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ABSTRACT

This memo gives an overview of the blank sky task, data analysis details, andperformance
expectations. Details of the digital quantization schemes implemented by the CARMAcor-
relator, which determine the expected noise levels, are also provided. We note that previous
attempts to use noise source spectra for real-time bandpass calibration may have been biased by
failure to correct for on-sky thresholding variations, which we find is necessary to accurately
reproduce predicted noise statistics. Including these corrections, blanksky results generally
agree with expectations to within∼ 1%.
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1. Blank Sky Observations

The CARMA blank sky task (projectct004) is one of several tasks run regularly to help assess array
performance. It is used to exercise (over time) all possible combinations ofcorrelator bandwidth (from
500 MHz to 2 MHz) and sample quantization (2-bit, 3-bit, or 4-bit) and collect on-sky, off-source (i.e.,
noise) visibility data for each. The primary uses of these data sets are to verify that RMS noise levels agree
with expectations in general and to check for the presence of birdies or other anomalies in particular. This
memo discusses the blank sky work flow, theoretical noise expectations, and the results of lab measurements
and sample on-sky data sets.

2. Observation and Analysis Procedure

The CARMA wiki athttp://cedarflat.mmarray.org/twiki/index.php/Blanksky main-
tains instructions for the observers on how to run the ‘blanksky’ array health task at the telescope, reduce data
on-site, analyze the statistical results, and recognize problems in the noise statistics. To run a blank sky ob-
servation, typerun(’ct004_blanksky’, bw=’BW31’, bit=’3’, endtrack="12:00") in
thesci1 SAC. Similarly, forsci2, the script name isct004_blanksky_sci2, and since the corre-
lator is limited to a bandwidth of 500 MHz and 2-bit quantization, only the endtrackkeyword needs to be
specified.

When projectct004 is executed at the telescope, the script (which is located in the cedarflat directory
/array/rt/scripts/arrayHealth/) searches the blanksky catalog for a bright calibrator above the
horizon. This catalog currently consists of 4 calibrators (3C84, 3C273,3C345, and 3C454.3) and their cor-
responding on-sky, off-source positions (3C84OFF, 3C273OFF, 3C345OFF, and 3C454.3OFF). The script
integrates first on the noise source for 30 s, then on the calibrator for 3 min, and finally, on the nearby off-
source, blank sky position for a period of 20 min, before repeating the entire cycle. For reliable statistics,
at least one complete cycle should be completed during a blank sky observation. For blank sky observa-
tions, the correlator is tuned to a rest frequency in the USB of 95.0 GHz forsci1, 35.938 GHz forsci2,
or 85.8286 GHz for CARMA-23. In addition, flux calibration, tsys, data blanking, and automatic flagging
are turned off in the RTS pipeline. For best results, the MIRIAD data set should be filled using floats (as
of March 2012 the default is to use scaled integers). This can be done bymanually refilling the data with
/opt/rt/bin/sdpFiller and specifying optionfloat=true.

Analysis of the blank sky data and the overall health of the correlators is typically accomplished using the
MATLAB software and a suite of scripts to plot the statistics of the recorded on-sky, off-source visibility
data, including: minimum and maximum values, signal-to-noise (S/N) statistics, the standard deviation
(RMS) of the amplitudes, and the mean values of the MIRIAD visibility data. These visibility statistics
are calculated for all baselines, all channels, and separately for both the real and imaginary components
of the data. The most recent version of the MATLAB scripts to perform these analyses are located in
/array/rt/blanksky/ on the cedarflat machines. In that directory, the analysis has been automated,
such that the user can call the appropriateblanksky_sci1 or blanksky_sci2 shell script, followed
by the name of the data set (which should be copied into the same blanksky directory) and the name of
the off position (e.g. 3C84OFF). Once the script has completed, the relevant plots will be accessible on the
web athttp://cedarflat.mmarray.org/blanksky/ where subdirectories are created according
to each observation date.
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In most cases, the observers will only need to concern themselves with the statistical analysis tools and
plots provided automatically by the MATLAB code, in order to monitor the ongoinghealth of the correlator
FPGA cards and to check for the presence of birdies or other anomalies.Thus, the CARMA wiki provides
the best resource for the general user of blank sky data. However,in order to understand the theoretical noise
expectations (provided as reference lines in the MATLAB plots), as well as the performance efficiency of
the RTS data pipeline, we must obtain laboratory measurements of the correlator output before the sample
blank sky data is passed through the pipeline and converted into a MIRIAD data file. Then, the statistics of
the cross-correlation spectra from the correlator can be compared directly to those of the end-user’s output
MIRIAD visibility (noise) data.

