bell Labs database has grown (it now exceeds 700,000 spectra), this automatic feature has been indispensible.
COMB’s 61 simple commands can be concatenated using semi-colons (a lá UNIX), nested in do-loops, or made
into saveable macros (which themselves can be nested). Even for an inexperienced user, the process of reducing
hundreds of spectra and making a contour map (or FITS image) can be reduced to a task requiring less than ten
minutes.

1.2 About the Cookbook

This cookbook will acquaint neophyte users of COMB with the basic tools necessary to reduce their data
painlessly. It is intended to supplement COMB’s on-line documentation by providing simple recipes for the
basic reduction operations. Section 2 provides information about getting started. Section 3 introduces data
format. Section 4 describes commands syntax and arguments. Section 5 tells how to get external data, such
as FITS, into COMB. Section 6 deals with simple manipulation of spectra such as baseline removal, plot-
ting and storing. Section 7 is all about making maps. Section 8 describes how to set-up and use macros.
Throughout this cookbook, input to be typed by the user appears in this font (a carriage return is implied
at the end of each user input), this font will be used for command names, command arguments and
COMB output messages, , and this font is used for UNIX file names. We will use $ to symbolize the UNIX
operating system prompt and the -> symbol is your friendly COMB prompt.

This cookbook was written using the LATEX Document Preparation System developed by Leslie Lamport. A
copy of the cookbook LATEX document is in the file /usr/comb/doc/cookbook.tex.

2 Getting Started

COMB can be run from any type of terminal. It is, of course, most useful on one with some sort of graphics
capability. In order to have COMB plot graphics on a CRT, you need a graphics terminal or a window which
emulates a graphics terminal. The graphics terminals which are supported are hp2648, hp2623, tek4010, and vt100
(with retrographics). (COMB has a very nice interface to tek4112, AT&T 5620 and AT&T 630 terminals, but
they aren’t common.) It will be most convenient if your environment variable TERM is set to one of the above if
you are using one of those terminals. The most common way to get COMB graphics is with a terminal emulator.
With a PC, PCPLOT2 minimally emulates the vt100/tek4014 combination. With a Macintosh, Versaterm is a
very nice emulator of vt100/tek4014. In either of these cases have TERM=vt100 in your environment. With a
Sun workstation, the best emulator is package is gterm from NOAO/IRAF. With TERM=SUN or TERM=sun,
COMB expects a tek4014 emulator such as gterm in the window. After you have installed COMB (see appendix
A), sit down at your terminal and type comb. If you have gterm , do this in the gterm window.

$ comb Start COMB

Welcome to comb

1UNIX is a registered trademark of AT&T.
2PCPLOT is a registered trademark of IBM.

3 DATA FORMATS: SCANS AND STACKS 4

->

Most COMB commands consist of two-character names chosen to be suggestive of their function. There are
also a few single character commands. The command lc (list commands) gets you a summary list. Appending
the string ?! to any command name, will give the on-line documentation about that command. The string ??
appended to the command will give the input arguments for that command.

-> lc Produce a listing of COMB commands along with a one-line de-
scription.

-> pl ?! Give detailed description of the pl (plot) command which displays
spectra on the screen.

-> e ’ls’ Execute the UNIX command ls for the directory. COMB doesn’t
care if you use single or double quotes, as long as they are matched.

-> q Exit COMB . . .

$. . . and get the shell prompt from UNIX.

Typing help at the COMB prompt will give you instructions about how to get information about syntax, data
formats, and commands.

3 Data Formats: Scans and Stacks

COMB assumes that data exists in two forms – raw spectra which have been untouched by human hands called
scans and spectra which may have been processed called stacks. These data are located on disk in directories. At
Bell Labs, scans are stored by the telescope computer in files in the directory /cdata and can be accessed by the
gt (get) command, e.g., gt 86a614 will get the 614th spectrum from the raw data file /cdata/c86a. Any filename
can be specified to be the raw data file with nf (name file), e.g., nf ’/mydirectory/mydata’.

At most institutions, raw data files will not exist, and all spectra will reside in “stacks directories”. A stacks
directory contains several files called data, default, index, macros, and search which have the following functions:

data Contains the raw headers and spectra in binary form.

default ASCII file containing information on user preferences such as rela-
tive coordinates.

index A table of pointers to the data location corresponding to the begining
of each stack in data.

macros ASCII files containing the user macros applicable to these stacks
only.

search A lookup table linking stack numbers to locations in the sky.

Stack directories are accessed from inside COMB by ns (name stacks), e.g., ns ’/usr/jb/data/Orion’. Stacks
in a directory are numbered sequentially starting at 1. The first three stacks, however, are special temporary (“core-
resident”) locations for spectra, similar to the stack on a pocket calculator, and are not actually “members” of the
stacks files.

Stack 1 The current spectrum. When you gt or rt (retrieve) a spectrum, it
is automatically stored in stack 1. pl will always plot the contents
of stack 1.

Stack 2 Generally used as an accumulator for co-adding spectra.

4 COMMANDS 5

Stack 3 an additional temporary location.

Stacks 4 through 9 are by default left empty by COMB when automatically storing data, and hence ignored by
commands like cm that use stacks data (you can reset these defaults.) Thus, they can be used as special storage
locations. They are part of the stacks files and will be saved between COMB sessions.

A stacks directory can be created in several ways. The ns command will create a new directory if the named
one doesn’t yet exist. Spectra can then be stored using st (store). Alternatively, a stand-alone program (see §5.2)
can create the stacks directory and associated files, storing the data and building the index file. (COMB will build
the search file from the data, see documentation for up , [update search file]). And, of course, a stacks directory
from another institution can be copied from tape. More details of the stack format are given in §8.1.3.

4 Commands

4.1 Argument types

A COMB command consists of 2 basic parts: a command name followed by a delimited list of arguments. The
delimiters may be commas or spaces (it’s okay to mix the two). The command name is a one- or two-character
mnemonic for the function, e.g., cm is contour map. The arguments can take a variety of forms: numerical,
character string, numerical range, list, flag, toggle, and expression. The command lk (look), which displays the
location of spectra on the sky, is a good example of most of these types.

-> lk ??

Look at where stacks are ‘‘lk’’

Horizontal limits ‘‘xl’’

Left x ‘‘lx’’- REAL, OLD(0)

Right x ‘‘rx’’ - REAL, OLD(0)

Vertical limits ‘‘yl’’

Bottom y ‘‘by’’ - REAL, OLD(0)

Top y ‘‘ty’’ - REAL, OLD(0)

Stack number limits ‘‘sn’’

Low ‘‘l’’ - INTEGER, OLD(10)

High ‘‘h’’ - INTEGER, OLD(262143)

Center Frequency (MHz) ‘‘fr’’ - REAL RANGE, OLD(0 300000)

Plot stack numbers ‘‘psn’’ - FLAG(no)

Horizontal label ‘‘hlb’’ - STRING, AUTOMATIC

Vertical label ‘‘vlb’’ - STRING, AUTOMATIC

Main label ‘‘mlb’’ - STRING, AUTOMATIC

Check search vs stack ‘‘chk’’ - FLAG(no)

-> lk,20,–10,–10,15,10,98,110000 111000 psn:yes mlb:‘My Stacks’

