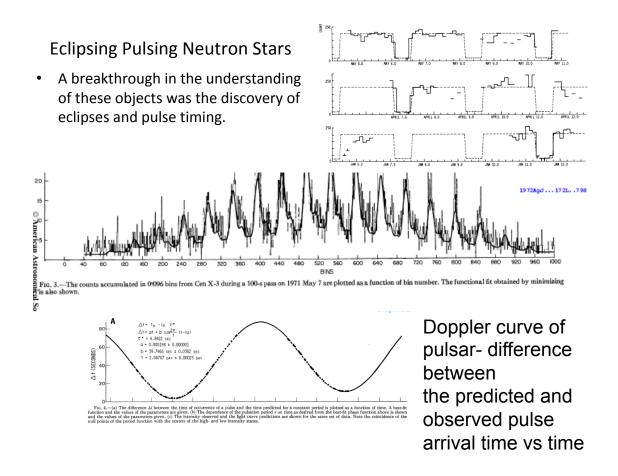
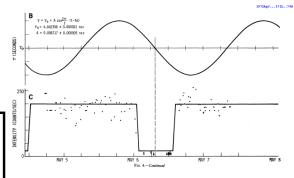

This Lecture

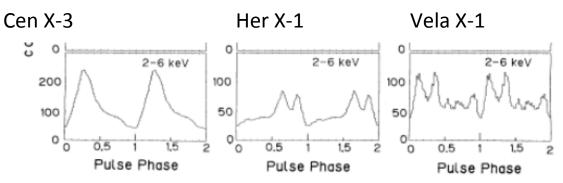

- How to determine the mass of the 'unseen' companion
- Downwards to black holes

Even the Perseus Cluster

 https://apod.nasa.gov/ apod/image/0010/ perseushalloween_cxc_ big.jpg



- Orbit
- Sign and phase of the pulses are due to the Doppler effect
- Amplitude of the sine pulse curve gives the size of the orbit (39.75 lt sec)
- Eclipses are due to occultations of the NS by its companion
- Circular orbit from shape of time variation of pulses
- Get mass of system and orbital parameters
- Period of 4.8 sec shows that it must be a collapsed object (NS)


In binary system, time between pulses affected by orbital motions-due to light travel time (distance) changing along orbit

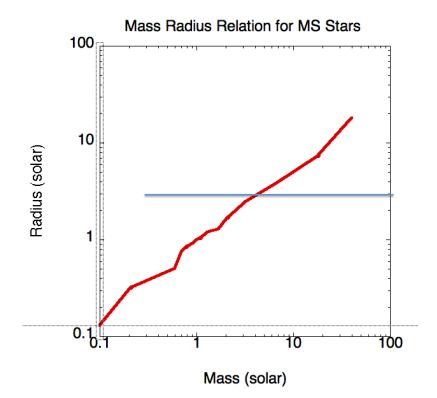
$$v \sin i \equiv \frac{Ac}{\tau_0} = 415.1 \pm 0.4 \,\mathrm{km}\,\mathrm{s}^{-1}\,,$$

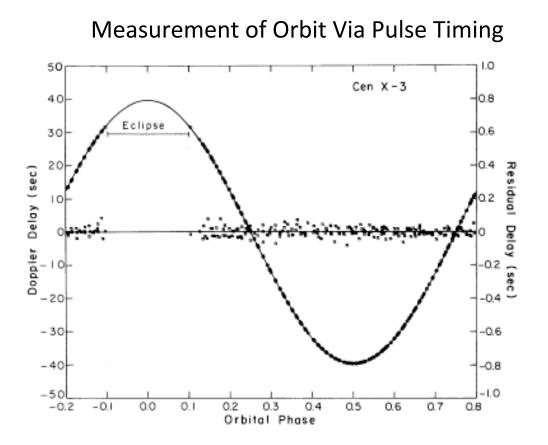
$$r \sin i \equiv \frac{T}{2\pi} v \sin i = (1.191 \pm 0.001) \times 10^{12} \,\mathrm{cm}\,,$$

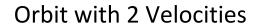
$$\frac{M^3 \sin^3 i}{(M+m)^2} \equiv \frac{(2\pi)^2}{GT^2} \,(r \sin i)^3 = (3.074 \pm 0.008) \times 10^{34}\,\mathrm{g}$$