In the absence of simultaneous laboratory data collection, the advanced blank sky user can perform a quick
analysis of the blank sky pipeline-processed data correlation noise within MIRIAD (see Sect. 4 and Ap-
pendix A), and compare the results to those of an earlier laboratory and on-sky test (e.g., Table 3), where
the results have already been shown to be consistent to within 1% of the expected values. The following
sections describe the procedure and results of a simultaneous lab and skytest performed in Nov 2011.

3. Theoretical Noise Characteristics

The correlator outputs cross-correlation spectra (visibility data) at a fixed rate of 2 Hz. When the inputs sam-
ple uncorrelated noise, each channel of each baseline has an expected mean value of zero and an expected
variance that depends on the number of bits used to quantize the digitized inputsamples from each antenna.
The wideband COBRA correlator (sci2) is limited to 2-bit quantization whereas the spectral CARMA
correlator (sci1) can employ up to 4-bit sampling in most observing modes.

The expected correlation statistics for generic quantization schemes are described in detail by Hawkins
(2011). The results depend sensitively on the product rule for multiplyingtwo quantized samples together.
For 2-bit sampling, for example, the correlator utilizes a “deleted inner-product” rule that defines 1*1 = 0
when computing the cross-correlation product of 2-bit quantized samples. This is done to reduce hardware
requirements and ultimately increase the output spectral resolution, at the cost of slightly reduced detection
efficiency compared to full 2-bit multiplication. The implemented 3-bit and 4-bit quantization schemes—
unique to CARMA—have been similarly fine-tuned to balance resolution and detection efficiency (see Ap-
pendix B).

Like the cross-correlation detection efficiency (defined as the signal-to-noise ratio of correlation coeffi-
cients derived using the quantized input samples, relative to the SNR that would have been obtained with
infinite-precision sampling), the expected noise variance of correlation spectra depends on the details of the
quantization scheme. The absolute normalization applied by the correlator to alldata must also be taken
into account. The blank sky analysis scales results such that if the observed noise variance matches expec-
tations, then the scaled noise statisticη̂ will equal the theoretical weak-correlation detection efficiencyη(0)

for the tested mode. Explicitly,η(0) = 0.8724 (2-bit sampling), 0.9626 (3-bit sampling), or 0.9836 (4-bit
sampling) for the CARMA correlator.

Controlled lab experiments have been performed to measureη̂ for all possible correlator modes. For this
analysis, the 2 Hz integration data produced by the correlator while integrating fully uncorrelated thermal
noise was captured and analyzed directly, ensuring maximum precision andisolation from the rest of the
system. The data were analyzed as follows. First, for each channel of each baseline the real and imaginary
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parts of the complex visibilities (one for each 500 ms integration collected) weregrouped into a single
statistical sample, and the mean and (sample) variance computed. For each baseline the individual variance
values were then averaged over all channels (excluding the half-width end channels present in the raw data)
to produce an average value for each baseline. The net observed noise variance for the band,̂σ2, was then
obtained by averaging these over all baselines.

Theoretically the real and imaginary samples will be Gaussian random variables with zero mean and fixed
varianceσ2, which can be computed analytically given the details of the quantization schemeand data nor-
malization. The latter requires special attention. Correlator data are normalized by a Van Vleck correction,
C, whose purpose is to remove the bias in the observed, quantized correlation coefficients,ρ̂, and translate
them into true correlation coefficients,ρ = Cρ̂. At the time of writing (Jan 2012), all correlator data are
normalized by the Van Vleck correctionC(1) appropriate for 100% correlated signals (such as the corre-
lated noise source used for phase flattening)—even when observing weakly-correlated (i.e., astronomical)
sources. This is scheduled to change in the near future, at which timeC(0), the theoretical Van Vleck cor-
rection for uncorrelated inputs, will be applied to on-sky data instead. Thisaffects the conversion from̂σ2

to η̂ and hence it is important to know which normalization was in effect when the data was taken.