The first four arguments are examples of numerical (in this case, REAL) input. These four specify that
lk plot only those stacks between the relative coordinate offsets −10 ≤ x ≤ 20, −10 ≤ y ≤ 15. The next two
arguments are also numerical (INTEGER). They tell lk to use only stacks between stack numbers 10 and 98. If
real numbers had been used here, the COMB parser would round them to the nearest integers. The next argument
is an example of a range. Ranges’ limits are separated by the underscore () character. This argument specifies

4 COMMANDS 6

the range of frequencies (MHz) that spectra must satisfy for lk to plot their location. The next argument, psn: ,
is a flag which makes lk mark a location with the stack number(s) at that location rather than the default crosses
(+). A flag simply tells the parser to turn on or off a particular feature of a command. Note that psn: is the same
as psn:yes and leaving psn: out of the argument list is the same as psn:no . The final argument in the list is a
string, indicating the main label on the plot should be ‘My Stacks’. Figure 1 is the result (a “look map”) of the
above command. A toggle is similar to a flag, except that it will turn a feature off if it is on and vice versa, e.g.,

-> op ap: Turn on automatic plot option (so you don’t have to keep typing pl
after rt).

-> op ap: Turn off automatic plot option.

Note flags and toggles delineated by a colon do not also need to be separated by commas or spaces.

-> op ap:ortho:yw:

is syntactically legal. The type list is a delimiter-separated list of variables all describing the same argument, e.g.,
cp sc:[0,20,2,39,3,49]. We will meet the last argument type, expression, when we cover do loops (§6.5).

Notice that some of arguments in the syntax tree above are described by the words OLD, AUTOMATIC,
or SET. An OLD variable starts out at a default value, shown in parentheses, that will stay changed once it
is changed by the user. It’s previous value is remembered and accessible via the & operator (see §6.2). An
AUTOMATIC argument is a number (or string) calculated by COMB which can have a variable default value,
e.g., axes lengths or labels on a spectral plot. A SET argument has a set (as opposed to a variable) default value.
For an AUTOMATIC or SET arguments, the previous value is not remembered and therefore not accessible via
the & operator.

4.2 Command Syntax

Command arguments are arranged in a syntax tree, with a unique label to specify each node of the tree. This
syntax tree is what is printed out when you type ?? after a command name. Labels, such as psn:, mlb:, ap:
in the above examples, must be delineated by a colon. If the arguments are entered in the order in which they
appear in the syntax tree, then the labels are not needed. Use of labels, however, allows arguments to be entered
in any order or arguments to be skipped altogether, if desired, and is also handy for remembering arguments in
the list. Arguments following labels may take optional square brackets, e.g., lk fr:[110200 110300] . Square
brackets are required when the arguments type is a list, e.g., cp sc:[0,20,2,39,3,49] .

4.3 Hand-hold Mode

The easiest way to learn the input list of a command is to use COMB’s hand-hold mode. Typing ? after a
command name will cause COMB to prompt you for each argument using the same syntax tree that is printed out
when you use ??. For arguments with default values (OLD, AUTOMATIC, or SET), entering a carriage return
at the argument prompt will input the default value. After you input all the arguments, COMB will tell you the
most general syntactically correct form everything you just typed, e.g.,

-> lk ?
...

You could have typed:

lk xl:[10,-10] yl:[-5,5] sn:[10,20000] fr:0 300000

The command as you could have typed it is added to your history file (see below).

5 GETTING DATA INTO COMB 7

4.4 COMB’s History Mechanism: Recalling and Editting Commands

The COMB history mechanism, a way of editting and/or re-executing previous command lines, is based on
that of the UNIX Korn shell, ksh. It is essentially a one-line version of the screen-editor program, defined by
the environment variable VISUAL in the .profile (or .login) file in your home directory, which operates on a
command string. ksh currently supports the editors vi and emacs . You do not have to be running ksh as your
normal UNIX shell to make use of the COMB history mechanism. Anything typed at the -> prompt is stored in
the file .combhistory in your home directory. Therefore, commands issued during previous COMB sessions are
accessible to the history mechanism.

The history mechanism is enabled by the escape ([ESC]) key for vi mode, or the control ([CNTL]) key for
emacs mode. In vi mode, [ESC] k or [ESC] – will scroll back through the stored command lines ([ESC] j or
[ESC] + for forward scrolling), which you can edit using normal vi commands. In emacs mode, [CNTL] P scrolls
backwards and [CNTL] N scrolls forward. In either mode, a carriage return will cause the currently displayed
command line to be executed. For more information on the editor features, consult the vi or emacs manuals, or
read the “editting mode” sections under man ksh .

In addition to the ksh -like history mechanism, COMB also has an “command archive” mechanism (left over
from the days before ksh), allowing archiving, re-execution, or editting of the immediately previous command
line. It is completely distinct from the ksh -like history. COMB keeps the previous command line and allows the
user to access it with the following commands:

. or .e Execute the previous (old) command as it is.

.p Print the old command.

.an Store the old command in archive n, n = 0 through 9

.n Retrieve the command in archive n.

.s/xxx/yy Edit the old command substituting the string yy for the first occu-
rance of xxx . The delimiter may be any character, not just ‘/’.

For example,

-> gt 88a6789

-> li 1 Remove a first-order baseline

-> .a0 Store “li 1” in archive 0

-> gt dt: Get next data scan

-> .a1 Store “gt dt:” in in archive 1

-> .0 Retrieve command line in archive 0

-> .p print it

li 1

-> . and execute it

-> .1 Retrieve command line in archive 1 (gt dt:)

-> . and execute it

5 Getting Data Into COMB

There are 3 simple ways to get data into COMB.

1. Move a stacks directory created by another COMB program from tape to disk using the UNIX utilities tar
or dd .

5 GETTING DATA INTO COMB 8

2. Use af (attach FITS) to read in FITS data (spectra or images) from tape or disk.

3. Use a stand-alone program to convert data from another observatory into spectra in COMB format and
write the spectra into a stacks directory.

5.1 tar or dd Tapes

Stacks files written to tape using the UNIX tape archive facility tar can be extracted by tar xf tape drive
stacks directory. For dd , use dd if= tape drive of= stacks file. tar is preferable since it copies directories recur-
sively. dd does not. See documentation under man tar and man dd .

5.2 Stand-alone Programs

A few C programs have been written to convert spectra from other observatories into COMB stacks. They are:

arec2comb Convert spectra from the Boston University-Arecibo HI Survey into
COMB stacks. Written by Marc Pound.

FITS TO STACKS Convert spectra in IRAM FITS format into COMB stacks. Written
by John Bally.

cube Convert a FITS datacube to COMB stacks. It assumes the datacube
is has spatial coordinates in a ‘relative coordinate’ system (see cm
?! and rc ?!) and does not deal with sky projections at all. Written
by Marc Pound.

After creating a stacks directory with one of these programs, you must run up on them to make a search file.
These programs are available on request by their authors. If you wish to write your own program for converting
data from other formats, these can be used as templates.

5.3 Spectra in FITS Format

Imagine you have just received a data tape from the SEST in Chile containing spectra written in IRAM’s FITS
format. You can use the function af (attach FITS file) to read a spectrum into stack 1, ns to make the stacks
directory and st to store the spectra in it. [Note: af will not work unfolded frequency-switched spectra, as there
is no single-dish FITS standard for such data. If a standard is ever agreed upon, af will be re-written accordingly.]