Observed Pulse Shapes

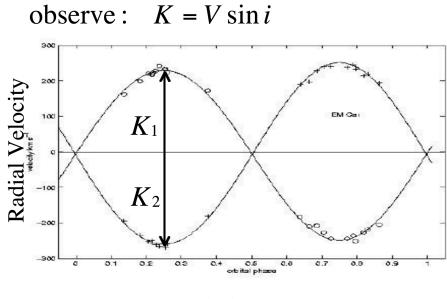
 It is fairly easy to time the pulses with an accuracy of ~0.03 sec per pulse or a light travel time distance of 10,000km –



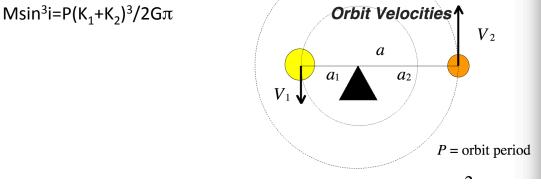

the time delay δt is then


e.g. $\delta t \sim a \sin [\cos(2\pi (t-t_0/P_{orb}))];$

where a is the orbital radius, i is the inclination P_{orb} is the orbital period and t_o is a reference time


Mass Radius Relation for Main Sequence Stars

Velocity Curve


Orbital Phase

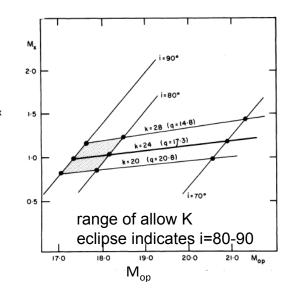
Derivation of Mass Function (K. Horne)

- Observable velocities K₁ = V₁sini and K₂= V₂sini
- mass ratio $q=m_2/m_1 = a_1/a_2 = V_1/V_2 = K_1/K_2$
- $V_1 + V_2 = 2\pi a/P$
- Which gives the orbit size a

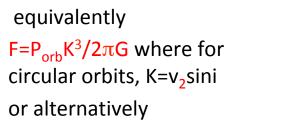
- $2\pi asini=(K_1+K_2)P$

Using Keplers Law $M=m_2+m_1=4\pi^2a^3/GP^2$ $P^2 R^3$ and the minimum mass M is $Msin^{3i}=P(K+K)^3/2C\pi$

Mass Function, F,- Longair 13.33

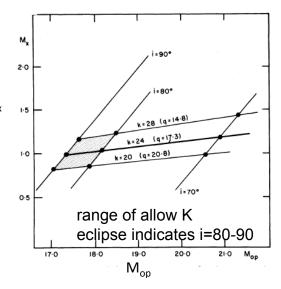

If we only have velocity information for the star (and not the compact object) $F(m_1,m_2,i)=m_x^3sin^3i/(m_x+m_2)^2$

Re-writing this as
M_p=Fq(1+q)²/sini³


M_x

- q=ratio of the mass of the x-ray star to its companion
- M=(m_x+m₂)

The delays in the observed arrival time of the pulses gives $a_2 \sin i/c$ and the period thus $F(m_1,m_2,i)$ The duration of the eclipse tells us about the star size and thus mass


Mass Function, F, - Longair 13.33

 $F=m_2 \sin i^3/(1+q)^2$

- A minimum mass is obtained if i=90⁰
- The mass function for the ^M_x observed star gives a minimum mass for the *unseen* companion F<m_x

The delays in the observed arrival time of the pulses gives $a_2 \sin i/c$ and the period thus $F(m_1,m_2,i)$ The duration of the eclipse tells us about the star size and thus mass

Mass Function, F,- see Rosswog and Bruggen ch 6

If we have the velocity of both components F_1 and F_2 $F_1(m_1, m_2, i) = [m_2 \sin i]^3/M^2$ and $F_1(m_1, m_2, i) = [m_2 \sin i]^3/M^2$

 $F_2(m_1, m_2, i) = [m_1 \sin i]^3 / M^2$

mass ratio,q,

 $q = (F_2/F_1)^{1/3}$

Alternative Formulation when have pulse information

• In order to measure the mass of the neutron star and its optical companion we need to measure the mass function. For a circular orbit it can be shown that this is defined

$M_X = K_0^3 P_{orb} / 2\pi G \sin^3 i (1 + K_X / K_0)^2$

- M_O and M_X are the mass of the optical component and the X-ray source, respectively,
- K_x, K_o are the semi-amplitude of the radial velocity curve for the x-ray and optical companion,
- P is the period of the orbit and i is the inclination of the orbital plane to the line of sight.