The generic relation iŝη(ρ) = [C/C(ρ)]/
√

2Bτσ̂2(ρ), whereC is the applied Van Vleck correction,B is
the bandwidth per channel,τ is the time per integration (not the total integration time), andρ is the true
correlation coefficient of the input signals. The factor of 2 arises fromthe Nyquist sampling criterion (two
samples per cycle). For blank sky and these lab measurements,ρ = 0. It is important to note thatτ is not
identical to the integration time requested in the observing script, due to a phaseswitch blanking interval
inside the correlator that is required to allow the analog signal to settle after each phase switch (which
occur at a rate of 1024 Hz). For example, a nominal 1 s integration containsonly 0.9728 s of actual data.
However, the latter is reported properly by the system (e.g., in MIRIAD output) and no explicit correction
factor is required during analysis. The values ofC(0) andC(1) for each quantization scheme can be found
in Appendix B.

The measured valueŝη and expected valuesη(0) for each correlator mode are shown in Table 1. Agreement
is excellent, with worst-case discrepancies of a few tenths of a percent (excluding 500 MHz modes, which
are known to be biased). It must be understood however thatη̂ itself is not an independent measurement of
the actual correlator detection efficiency, because the applied Van VleckcorrectionC is a theoretical value
only, not a measured quantity. Agreement betweenη̂ and η(0) merely verifies that the measurednoise
level is in line with expectations; determiningη(0) experimentally requires measuring both signal and noise
levels and lies outside the scope of blank sky observations.

For additional discussion on correlator efficiency see the wiki page:
http://www.mmarray.org/twiki/index.php/Correlator_efficiency

4. On-sky Performance Comparison

The preceding lab experiments demonstrate that the digital correlator hardware performs as expected in all
available operating modes (as far as RMS noise levels are concerned), but do not exercise the complete end-
to-end signal chain and processing pipeline utilized by on-sky observations. To provide a secure reference
point for normal blank sky measurements, we have performed a special set of blank sky observations in
which 2 Hz correlation data was captured from the correlator simultaneouslywith the production of normal
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MIRIAD output by the standard RTS pipeline. For this observation all availablesci1 antennas were com-
manded to track a blank patch of sky (specifically, NORTHPOL). The observing script disabled Tsys and
flux scaling in the pipeline (noise analysis requires totally “raw” data), and requested that 64 x 8 s integra-
tions be collected—about 8 minutes total integration time. This test was repeated inall possible correlator
bandwidth and sample quantization modes; due to network bandwidth constraints, however, comparison
2 Hz data (captured directly from the correlator) was obtained for only a few of these: 250 MHz/2-bit,
125 MHz/3-bit, 8 MHz/4-bit, and 2 MHz/3-bit.

The 2 Hz data was analyzed precisely as described previously; the MIRIAD output was analyzed in a similar
(but not identical) manner by constructing a data cube and using theimstat command to compute the
noise RMS for each channel averaged over all times and baselines (the command collapses two dimensions
at once). The channel RMS values were then averaged into a single band RMS for comparison with the 2 Hz
results.

Before presenting the results we discuss several possible sources ofdisparity between them and when com-
pared to theoretical expectations. The largest stems from the way in which digitizer threshold optimization
(level control) is performed. Threshold optimization, which occurs after each bandwidth reconfiguration,
normalizes the signal level of the digitized input samples to a fixed referencepoint maximizing the expected
detection efficiencyη(0). This is done using a correlated noise source which is injected directly into theIF
band downstream of the receiver output, which provides reliable outputto all correlator RF inputs even when
particular antennas or receivers are unavailable or otherwise misbehaving. Technically speaking therefore,
the thresholds are optimal only when observing the noise source, not astronomical sources. However, auto-
matic (analog) gain control in the downconverters (which filter the full IF intoindividual 500 MHz bands)
ensures that the two types of RF input signals reach the correlator with equal power, nominally making them
interchangeable for thresholding purposes. Unfortunately, the gain control circuit in the downconverters has
a non-trivial frequency response, resulting in slightly different total output power depending on the input
passband shape. As a consequence the thresholds end up being slightlynon-ideal for on-sky observations;
typical variations are a few percent. Note however that the impact onη(0) is much less because we are
operating near the peak of the efficiency curve; the change inabsolute noise (and signal) level, on the other
hand, is of the same order.

To first order thresholding variations can be corrected by normalizing thecross-correlation spectra by the
autocorrelation amplitudes of the corresponding inputs; e.g., by dividing cross-baseline cross[A-B] by
auto[A]·auto[B] on a channel-by-channel basis. In MIRIAD this gain correction can be done by speci-
fying options=fxcal to uvcal. In Table 2, we give the results both with and without this correction.