-> af ’dev/rmt12’ st: Attach the tape drive /dev/rmt12 and read the
first spectrum from the FITS tape into in stack
1.

-> ns ’SESTdata’ Name the stacks directory “SESTdata” as the
present working directory for the spectra. Since
this is a new directory, ns will create it.

In command ns Creating stacks Directory SESTdata

Do you want to continue? y

* * CREATING SESTdata/macros * *
-> st a: Store the spectrum (st) in the 1st available

stack (a:) in the stacks directory. In this case,
there are no spectra in the directory,so the data
will go into stack 10. (Recall COMB leaves
stacks 4 through 9 empty for special use.

6 MANIPULATING AND PLOTTING SPECTRA 9

Stored in stack 10

-> af ’/dev/rmt12’ st: Read an other spectrum into stack 1.
-> st a: Store it in the next available stack, in this case,

stack 11.

Stored in stack 11

-> do 10 {af ’/dev/rmt12’ st:; st a:} Repeat the FITS file-reading operation 10 more
times. This fills stacks 12 through 21 with
data. Note the use of “;” to concatenateCOMB

commands. Also note the do loop, whose ar-
gument is in the curly brackets.

Stored in stack 12
...

Stored in stack 21
-> rt 10 Retrieve stack 10 and place it in stack 1. Note

rt is used to place stacks in stack 1 and gt is
used to place scans in stack 1.

-> pl Plot spectrum. See Figure 2a.

6 Manipulating and Plotting Spectra

6.1 Baseline Removal

Before removing a baseline from a spectrum, you have to retrieve the spectrum and set the range of velocities to
be excluded from the baseline fit because they contain a line. To do this, set the so-called “use array” with us .

-> us −30 30 Set use array to exclude the range –30 to 30 in the current plot units.
The default is velocity in km s−1. (pl ?! for details on plot units.)

-> li 1; pl Take out a 1st order baseline and plot the result. (Figure 2b) Note
that the horizontal line just above the axis label has a segment miss-
ing just in the range –30 to 30 km s−1. This line always shows the
current state of the use array.

-> us st: Save the baseline parameters for future use. They can be reset with
us s: to their initial state.

-> st 10 Store the spectrum in stack 10 (which is where it came from). Note
that the original data will be overwritten. COMB catches this and
asks your permission to overwrite the data and will do so only if you
respond with a “y”.

In command st stack 10 contains data.

Do you want to continue? y

Baselines up to order 15 can be removed from spectra. The usual caveats apply to high-order baseline fits. For
frequency-switched data, channels within a specified width of the signal and reference channels are automatically
excluded from the fit in addition to the use array. COMB sets this width automatically, but it can also be specified
as an argument to li (see li ?!). You can set the use array with the cursor using the macro uscr defined in the
global macros file (see §8 and cr ?!).

The flag xt: will cause li to remove the same baseline from stack 2 as it does from stack 1. This is useful for

6 MANIPULATING AND PLOTTING SPECTRA 10

removing baselines from spectra where the emission line takes up too much of the band, leaving too few channels
from which to compute a baseline fit, and where you have a broader band spectrum taken simultaneously.

-> gt n6r2655 exp:; st 2 Get scan from spectral expander backend, in this case 12.5 kHz
channel width. The line takes up too much of the band to remove
a reliable baseline.

-> pl hst:tk: Plot the spectrum histrogram style with no tick grid. Figure 3a.

-> op ap: Turn on auto-plot option

-> gt nbe: Get the narrow backend of the same scan (250 kHz channel width).
Figure 3b.

-> us −9 0 st:; li 1 xt: Compute baseline parameters from stack 1 and remove the baseline
from stacks 1 and 2. Figure 3c.

-> pl h:−10,0; rt 2; pl ovl: Compare the baseline fits by overlaying the two spectra and display-
ing a limited horizontal range. Figure 3d.

The flags exp: and nbe: are peculiar to Bell Labs since spectra taken simultaneously with different backends
are given the same scan number. You will most likely use rt to retrieve two separate stacks, instead of gt for two
separate backends. COMB will give a warning if the stacks have different scan numbers, but you can still remove
the baseline.

6.2 Sorting and Storing Spectra

Suppose you want to take data from one stacks directory, do something with it, and store the result in a second
directory. You can attach two stacks directories, called the foreground and background directories, to COMB

simultaneously. Let’s assume that you want to reduce the SEST data from the previous example without overwrit-
ing the original unreduced data. You need to open a second stacks directory (directory two). This can be done
by

-> ns ’SESTreduced’ dt: The flag dt: stands for “directory two”

In command ns Creating stacks Directory SESTreduced.

Do you want to continue? y

* * CREATING SESTreduced/macros * *

At this point two directories are open: The foreground directory is SESTdata and the background directory is
SESTreduced. Data can be easily transferred between the two directories.

-> ns p: To see the names of the working directories.

Foreground - SESTdata, last stk = 3, next = 22

Background - SESTreduced, last stk = 3, next = 10

-> rt 10; li 3; st a:dt: Retrieve stack 10, remove a 3rd order base-
line, and store the result in directory two.

Stored in stack 10

-> do 11 {rt &+1; li 3; st a:dt:} Remove a 3rd order baseline for the next
11 spectra in the foreground directory, stor-
ing the results in the next available stack lo-
cations in the background directory. See §6.5
for more on do loops.

Stored in stack 11

6 MANIPULATING AND PLOTTING SPECTRA 11

...

Stored in stack 22

-> . Re-execute the last command (the do loop.)

Stored in stack 13
...

Stored in stack 34

In this example, a feature of COMB is illustrated: the idea of incrementing the values of OLD variables.
COMB stores the values of command arguments of type OLD each time they are changed by a new issuance of
the command. In the call rt 10 the value of the stack argument, 10, has been explicitly stated. When COMB

encounters & in an argument, it substitutes the previous value of this argument for the & . Thus &+1 increments the
previous value by 1, &+2 increments by 2, etc., storing the new value after the operation is completed. Similarly,
&-1 decrements the value by 1. Thus, each time rt &+1 is issued in the do loop, the value of the stack argument
is incremented by 1, and the next stack is retrieved. Any syntactically legal expression can follow the & ,

-> rt &∗8ˆ(1/3) Retrieve the the stack whose number is twice the current stack num-
ber

-> li &∗& Remove the square of the previous baseline order.

This mechanism can be used to change any numerical argument (of type OLD) of a command by any amount.

To empty stack of its contents, use em .

-> em 22 Empty stack 22

-> em 23 34 Empty stacks 22 through 34 inclusive.

Since em simply marks the stacks as overwrite-able, you can get back emptied stacks, but only if they have not
been overwritten and you have not quit the session of COMB in which they were emptied. If you quit COMB,
the emptied stacks are not retrievable.

-> em 22 34 rev: Un-empty stacks 22 through 34 inclusive

6.3 Bad Channel Removal

Bad channels in spectra can be removed with el (eliminate). This command accepts a range of either channel
number(s), the velocity, or the frequency of the bad channel(s); the choice is set by the current plot units. The
eliminated channels are set to the average of the two adjacent channels. Since el only works on stack 1, you must
retrieve the desired stack first.