•K_x and P can be obtained very accurately from X-ray pulse timing delay measurements

• K_o is measured from optical spectra for the companion

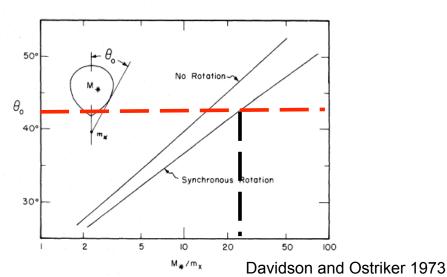
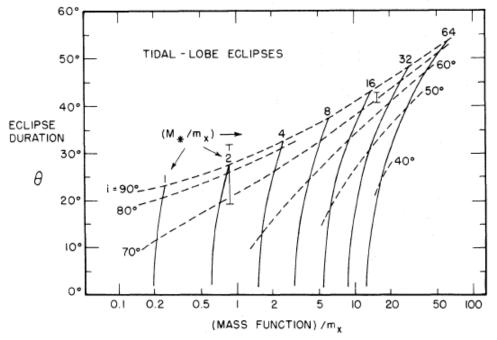


FIG. 1.—Eclipse half-angles in the equatorial plane, for cases in which the eclipsing star is nonrotating and fills its tidal lobe, and in which it rotates synchronously with the binary orbital period and fills its Roche lobe.

• For Cen X-3 he eclipse lasts .488 days out of the 2.1 day period or an opening angle of 43 degrees (.488/2.1/2). We know the mass function

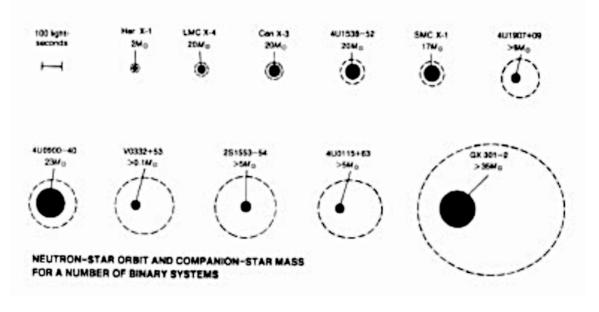
 $M_*^3 \sin^3/(Mx+M_*)^2=15$ in this case) $M_x \sim 1$

• If the pulsar is eclipsed by the donor (≈40% chance in Roche-lobe overflowing systems) then the inclination angle *i* is given by


$\sin i = \text{sqrt} [1 - (R_{opt}/a)^2]/\cos\theta$

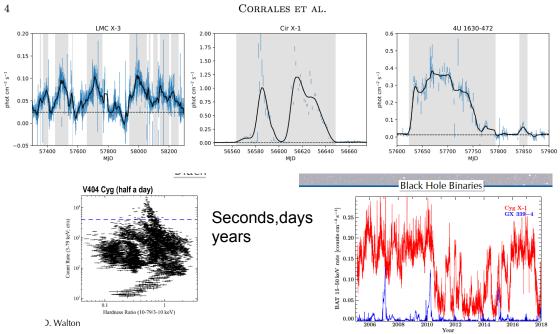
- where θ is the eclipse half-angle, a the binary separation and R_{opt} the stellar radius.

