
Fast-sampler Correlator High-Level Software Implications

Kevin P. Rauch (UMD)

Feb 10, 2012

ABSTRACT

This document discusses the impact of the new fast-sampler based correlator hardware on
the existing high-level software infrastructure, organized by component (monitor, data, control).

1. Hardware Overview

The existing CARMA correlator consists of eight independent (single-polarization) observing bands,
each of which can be configured to operate with a total bandwidth ranging from 2 MHz to 500 MHz and
providing complete baseline coverage for up to 15 inputs. The hardware for each observing band resides in
a single cPCI crate containing 8 digitizer boards, 7 correlator boards, and 1 host CPU board (plus a timing
card distributing clock synchronization signals). All boards run a Linux OS and are fully networked. In
the default setup all networking for the digitizer and correlator boards (hereafter, CARMA boards) is routed
through the crate backplane to the host CPU, which is connected to the site network via a 100 Mbps front-
panel ethernet connection; however, the CARMA boards all have theirown front-panel ethernet jacks as
well, and backplane networking is mainly a convenience to simplify the network topology. Pairs of crates
can also be combined to produce an observing band with complete baseline coverage for up to 30 inputs,
providing support for 23-input single-polarization and 15-station full-Stokes observations.

The host CPU board contains an Intel x86 CPU and is effectively an IBMPC compatible computer in
a cPCI form factor. The CARMA boards contain a Freescale PPC CPU aswell as several Altera FPGAs,
sensor devices, and other low-level hardware. Physical interaction between the host board and CARMA
boards consists of PCI bus transactions, and the host is responsible for probing for and booting the latter. At
the user-space level, however, communication between host and boardsoccurs via ordinary network socket
connections, and is effectively hardware-independent; in principle, the boards could just as well be in a
different crate (and in a remote location), so long as they are reachable via TCP/IP connections.

Compared to the CARMA correlator, the new fast-sampler hardware exhibitsa decentralized, unhosted
physical arrangement that breaks the simple identification of boards with bands. In this case each chassis
(form factor TBD) houses several bandformer cards containing onedata FPGA and other low-level devices
(including connection to an ADC, physical format TBD), all managed by a single chassis CPU card. The
chassis CPU card will contain an x86 CPU and run Linux; in comparison with the CARMA correlator,
however, it is the analog of the PPC board control CPU, not the x86 hostCPU, as it communicates directly
with the FPGAs (albeit via PCIe as opposed to a custom local bus), with sensor hardware (via I2C), the
ADCs, etc.; that these devices are now distributed across several physical PCBs in multiple chassis slots is
conceptually irrelevant. Unlike the CARMA boards, in the current design concept each bandformer control
CPU now manages four ADCs (instead of two) and eight FPGAs (instead offour). This is functionally
similar to combining two CARMA digitizers boards into one, with one crucial difference: each FPGA
now processes four observing bands (astrobands) simultaneously for the associated ADC. Hence a more
accurate analogy is to imagine combining 16 CARMA digitizer cards together (two from each crate, each
pair connected to the same four antennas), all controlled by a single CPU. Asingle bandformer CPU (and
FPGA) now deals with multiple astrobands; it is this fact which will impact the existing software most



– 2 –

noticeably. Code can no longer assume a specific piece of correlator hardware istied to only one
astroband at a time.

When bandformer boards are used as a correlation backend, the (now) correlation control CPUs will
encounter a different mix of observing bands. In this case each correlation FPGA still calculates baselines
from only a single astroband; however, the FPGAs in one chassis may notall be associated with the same
astroband (in the current concept, each chassis will process parts ofone or two bands).

A new, separate correlator computer (most likely a rack mount system) will beneeded to manage
correlator operation. Functions like phase flattening, for example, involveiterative analysis of data harvested
from multiple chassis in real time. It will also act as the communication agent to the RTS. It may be desirable
to place this computer and the chassis CPUs on a separate subnet to reducetraffic on carma.pvt—in the case
of CARMA boards host IP communication is confined to the crate backplane,whereas the chassis CPUs
will use normal ethernet cabling.

The following sections explore the impact of these changes on the key software components of moni-
toring, visibility data, and control. Each highlights some key questions/conclusions, followed by a detailed
rationale discussion.

2. Monitor Data

• Significant updates may be required.

• Is RTS code robust to monitor packets containing multiple astrobands?

At the lowest level, theCorrelatorBoardMonitorReader process runs on the PPC and is respon-
sible for reading the board hardware sensors and encapsulating the results into C++ monitor data pack-
ets. These packets are captured by the local board server (CorrelatorBandServer process), where
their contents are merged with additional monitor data points. The relevant container classes include
MonitorCarmaCommon, MonitorCarmaCorrelator, andMonitorCarmaDigitizer. After
aggregating output from the boards and supplying default output for any missing ones, the host (x86) band
server streams the monitor data to the RTS for processing.