Table 1. Lab Experimental Correlation Noise Comparison

Bits 500 MHz 250 MHz 125 MHz 62 MHz 31 MHz 8 MHz 2 MHz Average† Expected

2 0.8454 0.8710 0.8720 0.8721 0.8744 0.8739 0.8720 0.8726 0.8724
3 0.9422 0.9575 0.9593 0.9616 0.9639 0.9634 0.9611 0.9611 0.9626
4 0.9751 0.9874 0.9876 0.9839 0.9858 0.9831 0.9844 0.9854 0.9836

†500 MHz noise results, biased by in-band artifacts, are excluded from the average.
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Other differences arise in that the data sets being compared are not identical, nor (as a matter of convenience)
analyzed in a strictly identical manner. The 2 Hz data contained 1024 x 500 ms integrations as opposed to
64 x 8 s integrations for the MIRIAD data. Grouping the former into 8 s packets for analysis changed
the results by∼ 0.1%, a negligible amount; for comparison, even grouping the data into asingle 512 s
integration changed the results by only∼ 1%. The standard blank sky script utilizes 30 s integrations.

The 2 Hz data contained a full complement of baselines (105 for 15 antennas), but due to maintenance
activity during the test only 45 baselines were present in the MIRIAD output, the remainder being masked by
the pipeline. This should not bias the results on average, but can be expected to generate random differences
in the individual trials. The fact thatimstat collapses two dimensions of the data cube instead of one to
compute the first RMS will act similarly. Experiments with the 2 Hz reduction suggest random variations of
a few tenths of a percent. Finally, the RMS calculated byimstat is a population standard deviation, not
the proper, statistically-unbiased sample standard deviation used by the 2 Hzreduction procedure; but for a
sample size ofN ∼ 45·64= 2880, the two measures will agree to better than 0.1%.

Results for the scaled noisêη for each data set, both raw and gain-corrected, are shown in Table 2. Overall
agreement between the 2 Hz and MIRIAD results are very good, with typical differences of∼ 1% for raw
results and∼ 0.5% for the corrected results. As anticipated the raw results deviate significantly from the
expected value—by over 5% in some cases—whereas the gain-correctedresults match to within 1%. We
conclude that the simplified MIRIAD analysis procedure is sufficiently reliable to use as a reference for
blank sky analysis.

CARMA has previously considered applying a real-time bandpass calibration to all correlation data by de-
fault, with normalization provided by noise source spectra. It was never enabled due to unresolved concerns
over possible phase-closure artifacts. We speculate that failure to correct for thresholding variations via the
auto-correlations, as done here, may have been involved. It would be interesting to repeat the previous cali-
bration experiments with and without gain correction to test this hypothesis. The results should indicate the
optimal method of bandpass calibration via the noise source, whether the solution is applied on- or off-line.

A. MIRIAD Code to Analyze Blank Sky Correlation Noise

This appendix describes the analysis of the Nov 2011 blank sky observation data set using MIRIAD, result-
ing in reference Table 3.

Table 2. On-Sky Correlation Noise Comparison

— Raw — — Corrected —
Mode η̂ [2 Hz] η̂ [MIRIAD] η̂ [2 Hz] η̂ [MIRIAD] η(0)

250 MHz 2-bit 0.8139 0.8011 0.8810 0.8826 0.8724
125 MHz 3-bit 0.9828 0.9732 0.9596 0.9595 0.9626

8 MHz 4-bit 0.9177 0.9049 0.9883 0.9895 0.9836
2 MHz 3-bit 0.9292 0.9401 0.9652 0.9870 0.9626
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In the code below, we reference thect004.xmas31x8.1.mir data set. This observation is 0.14 hours
long and only looks at the source ‘NORTHPOL’. Bands 1-3 consist of 31 MHz windows in 2-bit, 3-bit,
and 4-bit quantization modes, respectively. Bands 5-7 are 8 MHz windows, also in each of the different bit
quantization modes. Bands 4 and 8 are both 500 MHz/2-bit spectral bandsthat are ignored in the following
analysis. We start by separating the data out window by window.

Miriad% set file = ct004.xmas31x8.1.mir

Miriad% foreach band ( 1 2 3 5 6 7 )

Miriad% uvcat vis=$file select=’win(’$band’)’ out=win.$band

Miriad% end

Next, we use the MIRIAD taskuvcal to normalize the cross-correlation spectra by the auto-correlations
to correct for thresholding variations. This step can be skipped in orderto compare these ‘gain-corrected’
data with the ‘raw’ noise statistics.