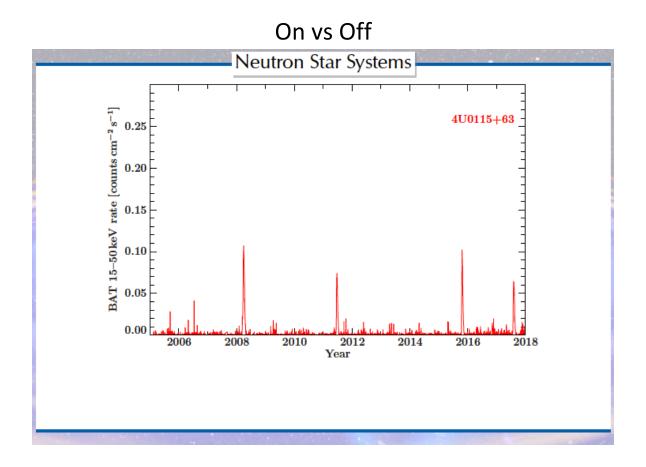
• R_{Lopt}/a is a function of the binary mass ratio $\mathbf{q}=M_X/M_{opt}=K_{opt}/K_X$ (K=vsin *i*)


Then we can solve for the mass (assuming circular orbits)

 $M_{opt} = [K_X^{3}P/2 \pi Gsin^3 i](1+q)^2$ $M_x = [K_{opt}^{3}P/2 \pi Gsin^3 i](1+q)^2$ precise masses for ~9 objects

Values of mass vs eclipse duration and inclination angle for a given mass function


Neutron Star Orbits

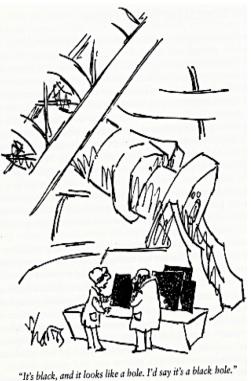


Charles and Seward

Time Variability

• Virtually all x-ray binaries show a wide range of variability in both intensity and time scale

summary


- X-ray binaries exhibit a wide range of behaviors, but much of the interesting physics/astrophysics is common to all
- Understanding of accretion disks, accretion flows, X-ray induced winds, compact object evolution are all in an active state of research.

This is a vast field - here are some references for further reading

- Dippers: Smale et al. 1988 MNRAS 232 647
- Black hole transient lmxbs: Remillard and McClintock, 2006 ARAA 44, 49
- Color-color diagrams for atoll/Z sources : Hasinger and VanderKlis 1989
- Microquasar GRS 1915+105: Mirabel and Rodriguez 1995 PNAS 92 11390
- ADC sources: White and Holt 1982 Ap. J. 257 318
- Iron line from Cyg X-1: Miller et al. 2003 Ap. J. 578, 348
- Cyg X-3 Chandra HETG: Paerels et al. 2000 Ap. J. 533, 135
- Accretion disk corona modeling: Jimenez-Garate et al. 2002 Ap. J. 558, 458
- 4U1822-37 spectrum :Cottam et al., 2001 Ap. J. 557, 101
- 'Accretion power in Astrophysics' Frank, King and Raine
- Catalog of X-ray Binaries, Liu Van Paradijs and Lewin 2007 A&A 469, 807
- GRO J1655 chandra spectrum: Miller et al., 2006 Nature 441, 953
- Hydrodynamics of HMXB winds: Blonding 1994 Ap. J.

Downwards to Black Holes!

- The maximum mass of a neutron star
- Complete gravitational collapse to a black hole
- Basic anatomy of a black hole
- Observational discovery of black holes

BH-BH binaries?

Are there black holes?

 What is the physics of accretion? Accretion: one of most fundamental physical processes in the Universe ⇒ BH-XRB/AGN best way to study them due to different timescales!

Are BH binaries typical? What about the GW

 How do black holes interact with their environment?

e.g., XRB: energetic input into ISM, AGN: galaxy evolution ("feedback"), heating IGM,...

• What is the behavior of matter under extreme conditions?

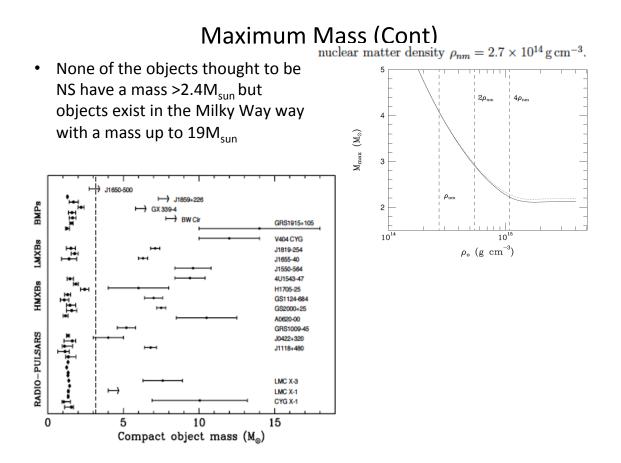
neutron stars: strong B-fields ($10^{12} \dots 10^{14}$ G), high ρ , bursts,...