Historically the concepts of crate number and band number have been interchangeable. The advent
of full-Stokes observing modes led to the introduction of astroband number todistinguish between astro-
nomical observing band and hardware crate number. The fast-sampler hardware further confuses the issue
as the bandformer chassis CPU will generate some monitor points tied to hardware (e.g., temperatures),
which should fit easily into the current hierarchies, while other points (e.g.,digital gain values) will refer
to specific astronomical observing bands. The updated monitor classes willneed to accommodate this in
some way. The number of FPGAs managed by the bandformer CPU is greaterthan for the CARMA board
PPCs, which changes the array dimensions for FPGA-based monitor pointsin the container classes. The
existing COBRA and CARMA boards already differ in FPGA count, so presumably adding a third concrete
sub-class encapsulating bandformer CPU monitor output will be straightforward. As to upgrading, it seems
conceptually easiest to vectorize currently scalar values to transport multi-band monitor data in a single
monitor packet (at least for the chassis CPU output), but if this format is awkward for the RTS then the
correlator server might need to re-sort output into multiple RTS-friendly packets. In either case,any code
explicitly or implicitly assuming a single monitor packet is associated with only a single astroband will need
to be re-examined.

The meaning of slot number also changes. With only a single chassis CPU the slot number is not
relevant to it as it is to the CARMA board server; instead it will apply on an FPGA basis. In the current



– 3 –

concept two FPGA cards occupy a single physical slot. Since cards canbe swapped out individually, the
monitor stream should track both physical location (are upper/lower cardsin one rail assigned unique slot
numbers??) and board serial number.

3. Correlation Data

• Moderate updates required; no architectural changes.

• Is collation (by astroband) and/or buffering of incoming band objects required of the new correlator
server?

The CarmaDataReader class receives the raw FPGA data in memory-mapped format and converts it
into fully populated band data objects. The new hardware will similarly memory-map the FPGA RAM,
so no significant modifications will be needed to capture the data—hardwareaccess is hidden by the data
driver. The main question is whether data needs to be segregated into astroband-specific band objects. The
CorrelatorBand object header has a band number member, as do each of the individual baselines it
contains. If the header variable is ignored (or used to denote the chassisnumber), there is no impetus to
publish multiple band objects at this level—the downstream band server (running on the new correlator
computer) can collate incoming data into band-specific objects, if required bythe RTS pipeline. The low-
level reader logic will need generalization to support multiple bands per FPGA.

Currently the CARMA host servers buffer board data until all boards have been received or time ex-
pires, whichever comes first. However, no dummy data is inserted for missingbaselines, so depending on
the flexibility of the RTS pipeline, the host buffering may be extraneous, andremoving it might simplify
correlator data management in the new mixed-astroband environment.

4. Correlator Control

• Significant modifications required.

• Careful thought needed to maintain forward/backward compatibility.

• Embrace or avoid a major shift in the correlator control API?

TheCarmaBoardControl component receives control commands by proxy from the host band server
(the CorrelatorBandServer process), with which the RTS communicates directly. Currently and
by necessity RTS communication is crate-oriented, but with a close correspondence to astroband; at the top
level, RTS control is based on astrobands. On the other hand, some commands such assourceName() are
logically independent of astroband. As mentioned previously, in the new system the chassis server will be a
modified CARMA board server that potentially requires control commands from all astrobands to operate.
This will require some conceptual modifications; e.g., theastroBandNumber() method will no longer
be meaningful as currently defined. FPGA reconfiguration is distinctly different as a single bandformer
FPGA will process inputs to four independent astrobands (though correlator FPGAs will continue to process
part of a single astroband). In particular it is very likely that only a few combinations of modes will be
available per FPGA—a significant change from the fully independent astrobands of the CARMA correlator,
where the bandwidth/bitmode of each can be specified individually.

At the top level the correlator setup tool will need to enforce these restrictions to minimize submission
of invalid scripts. If the RTS is to detect invalid requests (optional, but wouldimprove error reporting), then



– 4 –

configastroband() must be modified to work in blocks of four (or all eight) bands. Alternatively,
the correlator server could buffer configuration commands into blocks offour before proxying them to the
chassis servers, at the cost of exposure to dependency risk: unless/until all four configuration commands
are received, nothing happens in this setup. However, the control pathhas proven to be quite stable, so the
option needn’t be discounted out of hand. Maintaining backward compatibility with the CARMA correlator
factors into this decision.

The bandformer hardware will implement a digital second LO. New correlator control commands
are required to manage this functionality and RTS control will need modification, including support for
correlator-based Doppler tracking.

The new correlator server will be a modified version of the current CARMA correlator host server, now
managing RTS access to all astrobands. There is no point trying to run a separate process for each band since
every server would still need to connect to every chassis, which is highlyredundant. Also the chassis server
(a modified CARMA board server) must necessarily manage multiple astrobands, so core server support
for multi-band operation is a requirement in any case. For the most part this can be hidden from the RTS,
which could continue to operate with the concept of fully independent astrobands (except for the constraints
on reconfiguration). A simple, backward-compatible way for the correlator server to receive commands for
multiple astrobands is to have it listen on multiple ports; currently each CARMA band server already listens
on a unique port as specified in the ini-file. An alternative is to generalize (vectorize) the control API to
allow parameters for multiple astrobands to be specified in one call; this option is flexible and efficient, but
more invasive to implement.

Although the hard configuration constraints are for blocks of four astrobands, in practice reconfigu-
ration must be done eight at a time due to the continuous transfer of data between octets of bandformer
FPGAs—configuring any one will bring down the entire ring communication network, which will then re-
quire full reinitialization. Hence at the hardware level all astrobands arecoupled in some way; this suggests
additional benefits to adding multi-astroband support to the control API itself, as opposed to attempting to
hide this change deep in the system.