Miriad% uvcal vis=win.1 options=fxcal out=UVCAL_31_2

Miriad% uvcal vis=win.2 options=fxcal out=UVCAL_31_3

Miriad% uvcal vis=win.3 options=fxcal out=UVCAL_31_4

Miriad% uvcal vis=win.5 options=fxcal out=UVCAL_8_2

Miriad% uvcal vis=win.6 options=fxcal out=UVCAL_8_3

Miriad% uvcal vis=win.7 options=fxcal out=UVCAL_8_4

We then useuvimage to convert the raw data into an image data cube of the uv data in a ‘Time-Baseline-
Channel’ order. This will allow us to take advantage of severalimstat utilities.

Miriad% foreach bw ( 8 31 )

Miriad% foreach bit ( 2 3 4 )

Miriad% uvimage vis=UVCAL_$bw\_$bit out=NORTHPOL_$bw\_$bit\_real.out

view=real mode=3 line=chan,0,1,1,1 select="source(NORTHPOL),-auto"

Miriad% uvimage vis=UVCAL_$bw\_$bit out=NORTHPOL_$bw\_$bit\_imag.out

view=imag mode=3 line=chan,0,1,1,1 select="source(NORTHPOL),-auto"

Miriad% imcat in=NORTHPOL_$bw\_$bit\_imag.out,NORTHPOL_$bw\_$bit\_real.out

out=NORTHPOL_$bw\_$bit\_comb.out

Miriad% end

Miriad% end

We have created 3 separate data files: one with the real visibilities only, one with the imaginary visibilities
only, and a data set that contains the real and imaginary data together. Nowwe can useimstat to calculate
the statistics of the uv data ‘image’. This includes the sum, mean, RMS, maximum, andminimum values of
a region. We can save the output to a log file, or a plot.

Miriad% imstat in=NORTHPOL_$bw\_$bit\_comb.out plot=rms axes=x,y device=/xs

To convert these RMS values to the numbers listed in Tables 2 and 3, we needa little more information about
the observation. We need to know the channel resolution of the data, whichcan be found usinguvlist on
the data set withoptions=spec. Just divide the bandwidth column by the number of channels. For the
31 MHz/2-bit data, this value is 81.3812 kHz. We also need to know the time integration steps for a record:

Miriad% uvio vis=$file | grep inttime
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This should return just one number, unless the integration time has changed throughout the observation. In
this example, the integration time is 7.782398701 s. Recall that the observationswere set up for 8 s integra-
tions, but that a settling time is required in the correlator after each phase switch (refer to Sect. 3). The output
MIRIAD value is reported correctly. The system only integrates for 950µs per phase switch (which occur
at a rate of 1024 Hz); to get the expected integration time for your data, youmust multiply (950× 10−6) ×
1024× tint. Now we have all of the information to solve for the quantityη̂ = [C(1)/C(0)]/[σ̂

√
2Bτ].

The normalization factorC(1)/C(0) is applied to the results to account for the correlation data scaling
convention. It represents the Van Vleck correction appropriate for thedata,C(0), relative to the one actually
applied,C(1). In this case, just divide any 2-bit data by 0.9732, any 3-bit data by 0.9533, and any 4-bit data
by 0.9256 to compare with the values listed in Table 3. Your numbers for a similar blank sky observation
should be within∼ 1%.

B. Correlator Quantization Schemes

This appendix provides details of the quantization schemes employed by the CARMA correlator system,
two of which—the 3-bit and 4-bit variants—are unique to CARMA (as far asis known by their author
[K. Rauch]). For general background on signal quantization in radioscience applications, see Cooper
(1970), Hagen & Farley (1973), and Thompson, Moran, & Swenson (2001).

An ideal digital correlator would digitize input analog signals to unlimited precision, compute cross-correlation
coefficients exactly, and on average obtain ideal (100%) detection efficiency in the process: by definition, the
cross-correlation detection efficiencyη(ρ) for signals with true cross-correlation coefficientρ is the average
signal-to-noise ratio of the computed correlation coefficient,ρ̂, relative to the described ideal system.