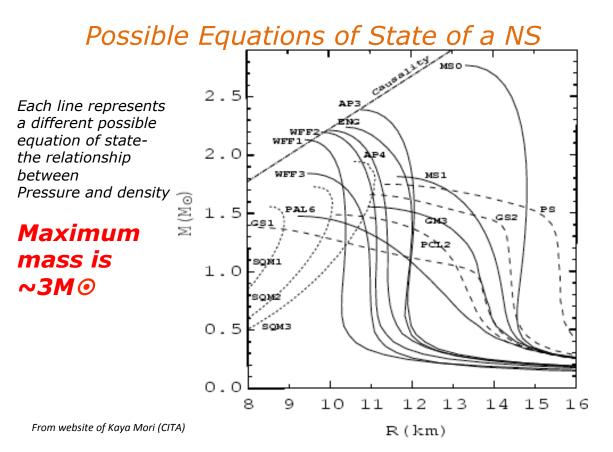
• How do stars evolve? CV, NS-XRB, BH-XRB populations

J. Wilms

Maximum Mass of a Compact object (Kalogera and Baym

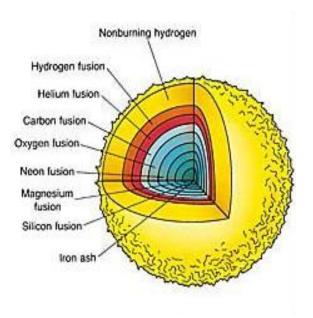
1996)


- The set of fundamental constraints, independent of the detailed physical properties of neutron matter, imposed on the equation of state of the inner core are
- (i) the mass density, ρ, is non-negative, i.e., gravity is attractive;
- (ii) the pressure,P, at zero temperature is a function of ρ only, i.e., neutron matter is a fluid
- (iii) dP/dρ ≥ 0, -sound speed of neutron matter (dP/dρ)^{1/2} is real and matter is stable against collapse;
- (iv) the sound speed does not exceed the speed of light, i.e., dP/dρ≤ c², hencc signals cannot be superluminal and causality is satisfied.


Under these conditions mass of NS Is maximum for 'stiffest' equation of state -the sound speed is the speed of light $C_s^2 = dP/d\rho = C^2$.

A huge amount of messy nuclear physics define the equation of state and it is not well understood.

Using the equation of hydrostatic equilibrium in general relativity


$$\frac{dP}{dr} = -\frac{G}{r^2} \left[\rho(r) + \frac{P(r)}{c^2} \right] \left[m(r) + 4\pi r^3 \frac{P(r)}{c^2} \right] \left[1 - 2G \frac{m(r)}{rc^2} \right]^{-1},$$
$$M_{max} = 6.7 \ M_{\odot} \ \left(\frac{\rho_0}{10^{14} \text{g cm}^3} \right)^{-1/2}.$$

Beyond neutron stars...

- Suppose collapsing core has mass that exceeds maximum mass for a neutron star...this can happen in several ways
 - Maybe a more massive iron core forms before it cools to the point that degeneracy pressure kicks in...
 - ... or initial core collapse of 1.4M core is followed by more infall from stellar envelope?
- What then when the gravitational attraction exceeds the degeneracy pressure?
- We know of no physics that can prevent a <u>total</u> gravitational collapse of the core

Downwards to Black Holes!- Longair 13.11

- a neutron star has a maximum mass
- If this mass is exceeded on has a complete gravitational collapse to a black hole
- Basic anatomy of a black hole
- Observational discovery of black holes
- see 1810.07041.pdf Accreting Black Holes S. Nampalliwar and C. Bambi

The color of the companion star roughly indicates its surface temperature (from brown to white as the temperature increases).