To identify the bad channel, you can use fl (flag) which displays a vertical line at the specified value. For
example,

-> rt 10; pl ch: Plot a spectrum using channels for horizontal plot units.

-> fl 67 Flag channel 67.

-> el 67; st 10 dc: Eliminate the channel, store the spectrum back in stack 10 and don’t
check (dc:) for the existence of data already there.

-> rt 11; el 67 69; st 11 dc: Eliminate channels 67 through 69 inclusive from stack 11.

The command bc is similar to el except that is saves the eliminated channel numbers and eliminates them
from any scan subsequently “gotten” with gt . These can be cleared with bc cl:.

6 MANIPULATING AND PLOTTING SPECTRA 12

6.4 Folding Frequency-Switched Spectra

For frequency switched data, if the reference frequency falls within the band of the backend, you can fold the
spectrum to double the effective integration time using fo .

-> gt dt:; li 1; rm Get data, remove baseline, print rms noise level

rms = 0.5407 system noise = 566.43

-> fo; li; rm

rms = 0.3636 system noise = 380.90

6.5 Do Loops

Most likely, you’ll need to perform the same operation on many spectra. do loops make this easy. The simplest
form of such a loop consists of do followed by an argument which specifies the number of repetitions of the loop,
and a string of commands delimited by either curly brackets or by quotation marks (single or double). Curly
brackets can be nested to any reasonable depth, quotes cannot be nested.

-> rt 10; do 100 {do 10 {el 67; fo; li 2; st a:dt:; rt &+1}; pl}
Eliminate bad channel, fold spectrum, and remove baseline. Do this
to 1000 spectra, plotting every 10th one. Store the reduced spectra
in directory two.

The conditional loops, do-while and do-if-else, are also available. In these cases, do evaluates an expression at
the beginning of the loop and only executes the loop if the expression evaluates to non-zero.

-> rt &+1 t:; do i:{.test} {el 67; fo; li 2; st a:dt:} el:{p ”No Stack”}

Normally, rt will return an error if you try to retrieve a stack which is empty or doesn’t exist. The t: flag
following rt sets the variable .test to 1 if the stack exists and is full and 0 otherwise, and prevents rt from
returning an error. That is, an empty stack is simply skipped. Thus, the do loop command string is executed only
if the stack exists and is full, else the string “No Stack” is printed. Null else statements are made by eliminating
the el: flag. Similarly, a do-while loop will execute the command string only if the expression is true.

-> rt 10 t:; do w:{.numst < 1000} {el 67; fo; li 2; st a:dt:; rt &+1 t:}

Execute the loop until stack number 1000 is retrieved.

The string .numst is an example of a stack header variable. These will be explained in §8.1.3. Do-while loops
may also take an else clause. do loops with local variables as part of the control expression should use parentheses
to delimit the local variable, i.e., do i: {(#1)==0) }{... }. For more on expressions, type docp at the -> prompt.

6.6 Co-adding Spectra

To co-add (or simply add) spectra, use co (combine). co averages the data in two stacks using the weight of each
channel. The result is always stored in stack 2. The default is to use stacks 1 and 2. So to co-add stacks 10 and
11:

-> rt 10;st 2

-> rt 11;co

Alternatively,

-> co 10 11

6 MANIPULATING AND PLOTTING SPECTRA 13

will accomplish the same thing, storing the result in stack 2. Using the add: flag will cause co to sum the stacks
instead of averaging them. To subtract two spectra

-> rt 10;rs −1;st 2 Rescale stack 10 by −1 and store in stack 2

-> co 11 add: Add stack 11 to stack 2. Note this is the same as rt 11;co add:

co automatically checks for compatability (e.g., position, LSR velocity, process type) of the two stacks. If any
differences are found, you will be asked if you want to continue. To suppress this checking, use the dc: (don’t
check) flag.

Frequently, you will want to go through a stacks directory and co-add all spectra at the same position. xf
(transfer stacks) will do this automatically. xf transfers stacks from the foreground directory to the background
directory, combining all matching spectra into a single one before storing it in directory two. It will not combine
spectra with the same scan number. You can set the “match parameters” such as positional tolerance, stack limits
and center frequency.

-> ns ’SESTReduced’ Move SESTReduced to the foreground directory.

-> ns ’SEST.xf, dt: Open up a new background directory.

-> xf ptol:.5 v:1 Transfer all stacks from SESTReduced to SEST.xf , combining stacks
within 0.5′ of each other, and giving a brief report about the process.
The flag v: stands for “verbosity” and is an integer between 0 and
3, 0 giving no information about the transfer.

6.7 Redirecting Output

You can redirect anything that COMB writes to the standard output using ro . It is useful for generating files
suitable for plotting with mongo. The general form of this command is ro options; command-string, where
the standard output of the command-string will be redirected according to options. The default option is to write
the output to the file comb.out in your home directory. (You can change the file name with ro fn:’filename’). The
standard output can be piped through any UNIX system call with ro p:, e.g., ro p:“grep hlb”; cm ??. Most of
COMB’s diagnostics and prompts are written to the standard error and won’t be redirected.

For efficiency, the file is not closed between successive calls to ro . This can cause confusion if you remove a
file (which COMB still has open) with some other UNIX process, and then try to write to it again with COMB,
since the file will still exist but not have a directory entry. (That is, ls will not list the file). To force COMB to
close the file, you can either quit COMB, or use the fn: flag to redirect output to some other file. ro t: will close
an opened file, truncate it to zero length, and open it again.

Normally, the carriage return at the end of a command line containing ro tells COMB to revert to the normal
standard output (i.e., the terminal). The flag q: is used to force COMB to do this. It is used if you wish to turn
ro on and off several times on a single command line (or in a macro), e.g., ro; . . . ; ro q:; . . . ; ro; Use of ro
q: does not close the output file.

You can also redirect the standard input with ri .

If you are new to UNIX, you should familiarize your self with standard input, standard output, and pipes
before using ro .

6.8 Obtaining Hard Copies of Plots

COMB supports the following types of hardcopy output devices: PostScript3 language laser printers, Impress
language laser printers and HP7580 pen plotters using hpgl . Appendix A gives details on how to let COMB

3PostScript is a registered trademark of Adobe Systems, Inc.

7 MAKING MAPS 14

know the name of your printer. A plot is generated by issuing the command hc (hardcopy) followed by a flag
indicating the first letter in the name of your printer. For instance, at Bell Labs, our PostScript printer is named
“apost”:

-> hc a: Print plot on the “apost” printer.

-> hc pf: Send plot to a PostScript file (pf:) in /tmp.

7 Making Maps

Two types of maps are supported in COMB: spatial-spatial maps made using cm (contour map), in which both
axes are angular co-ordinates on the sky, and spatial-velocity maps (vc , velocity contour) in which one axis
is velocity. A map made by either of these two commands is displayed and automatically stored in an image
location which is analogous to a stack. Up to 5 images can be retained in memory at the same time. These can be
recontoured or overlaid with cp (contour plot). In addition to maps made with cm or vc , any FITS image can be
brought into COMB and stored in an image location using af (attach FITS).