Practical digital systems must quantize their inputs to a finite, typically small numberof bits. For a digital
lag correlator such as the CARMA correlator, hardware requirements (i.e., cost) for a given total bandwidth
scale approximately∝ NchanN2

levelN
2
input, whereNchan is the number of channels in the output spectra,Nlevel

is the number of possible quantization levels (states) per sample, andNinput is the number of inputs (e.g.,
antennas) processed. The number of bits per sample is ceil[log2(Nlevel)]. The quadratic dependence onNlevel

corresponds to the number of entries present in the associated quantizedmultiplication table. Increasing

Table 3. MIRIAD Observation Correlation Noise Comparison

Data Bits 500 MHz 250 MHz 125 MHz 62 MHz 31 MHz 8 MHz 2 MHz

Raw 2 0.8584 0.8011 0.8766 0.7949 0.8553 0.7761 0.8643
Raw 3 0.9274 0.9522 0.9732 0.9041 0.9372 0.8505 0.9401
Raw 4 0.9450 0.9986 0.9948 0.9772 0.9438 0.9049 0.9325

Corrected 2 0.8358 0.8826 0.8675 0.8880 0.8759 0.8952 0.8987
Corrected 3 0.9461 0.9607 0.9595 0.9670 0.9627 0.9715 0.9870
Corrected 4 0.9804 0.9794 0.9794 0.9833 0.9854 0.9895 1.0109
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Nlevel is desirable to maximize detection efficiency (η(ρ) → 1 asNlevel → ∞), but can only come at the
expense of spectral resolution givenNinput is normally a fixed design parameter.

Science requirements determine the minimum acceptableNchanfor a given total bandwidth and budget limi-
tations determine maximum hardware capacity. As inputs from astronomical observations are nearly always
weakly correlated, an optimal quantization scheme is one which maximizes the efficiencyη(0) within the
imposed constraints. The value ofη(0) is set by three things which together define the quantization scheme:
the value ofNlevel, the spacing between levels (the precise analog values—here, voltages—defining the tran-
sitions between quantization states), and the quantized multiplication table (which need not follow simple
arithmetic rules).

As part of development for the CARMA correlator a program (multadd) was written to search for optimal
quantization schemes, with a focus on finding hardware-efficient multiplicationrules. It can be found in the
carmacorlCVS tree under share/fpga/test. The program is also able to calculate many ancillary properties
of quantization schemes in the weak-correlation limitρ → 0, such as the detection efficiencyη(0) and Van
Vleck correctionC(0). The CARMA correlator offers three sampling options: 2-bit (4-level), 3-bit (8-level),
and 4-bit (15-level). The 2-bit scheme utilizes the popular deleted inner-product rule described by Cooper
(1970). The 3-bit and 4-bit variants were derived with the aid ofmultadd.

For reference the characteristics of each sampling mode are provided in Table 4 (as direct output from
multadd). The stated uncorrelated lag variance (forN samples) assumes data normalized byC(1). Note
that none of the listed product rules are commutative with normal multiplication; hence in particular(X ·
Y)2 6= (X ·X)(Y ·Y), whereX andY are quantized values and ‘·’ is the quantized product operator. This
has some important implications, such as in the behavior of the Van Vleck correctionC(ρ). By definition
C(ρ) = ρ/ρ̂, whereρ̂ = 〈X ·Y〉 is the quantized correlation estimate, andη(ρ) = [ρ̂/σ̂(ρ)]/[ρ/σ(ρ)] =

[σ(ρ)/σ̂(ρ)]/C(ρ), whereσ̂2(ρ) = 〈(X ·Y)2〉− 〈(X ·Y)〉2 and it can be shownσ(ρ) = 1+ ρ2. If ρ = 1
thenY = X and henceC(1) = 1/〈X ·X〉. In the limit ρ → 0, ρ̂ → 0 andσ̂2(0) = 〈(X ·Y)2〉. For any com-
mutative/associative product rule (e.g., full multiplication) this reduces toσ̂(0) = 〈X ·X〉 = 1/C(1), which
implies η(0) = C(1)/C(0) and an expected lag variance of 1/N (whereN is the number of accumulated
samples) for uncorrelated data normalized byC(1). As seen below neither of these relations hold for the
implemented sampling schemes. For the 4-bit scheme, it also happens thatC(ρ) is not monotonic (invert-
ible) in the rangeρ ∈ [0.93,1.00], meaning thatρ(ρ̂) is double-valued there (wherêρ ∈ [1.00,1.03], for data
normalized byC(1)). This does not impact its use with CARMA, which references onlyC(0) andC(1), nor
any use whatsoever with sources less than 97% correlated (essentially allastronomical objects).