The orientation of the disks indicates the inclination angles of the binaries

Jerome Orosz (from Nampalliwar and Bambi)

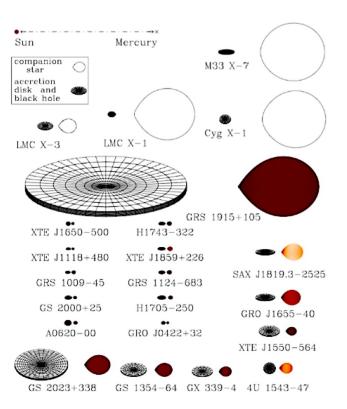


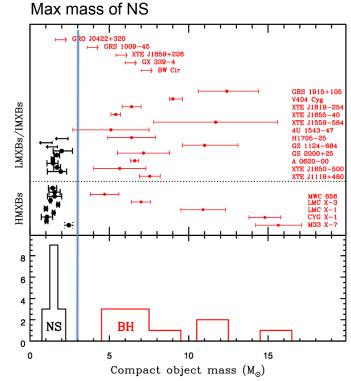
Fig. 1: Sketch of 22 X-ray binaries with a stellar-mass black hole confirmed by dy-

Black Holes

- What do you mean 'black holes' ?
- We know of objects whose mass (derived from observations of the lines from the companion objects and Newton's (Einstein) laws) which are larger than possible for a NS or white dwarf.
- They have other unusual properties (related to their xray spectrum and timing behavior)
- Big differences- no surface, no (?) magnetic field, higher mass strong GR effects.

Source	RA(2000)	DEC(2000)	r_x^b	BH $trait^{c}$	Grade ^d	Referer
1354–645 (BW Cir)	13 58 09.74	-64 44 05.2		LH,HS	Α	1,2
1524–617 (KY TrA)	$15\ 28\ 16.7$	-61 52 58		LH,HS	Α	5
4U 1630–47	$16 \ 34 \ 01.61$	$-47 \ 23 \ 34.8$		LH,HS	Α	8,9,10,11
XTE J1650–500	16 50 01.0	-49 57 45		LH,HS,VH	Α	12, 13, 14, 15
SAX J1711.6–3808	$17 \ 11 \ 37.1$	-38 07 06		LH,HS	в	17
GRS 1716–249 e	$17 \ 19 \ 36.93$	$-25 \ 01 \ 03.4$		LH	В	19,20
XTE J1720–318	17 19 59.06	-31 44 59.7		LH:,HS	С	22,23
KS 1730–312	$17 \ 33 \ 37.6$	-31 13 12	30''	LH,HS	\mathbf{C}	25
GRS 1737–31	$17 \ 40 \ 09$	$-31 \ 02.4$	30″	LH	в	27,28
GRS 1739–278	$17 \ 42 \ 40.03$	-27 44 52.7		LH,HS,VH	Α	30,31,32,33
$1 \ge 1740.7 - 2942$	$17 \ 43 \ 54.88$	-29 44 42.5		LH,HS,J	Α	35,36,37,38
H 1743–322	$17 \ 46 \ 15.61$	$-32 \ 14 \ 00.6$		HS,VH	Α	40,41,42,80,81
A 1742–289	17 45 37.3	-29 01 05		HS:	С	43,44,45
SLX 1746–331	$17 \ 49 \ 50.6$	-33 11 55	35''	HS:	\mathbf{C}	47,48
XTE J1748–288	$17 \ 48 \ 05.06$	-28 28 25.8		LH,HS,VH,J	Α	50,51,52,53
XTE J1755–324	17 55 28.6	-32 28 39	1'	LH,HS	в	55,56,57
1755–338 (V4134 Sgr)	17 58 40.0	-33 48 27		HS	в	59,42,60,61
GRS 1758–258	$18 \ 01 \ 12.67$	-25 44 26.7		$_{\rm LH,HS,J}$	Α	63,38,64,65
EXO 1846–031	18 49 16.9	-03 03 53	11″ ^f	HS	С	
XTE J1908+094	$19 \ 08 \ 53.08$	+09 23 04.9		LH,HS	в	68,69,70
1957+115 (V1408 Aql)	$)19\ 59\ 24.0$	$+11 \ 42 \ 30$		HS	\mathbf{C}	72,42,73,74
XTE J2012+381	20 12 37.70	+38 11 01.2		LH,HS	в	76,77,78