7.1 Relative Coordinates

The first thing that is needed to make a contour map is a relative coordinate system to make it on. This is done
with rc . Usually the coordinate system is centered on the object of interest and is parallel to Equatorial (α,δ) or
Galactic coordinates (`,b). There is full support of Equatorial, Galactic, and user-definable coordinates.

The easiest way to make a relative coordinate system is to take it from stack 1:

-> ns ’SESTreduced’; rt 10

-> rc ’SEST’ fs: Make a relative coordinate system named ’SEST’ with the same cen-
ter and offset type as that now in stack 1. fs: stands for “from
stack.”

-> rc sl:; rc nd: Store these coordinates locally (sl:) and name this coordinate sys-
tem as the default (nd:) for this stacks directory.

The name of the relative coordinate system and the coordinates themselves are now entered in the file .LCOORDS
(“local coordinates”) in your home directory, and the file SESTReduced/default now contains the name of the
relative coordinate system. Coordinates in .LCOORDS are accessible only to you. Subsequent calls to ns will
automatically use these two files to define the relative coordinate system. You can store changes to the coordinates
of the named coordinate system using the flag rl: (replace locally). The flags sg: (store globally) and rg:
(replace globally) will write to the file /usr/comb/.GCOORDS (“global coordinates”). Coordinates stored in this
file are accessible to all users.

7.2 Spatial-Spatial Maps

Normally, contour maps are made in the current relative coordinate system. This is not a true projection. You
may specify a projection with op (options). Possible projections are orthographic, mercator, gnomonic, and polar.

-> ns ’/usr/you/OrionA/12co’

Current relative coordinate system:

SYSTEM NAME | CENTER COORDINATES | OFFSET TYPE

OriA | rd(1950.0) 5:32:47.0, - 5:24:30 | odra(’) oddec(’)

-> cm,30,−30,−40,40,61,81 vl:2,16 ci: ir:1.2 st:10 mlb:’OrionA T∗dV V = 2 to 16 km/s’

7 MAKING MAPS 15

Computing array for map

Getting stack values

Constructing map

Displaying map

The above command string asks COMB to compute a 60′ by 80′ integrated intensity map centered on the above
relative coordinates. The first four arguments are the boundaries in units of the current map offset type, in this case
arcminutes. The next two arguments are the number of spatial points on each axis at which to compute a value.
In general, one or two times the beam sampling is appropriate. In this case, the map will consist of 4941 points.
The next argument, marked by the label vl: , indicates the velocity limits of the integration. Interpolation type is
given by ci: (cone interpolate) with an interpolation radius (ir:) of 1.2 arcminutes. The map is to be contoured
at a step size (st:) of 10 K km s−1 and a main label (other than the default) for the plot is specified. The resulting
map is shown in Figure 4.

-> im mv:1,2 Copy image 1 to image 2 so the subsequent calls to cm don’t over-
write it. mv: stands for “move.”

-> cm vl:2,3 Recompute map, integrating between 2 and 3 km s−1. All other map
parameters are kept the same, except the main label which reverts to
its default string.

-> do 13 {cm vl:&+1,&+1} Step through the data cube, computing maps at 1 km s−1 intervals.

You may want to compute a map of some quantity other than integrated intensity. This is done with the label
m: (macro). The macro label tells cm to use the value returned by the specified macro. You must already have
defined the macro in either the stacks, local, or global macro files (See §8). For instance, suppose you want to
compute a map of maximum temperatures.

-> cm m:’Tmax’ Compute a contour map of values returned by the macro “Tmax”

The macro “Tmax” may look something like this:

Tmax - in,2,16 dp:; v .tmax

The macro “Tmax” does two things. First, it integrates the current stack between 2 and 16 km s−1 (cm takes care
of retrieving all the stacks). This assigns the value of the maximum temperature to .tmax, as well as assigning
values to other variables associated with the integration. The dp: flag means don’t print the results. Secondly, it
takes the value of the maximum temperature returned by in and “puts it where cm can find it” with v (value).

7.3 Spatial-Velocity Maps

vc makes a spatial-velocity image (e.g., an `-v diagram) along a line between two given points in the current
relative coordinate system.

-> vc 0,−20,0,20 sp:1 ir:1 ci: vl:2,16 st:20 mlb:’OrionA 12co’

The above example makes a spatial-velocity contour map along the line between (0,20) and (0,−20). Note that
the input order of the spatial limits is different than for cm . The data is interpolated onto points spaced by sp:
in arcminutes. If the line is along a line of observations, sp: should be picked so that the plotting points are
commensurate with the data points. The map is shown in Figure 5. vc needs an example stack in stack 1 to
determine the number of channels on the vertical (velocity) axis of the map (just retrieve any stack if vc complains
about this). It remembers the filter width in that stack and only uses stacks with that filter width.

8 ADVANCED PROCESSING: MACROS 16

7.4 Recontouring Maps with cp

You can recontour a map with cp without recomputing it. By default, it works on image 1.

-> cp sc:[5,50,10,54,15,59] Recontour image 1 using the specified contours.

The flag sc: , which also can be used in cm and vc , allows you to specify the contour levels and line types
explicitly. The general form is sc:[level, line type, level, line type, . . .] . The square brackets are required. A line
type is given by a value between 0 and 99 and is coded by the two digits. The ten’s digit controls the thickness
with 0 thin and 9 thick. The units digit controls the dottedness with 0 most dotted and 9 solid, e.g., 50 is a dotted
line of medium thickness, 54 is dot-dash line of medium thickness, and 59 is a solid line of medium thickness.
This coding allows 99 different line types. See Figure 6.

The flag ovl: and label cl: allow you to overlay two (or more) images and specify cutoff limits for contour
levels, respectively.

-> cp cl:10,20 st:2 Contour only values between 10 and 20 with
a step size of 2 K km s−1.

-> cp im:1 st:2; cp im:2 ovl: Overlay image 2 on image 1

-> lk 30,−30,−40,40 mlb:’ ’ hlb:’ ’ vlb:’ ’; cp im:2 st:10 ovl:
Display the look map and then overlay the OrionA map stored in
image 2 on it. Look maps cannot not stored in an image location, so
you must invoke lk each time. See Figure 7.

7.5 Reading/Writing FITS images

Any two-axis FITS image can be read from disk or tape into any of the image locations 1 through 5 using af .

-> af ff:’mbm12.13co’ im:1 Read a 13CO map of MBM12 from disk into
image 1.

-> af ff:’mbm12.100um’ im:2 Read an 100µm map of MBM12 from disk
into image 2.

-> cp im:1 st:2 mlb:’ ’ hlb:’ ’ vlb:’ ’ Contour image 1, leaving the labels blank so
they are not drawn over each other in the sub-
sequent overlay.

-> cp im:2 sc:[4E6,15,8E6,35,1.2E7,55,1.6E6,75,2E7,95] mlb:’MBM12 13CO/100 micron’ ovl:

Overlay the 13CO and 100µm maps, using dashed contours for image
2. See Figure 8.

-> sp fn:’MBM12.13co-100.sp’ Make a scatter plot file of image 1 vs. image
2, suitable for reading into mongo

Similarly any image can be written to tape or disk with wf (write FITS), e.g., wf ff:’/dev/rmt12’ im:3.