The optimized product rules all reduce the number of bits in the product compared to full multiplication
with only a small drop inη(0). For 2-bit sampling this is accomplished by zeroing low-level products and
rescaling the results, shaving two bits off the product at the loss of∼ 1% efficiency (from 0.8812 to 0.8724).
For 3-bit and 4-bit sampling, optimization is based mainly on constraining outer products. The 3-bit rule
also removes two bits from the product but with negligible efficiency loss,∼ 0.0001%, achieved in part
through the use of non-uniform level spacing. Finally, the 4-bit (15-level) scheme removes two bits and
loses 0.355% efficiency.
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Table 4: CARMA Correlator Quantization Scheme Properties

i quantized sample index (zero/positive weights only)

w quantized sample weight

x quantized sample threshold range (in units of v0)

prod quantized sample product table (zero/positive quadrant only)

hist quantized sample histogram (zero/positive weights only)

bias product offset to ensure unsigned integer representation

eta0 weakly-correlated signal to noise relative to ideal

lag0 expected auto-correlation zero lag

v0 threshold scale (assuming unit input variance)

Ex var expected quantized sample variance

Ex kurt expected quantized sample kurtosis

VV C(0) Van Vleck correction for 0% correlation

VV C(1) Van Vleck correction for 100% correlation

Four level quantization with 3-bit (deleted inner) products:

i = 0: w = 0.5 x = [0.0000, 1.0000] prod = 0 1

i = 1: w = 1.5 x = [1.0000, Inf] prod = 1 3

hist = {0.31763, 0.18237}

bias = 3, eta0 = 0.872446, lag0 = 1.0942, v0 = 0.906369 (1.3596 @ full value)

Expected variance = 0.97948, kurtosis = -1.03394

Expected uncorrelated lag variance = 1.38704/N

Van Vleck C(0) = 0.88943, C(1) = 0.91389, C(0)/C(1) = 0.97323

Eight level quantization with 5-bit (hand optimized) products:

i = 0: w = 0.5 x = [0.0000, 1.0000] prod = 0 1 1 2

i = 1: w = 1.5 x = [1.0000, 2.0056] prod = 1 2 4 6

i = 2: w = 2.5 x = [2.0056, 3.1914] prod = 1 4 6 10

i = 3: w = 3.5 x = [3.1914, Inf] prod = 2 6 10 15

hist = {0.20156, 0.15404, 0.09869, 0.04572}

bias = 15, eta0 = 0.962559, lag0 = 3.1719, v0 = 0.528884 (1.8511 @ full value)

Expected variance = 3.14763, kurtosis = -0.67693

Expected uncorrelated lag variance = 1.18763/N

Van Vleck C(0) = 0.30054, C(1) = 0.31526, C(0)/C(1) = 0.95330

Fifteen (fixed) level quantization with 5-bit (hand optimized) products:

i = 0: w = 0.0 x = [0.0000, 0.5000] prod = 0 0 0 0 0 0 0 0

i = 1: w = 1.0 x = [0.5000, 1.5000] prod = 0 0 1 1 1 2 2 2

i = 2: w = 2.0 x = [1.5000, 2.5000] prod = 0 1 1 2 3 3 4 5

i = 3: w = 3.0 x = [2.5000, 3.5000] prod = 0 1 2 3 4 5 6 7

i = 4: w = 4.0 x = [3.5000, 4.5000] prod = 0 1 3 4 5 7 8 9

i = 5: w = 5.0 x = [4.5000, 5.5000] prod = 0 2 3 5 7 8 10 12

i = 6: w = 6.0 x = [5.5000, 6.5000] prod = 0 2 4 6 8 10 12 14

i = 7: w = 7.0 x = [6.5000, Inf] prod = 0 2 5 7 9 12 14 15

hist = {0.13462, 0.12717, 0.10720, 0.08065, 0.05414, 0.03243, 0.01734, 0.01377}

bias = 15, eta0 = 0.983561, lag0 = 2.5876, v0 = 0.339063 (2.3734 @ full value)

Expected variance = 8.51468, kurtosis = -0.29598

Expected uncorrelated lag variance = 1.20653/N

Van Vleck C(0) = 0.35772, C(1) = 0.38646, C(0)/C(1) = 0.92561
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