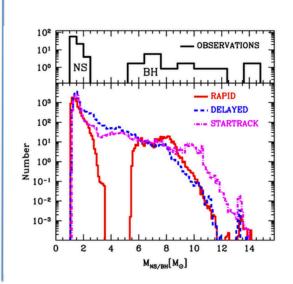
~20 black holes with a dynamical measurement of the mass


Compact Object Masses Determined via Dynamics

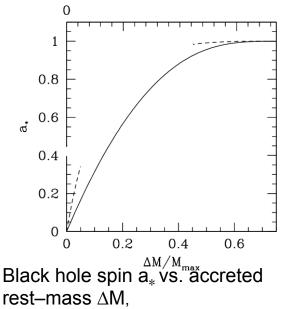
NS in black BHs in red

is there a gap between~2-5 M_{\odot}

the most massive black holes (~15 M_{\odot}) are found in HMXBs.


J. Casares, P.G. Jonker, and G. Israelian 1701.07450.pdf

Is this Distribution Telling us something about Supernova??


Mass distribution of compact SN remnants from theory

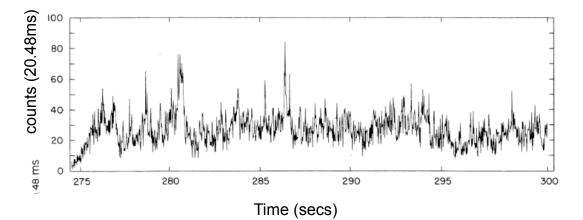
J. Casares, P.G. Jonker, and G. Israelian 1701.07450.pdf

Black Holes Growth in Binaries

- Since HMXBs only 'live' for ~10⁷ years and at the Eddington limit for a 10M BH accrete at
- dM/dt~1.4x10¹⁹ gm/ sec=2x10⁻⁷M_☉/yr
 - if the efficiency of converting mass to luminosity is 10%
- they can increase their mass by only 20%
- Therefore HMXB BHBs are born massive AND their spin is also 'natal' (how much angular momentum can be accumulated, King and Kolb 1999)- to get high spin need to accrete at least ~1/2 of the final mass

in units of the final mass M_{max} at maximum spin (solid line,bottom axis),

How Can We Observe Black Holes

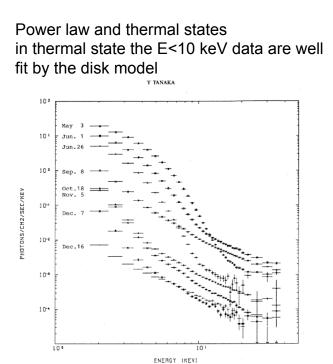

- If a black hole is a 'place' where radiation cannot escape to infinity how can they be observed ?
- Dynamical effects on 'nearby' material
- "Shining" black holes- a black hole can be a place where accretion occurs and as we have seen the process of accretion around a compact object can produce huge amounts of energy and radiationmaking the black hole 'visible'

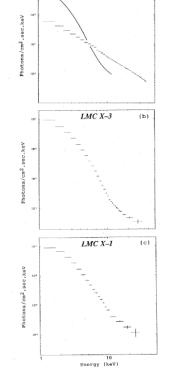
General properties of emission from black hole systems

- Emission usually variable on wide variety of timescales
 - Galactic black hole binaries : millisecond and up
 - AGN : minutes and up
 - Most rapid variability approaches light-crossing timescale limit of physical size of object (τ~R/c)

General properties of emission from black hole systems

- Emission usually variable on wide variety of timescales
 - Galactic black hole binaries : millisecond and up
 - AGN : minutes and up
 - Most rapid variability approaches light-crossing timescale limit of physical size of object (τ~R/c)




General properties of emission from black hole

systems

- Significant emission over very broad spectral range (radio to hard Xray or gamma-rays)-NS and WDs tend to have 'thermal' like spectra (<u>relatively</u> narrow in wavelength)
- Lack of a signature of a surface - not a pulsar, no boundary layer emission (no x-ray bursts), no 'after glow' from cooling
- ACTIVE GALACTIC NUCLEI BINARIES MCG 2-58-22 (AGN) CYG X-10 10 10 10 10 10 ю 10 10" 10 ю 100 50 10 IO ю in 10 10 ENERGY (keV)
- unique x-ray spectrum

X-ray Spectra of Stellar Mass Black Holes

Cyg X-1

(a)