8 Advanced Processing: Macros

COMB’s true power and flexibility lie in the ability to allow you, the user, to construct your own macros. A
macro is a small program which allows you to perform arbitrarily complicated operations without having to do
much typing. Macros are kept in separate ASCII files which can be editted with the default editor. There are three
types of macro files:

8 ADVANCED PROCESSING: MACROS 17

1. The global macros file (editted with the dm g:). This file resides in /usr/comb/.GMACROS and contains
macros accessible to all users.

2. A local macros file which resides in your home directory in .LMACROS and is accessible to only you. It
is editted with dm l: .

3. A stacks macros file associated with each stacks directory, e.g., SESTreduced/macros. This file is used for
macros specific to the data in that directory and is editted with dm st: .

When a macro is referred to, either on the command line or by a another macro, COMB will search in these
macros files until it finds a match. The order of the search is directory 1 stacks macros (if directory 1 is open),
directory 2 stacks macros (if directory 2 is open), local macros, and global macros. COMB will stop searching
at the first match and execute the macro.

A macro definition is simply a four-character macro name followed by the string of COMB command(s)
which the name is to replace. For instance,

cmap - cm,30,–30,–30,30 ir:1 st:1 vl:0,10 ci: mlb:’This space for rent.’; wf ff:’map.fits’

is a rather simple example. There must be at least 3 characters between the end of the macro name and the
beginning of its definition. (By convention, we use [space][minus][space]). Macros, like commands, can have
input arguments. Before we discuss these, we must first digress briefly on variables in COMB.

8.1 Variables

COMB has four types of user-settable variables: global variables, global strings, macro arguments, and header
variables. In general, you will only want to set the first three types. Usually, the user is only interested in reading
header variables, but occasionally may want to write to them.

8.1.1 Global Variables

The symbols #0 through #9 can be used to hold user-defined numeric constants. These are set these with either
the p (print) or c (calculate) commands. They can be used wherever you would normally use a number.

-> c #1=25 This is the same as p #1=25, except that it doesn’t print the value.

-> p #1

25

-> c #=30 Note # is the same as #0

-> cm vl:#,#1 Make a map integrated between 25 and 30 km s−1.

Expressions may be used on either side of the = sign.

-> c #(8-1)=3∗4ˆ5

-> p #7

3072

8.1.2 Global Strings

User-definable character strings are stored in symbols $0 through $9 ($ is the same as $0).

-> p $1=’some string’

8 ADVANCED PROCESSING: MACROS 18

some string

-> cm vl:#,#1 mlb:$1 Same map with new main label

The command pr is a link to the C standard library routine printf and has a very similar form, i.e., , pr conversion
format, variable. It can use the printf format conversion characters %s, %e, %f, and %g. There is a similar link
to scanf via the command sc .

-> c #1=300

-> pr ’I have %g toes.’,#1 Print the string followed by the value of #1

I have 300 toes.

With the flag gs: (global string), the output of pr can be stored in any of the 10 global string locations, which can
then be passed on as an argument to other commands.

-> pr ’I have %g toes.’,#1 gs:3 Redirect the output of pr to global string 3

-> p $3

I have 300 toes.

-> rt 10;pl mlb:$3 Plot stack 10 with a silly main label

8.1.3 Stack Header Variables

Each stack is divided into blocks of 256 16-bit words; the first of these contains header information such as scan
number, coordinates, and center frequency. The first 128 words of the header block contain 128 short integers.
The second half of the header block contains real numbers and other constants. Each of these numbers has an
associated variable name to which the user may refer when a particular header value is needed. You can access
the header values of any of the core-resident stacks (i.e., stacks 1, 2 or 3). For instance, .ibsln is the baseline order
of the spectrum in stack 1, .ibsln2 is that in stack 2, .ibsln3 is that in stack 3.

-> rt 10; p .ra Print the right ascension of stack 10

2.89194

-> ph .ra Print the RA of stack 10 in HMS format

2:53:31.0
-> in,2,16 Integrate the stack between 2 and 16 km s−1. This will assign values

to .tmax, .area, and other variables associated with the integration.

Stack From(Km/s) To (Km/s) Tmax Area(K ∗Km/s) Centroid(Km/s) Peak

1743 2.000 16.000 65.791 357.921+/- 1.062 8.886 9.520

-> pr ’Tmax = %g T∗dV = %g’, .tmax, .area gs:1; pl mlb:$1
Plot stack 10 with a main label indicating it’s maximum temperature
and integrated area.

-> do 100 {rt &+1; do i:{.ra<3:00} {in dp:;p .tmax nl:;p .area}; }
Go through the first 100 stacks and, if the right ascension is less than
3h, integrate the spectrum, and print out its .tmax and .area on the
same line (nl:).

Note some variables, like .tmax and .area, will have zero value until the command which calculates them is called.
You can assign new values the header variables with c or p . To save the new values, you must rewrite the stack
with st .

-> rt 10; c .vlsr=20; st 10 dc: Change the LSR Velocity of stack 10.

The actual values of each channel of the stack are kept in the array .stak

8 ADVANCED PROCESSING: MACROS 19

-> p .stak(128) Print the value of channel 128

For a list of the names and descriptions of the stack header variables type doch at the -> prompt.

8.1.4 Labelling Inside Plots

Now that we have introduced pr , ph and header variables, we can digress yet again on plot labelling. You can
place labels inside spectra or maps using gm (graphics manipulation). (This is in addition to normal labelling
outside plots using mlb:, hlb:, and vlb:). gm uses the label ti: (title) followed by the text you wish to place
and the coordinates in current plot units of where you wish to place it.

-> rt 220;pl d: The d: toggle in pl is used to plot the spectrum with or without the
header information. In this case, without.

-> gm ti:‘DR21 CO(1-0)’ 25,20 The label starts at V = 25, and is centered on TA = 20.

You can also use pr or ph to pass values to gm .

-> ph .ra+.dra gs:1 Store the RA plus any offset in global string
1, using HMS format.

-> ph .dec+.ddec gs:2 Store the DEC plus any offset in global string
2.

-> pr ’RA = %s’ $1 gs:3; pr ’DEC = %s’ $2 gs:4 Put the RA and DEC in labels to be used for
the plot. The labels are stored in global strings
3 and 4.

-> gm ti:$3 25,18; gm ti:$4 25,16 Place the labels on the plot. See Figure 9.

We could have used cr (cursor read) to tell gm where we wanted the labels. cr will read the position from the
cursor and place the coordinates in the arrays x() and y(). The array indices start from zero.

-> cr 2 Read two positions from the cursor. The re-
sults are placed in x(0), y(0), x(1) and y(1).

-> gm ti:$3 x(0), y(0); gm ti:$4 x(1), y(1) Place the labels at the read positions.

cr is also useful for getting positions from contour maps.

-> cr;rt rc:x(0),y(0) Make one cursor read (from a contour map)
and then retrieve the spectrum at that posi-
tion.

Both gm and cr are useful for other operations. See the examples under gm ?!, cr ?! and da ?! (define area).

8.2 Macro Arguments

The symbols !0 through !9 represent macro arguments, where !0 refers to the first argument, !1 refers to the
second, etc. Macro arguments do not have to be numbers; they can also be strings, expressions, global or string
variables, lists, or ranges. Consider the macro definition

gfit - c #1=!0; do !1 {rt #1;pl vl:;gf !2,!3 see:;c #1=#1+1}

and the call

-> gfit,10,30,-4,4

The call to the macro gfit fits a gaussian profile to each of the spectra in stacks 10 through 30. First the global
variable #1 is given the value of first argument !0, i.e., the first stack number to retrieve. This is necessary

8 ADVANCED PROCESSING: MACROS 20

because, unlike global variables #0 through #9, macro argument values cannot be set in arithmetic expressions,
e.g., c !0=!0+1 is illegal. The do loop is executed 30 times (!1). Inside the loop, a gaussian is fit between −4
and 4 (!2 and !3) km s−1. The flag see: causes gf to overlay the fitted profile on the emission profile. Finally, #1
is incremented in order to fetch the next stack on the next iteration of the loop.

8.3 Some Useful Macros

The following is a typical stacks macros file, containing some macros used frequently at Bell Labs. As purely
convention, we mark comment lines with a %. COMB does not distinguish between these lines and lines which
actually contain a macro definition. The macros are individually explained at the end of the listing.

look - lk,.75,.5,-.15,.15 mlb:’SgrB2 CS Stacks’
base - us !0 st:;c #1=!1; do !2 {rt #1;li !3;st #1 dc:;c #1=#1+1}

% Movie plotting package
% #1 - File extension number.
% #2 - Begining velocity.
% #3 - End velocity.
% #4 - Velocity step size.

init - p #1=0;p #2=-50;p #3=160;p #4=5;p #5=(#3-#2)/#4
sour - pr ’SgrB2’ gs:1
file - pr ’/usr/you/images/% s.% g’, $1, #1 gs:2
labl - pr ’%s CS(2-1) V= %g to %g km/s’ $1,#2,#3 gs:3
step - c #2=#2+#4; c #3=#3+#4 ;c #1=#1+1

map0 - init;sour;labl;fil e;c m,. 75, -.5 ,-. 15, .15 ,15 3,3 7 ir:1 ci: vl:#2,#3 st:5 \
mlb:$3 o:$1 ;wf ff:$2 im:1;c #3=#2+#4 ;c #1=#1+1

map1 - sour;do #5 {labl;file;cm vl:#2,#3 st:1 mlb:$3 o:$1 ;\
step;wf ff:$2 im:1}

movi - map0;map1

map2 - init;sour;labl;cm, .75 ,.4 4,- .15 ,.0 6,1 08, 72 ir:1 ci: vl:#2,#3 st:5 \
mlb:$3 o:$1 ;hc a:;c #3=#2+#4 ;c #1=#1+1

map3 - sour;do #5 {labl;cm vl:#2,#3 st:1 mlb:$3 o:$1 ;\
step;hc a:}

mapr - map2;map3

look We usually define a macro called “look” for each stacks directory to
make a look map specific to those stacks. This is so we don’t have
to remember exactly what the spatial limits for the stacks are. In this
case, the offsets are in degrees.

base Baseline or re-baseline many stacks. The use-array is set to the range
specified in !0. This removes a (!3)-order baseline from !2 spectra
starting at the (!1)th stack. The stack is stored in its original location
without asking if it is OK to overwrite the original spectrum. E.g.,
base, 40 140,10,2,1000 will remove a 2nd order baseline from
the first 1000 stacks.

8 ADVANCED PROCESSING: MACROS 21

The next group of macros are used to make slices of the datacube and output to FITS files with names of the form
required by the program movie , i.e., filename.0, filename.1, filename.2 . . . (see appendix B). The comment lines
describe the use of global variables #1 through #4. You will want to edit some of these to tailor them to your own
requirements.

init Initializes the global variables. Edit this line to change the beginning
and end velocities, and the velocity resolution of the maps/images.

sour Source label for FITS header. This is stored in global string 1.

file Global string 2 is used to store the name of the FITS file, gotten from
global string 1, and its extension number, which is gotten from #1.

labl Controls plot labels, which are stored in global string 3.

step Increments variables #1, which is the file extension number, and #2
and #3 which are the limits of the velocity integration used in cm .

map0 Initializes the contour map parameters and produces a contour map
on screen and a FITS image on disk in the directory specified by
file macro. The \ is a continuation character that tells COMB’s
parser there is more of the command on the next line. The \ must be
the last character on the line, i.e., no spaces after it. The \ can also
be used on the command line (at the ->).

map1 Repeat the map and image making for #5 iterations, i.e., compute #5
separate slices through the data cube. #5 is set by the init macro.
Note that only the parameters to cm which change from map to map
are specified. All others are kept the same as in map0 .

movi Runs map0 followed by map1 .

map2 Same as map0 except it sends the contour plots to the laser printer
(hc a:) and does not write a FITS file.

map3 Same as map1 except it sends the contour plots to the laser printer
(hc a:) and does not write a FITS file.

mapr Runs map2 followed by map3 .

Thus, after defining these macros in a macros file, all you need to do to compute the images for a ‘movie’ is

-> movi

The macros are sufficiently flexible that you need only modify them slightly for different sources (data sets).

9 FIGURES 22

9 Figures

Figure 1 — A ‘look map’ made with lk . The location on the sky of a spectrum is marked with it’s ‘stack number’.
Axis units are arcminute offsets from the central coordinate.

9 FIGURES 23

Figure 2 — a) A spectrum plotted with pl . The ‘tick grid’ and line type are changeable (see e.g., Figure 3a).
b) The spectrum with a first-order baseline removed. The horizontal line segments just above the
velocity axis label indicates the portion(s) of the spectrum included in the baseline fit, known as the
‘use array.’

9 FIGURES 24

Figure 3 — a) A spectrum from the 12.5 kHz/channel backend. The line takes up too much of the band to remove
a good baseline. It is plotted in histogram style with no tick grid (pl hst:tk:). b) The spectrum at
the same position taken simultaneously with the 250 kHz/channel backend. It can be used to compute
a baseline for removal from the 12.5 kHZ/channel spectrum (li 1 xt:).

9 FIGURES 25

Figure 3 (cont.) — c) Baseline removed from 250 kHz/channel spectrum. Same baseline is automatically removed
from 12.5 kHz/channel spectrum. d) Overlay plot of the two spectra to compare the baseline fits.

9 FIGURES 26

Figure 4 — Contour map of 12CO in Orion A made with cm . The string in the lower left hand corner gives
information about how the map was made. The contour step size is 10 K km s−1 between 10 and
380 K km s−1. The data are smoothed over 1.2 arcminutes (ir:1.2) with a cone interpolation (ci:).
Axis units are arcminute offsets from central relative coordinate (rc:).

9 FIGURES 27

Figure 5 — An spatial-velocity (δ-v) diagram of Orion A made with vc .

9 FIGURES 28

Figure 6 — Same as Figure 5 but recontoured using cp sc: (contour plot with specified contours) to show a few
of the 90 different line types.

9 FIGURES 29

Figure 7 — An OrionA ‘look map’ indicating the position on the sky of spectra with a integrated intensity map
overlaid on it, made using lk (look) and (cp ovl:) (contour plot with overlay flag).

9 FIGURES 30

Figure 8 — Overlay of 13CO and IRAS 100µm maps of the dark cloud MBM12, made using af (attach FITS) and
cp ovl: (contour plot with overlay flag).

9 FIGURES 31

Figure 9 — An example of labelling inside plots using gm (graphics manipulation).

A HOW TO INSTALL COMB 32

Appendix A: How to Install COMB

COMB can be be installed by porting the contents of /usr/comb on a tar tape from Bell Labs to the new machine.
The source code is recompiled by using the shellscripts cleancomb and makecomb in /usr/comb/bin. You can only
install COMB on a UNIX system. Read this entire appendix before attempting installation.

Here are the steps necessary to install COMB.

1. Create a directory in which to install COMB. Here we will assume it is in /usr, although it doesn’t need to
be.

$ mkdir /usr/comb

2. Change to comb directory and extract tar file.

$ cd /usr/comb

$ tar -xv /dev/rmt12

3. If you are using ksh , edit your .profile file so that it contains the strings:

PATH=$PATH:/usr/comb/bin

COMB=/usr/comb

export COMB PATH

For csh or tcsh , edit the .login file:

PATH=$PATH:/usr/comb/bin

setenv COMB /usr/comb

4. COMB uses an editor for editting macro files and command lines stored in ksh -like history file ($HOME/.combhistory).
At Bell Labs, we use the vi editor, but emacs is also available to COMB if you prefer. To specify the editor
of choice, edit your .profile (or .login) to contain the string

VISUAL=/usr/ucb/vi (or emacs if you prefer)

export VISUAL

Again, for csh or tcsh ,

setenv VISUAL /usr/ucb/vi (or emacs)

5. Next, compile COMB using the utilities located in /usr/comb/bin. First, the old object code must be
removed from the obj subdirectory.

$ cleancomb

Then the compilation is done using the makefile in /usr/comb/bin.

$ makecomb install

Compilation should take about 30 minutes on a SUN-4.

A HOW TO INSTALL COMB 33

6. To attach a printer for hardcopy graphics output, you need to modify the file /usr/comb/lib/hc.lpr to contain
the name of your printer. COMB supports three types of hardcopy output devices: PostScript language
laser printers (laser, aaser, . . .), Impress language laser printers (imagen, jmagen, . . .), and an HP7580 pen
plotter using hpgl . The shell script hc.lpr queues the plot file for plotting using the lpr spooler for the
laser printers. Edit the shell script and after PRINTER=, put in the name by which the device is recognized
in UNIX. The first character of the UNIX name is used in the hard copy command e.g., , hc a: . You can
remove all the other unused names. If you have an HP pen plotter, its device name should be put into the
character array devname[] in /usr/comb/src/graphics/hpplot .c before compilation.

Note that since hc.lpr is a shell script and not a compiled routine, you can change it without recompiling
COMB. In fact, it is useful to run COMB in one window while changing the shell script in another until
you get what you want.

7. The history mechanism may not easily work on operating systems other than SunOS or BSD 4.X. On such
systems, it would be safest to first compile COMB without the ksh history mechanism. To do this you
need to make two changes:

• In /usr/comb/src/man/C.h , change the line

#define HISTORY 1

to

#define HISTORY 0

• In /usr/comb/bin/makecomb, comment out the lines

for i in coordsys error graphics image main misc misc/libut misc/libedit \

parse parse/entree scan stacks

and remove the # from the two lines below it, i.e., “uncomment” the lines

for i in coordsys error graphics image main misc misc/libut \

parse parse/entree scan stacks

If you have already run makecomb before making these changes, you must run cleancomb again, i.e., repeat
step 5 above.

B FITS SOFTWARE 34

Appendix B: FITS Software

Facilities for viewing FITS images on a Sun workstation running SunView are located in the file /usr/comb/src/util/FITSView.
(You don’t need COMB to run these.) A nice feature of these programs (written by Bob Wilson and Marc Pound)
is that they can provide “full color” on an 8-bit color monitor by using a dithering algorithm (with 3 bits of red, 3
bits of green, and 2 bits of blue). The programs are called

ql quick look, display a single monochrome or pseudo-color FITS image

rgb rgb display of 3 FITS images simultaneously on an 8-bit monitor

movie Run a time lapse monochrome, pseudo-color, or 3-color movie from a stack of FITS images on disk.

rgb24 rgb display of 3 FITS images simultaneously on a 24-bit monitor

These programs need to be compiled separately from COMB . Full documentation is provided in README and
FITSView.doc in the FITSView subdirectory. They are also available in a shell archive package (shar) via e-mail.

C LIST OF COMB COMMANDS 35

Appendix C: List of COMB Commands

ad Add scans to stack 2
af Attach a FITS file to an image
bc Designate bad channels
c Calculate something
ca Calculate values from stacks
cc Change center channel
cm Space-space Contour Map
co Combine two stacks, result in 1 & 2
cp Contour Plot an image
cr Cursor read
da Define an area of an image
dm Define macro
do Loop through a command string
e Execute a shell command
el Eliminate bad chans in stack 1.
em Empty a stack
fl Flag location on graph
fo Fold freq switched data in stack 1
ft Fourier transform data in stack1
gf Fit a gaussian function to part of a spectrum
gm Graphics Manipulation
gt Put scan in st 1
hc Make a hard copy of the current screen
im Image Manipulate
in Integrate part of a spectrum
is Interpolate a spectrun for a given position
jb Calculate line widths from stack 1 (J. Bally’s custom command)
lc List commands li - Fit and remove a polynomial baseline
lk Look at where stacks are
me M ap data Extraction
nf Switch data files
ns Name stacks directory
op Set options
p Print something
pa Pause in execution
pd Print data
pf Fit a parabola to part of a spectrum
ph Print in hms format
pl Plot stack 1
pr Printf to standard output or a global string
q Exit comb
rc Define relative coordinate system
ri Redirect command input
rm Calculate rms and ssb noise figure for stack 1
ro Redirect output to a file
rs Rescale and add constant to stack 1
rt Retrieve stack
sc Scanf from a file or global string

C LIST OF COMB COMMANDS 36

sl Make a slice through an image
sp Make a scatter plot comparing two images
sq Squish - increase or decrease chan width
st Store stack
tp Total power - average chans in stack 1 weighted by cal in stack 3
up Update a stacks directory
us Change use array
v Compute value for map
vc Velocity Space Contour Plot
vm Calculate Virial Mass
wf Write an image to a FITS file
wr Write scan back onto file
xf Transfer stacks to directory 2 after making them unique (1 per position)

C LIST OF COMB COMMANDS 37

Appendix D: For More Info

The authors of this document will be happy to answer any questions you have about COMB. It is possible, but
discouraged, to write your own routines for COMB, i.e., make a new command. You should be able to do any
reasonable operation using macros. However, if you think you really need a new COMB command, consult Bob
Wilson. If you think you’ve found a bug in COMB, report it to Bob Wilson. If you think you’ve found a bug in
this cookbook, report it to Marc Pound.

Marc W. Pound
Astronomy Program
University of Maryland
College Park, MD 20742
Tel: (301) 454-3001

John Bally
AT&T Bell Laboratories
P.O. Box 400
HOH L245
Holmdel, NJ 07733-1988
Tel: (908) 888-7124

Robert W. Wilson
AT&T Bell Laboratories
P.O. Box 400
HOH L239
Holmdel, NJ 07733-1988
Tel: (908) 888-7120

