todays lecture

- Line of sight effects
- Effect of magnetic field on accretion
- How to derive the mass of the compact object
- Accretion disk (start)

Ahumada Mena,	Tomas							
Carvajal, Vivian	Frances	Oral Presentations						
Crnogorcevic,	Milena	14 students have not presented vet after						
DeMartini,	Joseph	today we have only 9 lectures: the math is						
Dittmann,	Alexander	obvious						
Fu,	Guangwei	obvious						
Grell,	Gabriel	If no one volunteers I will easign talke in						
Hammerstein,	Erica	II no one volunteers i will assign taks in						
Hinkle,	Jason	reverse alphabelical order, e.g. Zhiyu would be						
Hord,	Benjamin	next, then Carrie, Yvette etc. Alming for 2 per						
Ih,	Jegug	lecture.						
Karim,	Ramsey	This will start April 16 and then						
Koester,	Kenneth	April 18, April 23, April 30, May 2, May 7 and						
Marohnic,	Julian	May 9 and the 'last class'						
Mundo Santiago,								
Park,	Jongwon	I will consider changing this if the next person in line agrees						
Teal, '		in inte agrees.						
Thackeray,	Yvette							
Villanueva	Vicente	Red has given talk						
Volpert,	Carrie							
Ward,	Charlotte							
Williams,	Jonathan							
Yin,	Zhiyu							

Papers Open for Selection Today

Next Paper(s) • Modelling the behaviour of accretion flows in X-ray binaries Everything you always wanted to know about accretion but were afraid to ask: Done, Gierlí nski & Kubota 2007A&ARv..15....1D Sec 1 and 2 ONLY-OR Sec 7 only this is a very long article!

2014MNRAS.437.1698 X-ray emission from star-forming galaxies - III. Calibration of the LX-SFR relation up to redshift $z \approx 1.3$ Mineo, S.; Gilfanov, M.; Lehmer, B. D

Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1: Trümper, J., Pietsch, W., Reppin, C., et al. 1978, ApJ, 219, L105 (503 citations)

 Modern Review Article :"Cyclotron lines in highly magnetized neutron stars R. Staubert et al 1812.03461.pdf" its long do not need to cover secs 4.4,4.5,4.6,5.0,7.0,8.0)

			Apr 29 MON	Apr 30 TUE	May 1 WED	Мау 2 тни	May 3 FRI	May 4 SAT	May 6 MON	May 7 TUE	May 8 WED	Мау 9 тни	May 10 FRI
 No one date is 	No one	18 participants	✔10	✓7	✓8	✓6	✔10	✓8	✓11	✓9	✓11	✓9	✔13
	date is	B Richard Mushotzky											
	strongly	e Ben	~	~	~		~		~	~	~		~
	preferred - 5 people need to respond	e Julian		~					~	~		~	~
		😝 Milêna	~		~		~	(~)	~		~		~
		🕒 Sergio	~				~				~		~
		O loe	(~)	~	~			~	(~)	~	~		
		e Ramsey						(~)	~	~	~	~	× .
•	May 10	😫 Gabe	×.		(~)				×.		(~)		
	, has the	e jason	×.		×.	×.	(~)	(~)	×.		×.	~	< <>>)
	most	e Jongwon					×.						× .
•	Please	🕒 Tomas					(~)	×.	(~)	×.	×.	×.	(✔)
	adiust	😫 Erica	×.				×.		× .				× .
	vour	😝 Zhiyu	×.		× .				×.		×.		
	preferred	😝 Vivian Carvajal			× .	×.	× .	(✔)			× .	×.	× .
	dates	e Alex	× .		×.		×.	× .	×.		×.		× .
		e Teal's Deal		~		~		× .		~		~	× .
		Rye Volpert		~		~				~		~	
		Jonathan Williams		~		× .				× .		~	
		Charlotte Ward	\sim	\sim		\sim	\sim			\sim		\sim	\sim

Geometry of heated accretion disk + corona in LMXB

Accreting Magnetic Neutron Stars Longair 14.5.3

Effect of magnetic field

- flow of ionized gas is channeled by the field
- Photon production in a strong field is different (cyclotron radiation)- will not discuss further (see Longair 8.2)- the spectral feature is at an energy $E = (h/2\pi)m_eB = 11.6B_{12}keV$, where $B = 10^{12}B_{12}G$.

Paper to discuss (Discovery paper: Trumper et al 1978 Trümper, J., Pietsch, W., Reppin, C., et al. 1978, ApJ, 219, L105

Modern Review Article :"Cyclotron lines in highly magnetized neutron stars R. Staubert et al 1812.03461.pdf" its long do not cover secs 4.4,4.5,4.6,5.0,7.0,8.0)

Fig. 1. X-ray spectrum of Her X-1 as obtained in a ba

Accreting Magnetic Neutron Stars

- Effect of magnetic field
 - flow of ionized gas is channeled by the field
 - Photon production in a strong field is different (cyclotron radiation)
- When/where does the magnetic field dominate the accretion flow?
- The magnetic energy density is $B^2/8\pi$, and the kinetic energy density of the accreting matter is $1/2\rho v^2$, where ρ is the density and v is the typical velocity. So need $B^2/8\pi < 1/2\rho v^2$
- Assume spherical symmetry so accretion rate $\mathcal{M}=4\pi R^2 \rho v$; v is on the order of the free fall velocity sqrt(2GM/R); replace R by the Schwarzschild Radius 2GM/c²

One gets B<6x10¹⁷($M/10^{17}$ gm/sec)(R/10km)^{-5/4} (M/M_{\odot})^{1/4} gauss

If the Magnetic Field is Strong (As In NS Pulsars)

- If magnetic pressure dominates over thermal pressure the magnetic field channels the accretion flow and matter flows along field lines that connect to the magnetic polar regions:
- As a result, almost all of the accretion energy is released in a "hot spot" near the two magnetic poles.
- If the magnetic axis is not aligned with the rotational axis, then as the star rotates we see more or less of the hot spot, and hence see pulsations in the X-rays.
 Figure 8: Accretion in a strong accretion disk is held off the neutr by the rotating magnetosphere.²³

Figure 8: Accretion in a strong (~ 10¹² Gauss) magnetic field. Note that the accretion disk is held off the neutron star surface by the centrifugal barrier formed by the rotating magnetosphere.²³

Cominsky (2002)

Accreting Magnetic Neutron Stars Longair 14.5.3

- When/where does the magnetic field dominate the accretion flow? (following C. Miller)
- The magnetic energy density is $B^2/8\pi$, and the kinetic energy density of the accreting matter is $1/2\rho v^2$, where ρ is the density and v is the typical velocity.
- For a dipolar field, $B = \mu/r^3$, (μ is the magnetic moment) and the matter radial free fall velocity is

 $v = v_{ff} = sqrt(2GM/r).$

Longair 14.5.3

Accreting Magnetic Neutron Stars (Cole Miller)

By continuity, $\rho v_{ff} = dM/dt/(4\pi r^2)$ (gas flow) (dM/dt= \mathcal{M}) Magnetic energy density =B²/8 π

Notice the radial dependences

```
magnetic energy density goes as r<sup>-6</sup>
```

material energy density goes as $r^{-5/2}$.

- The magnetic stresses thus increase more steeply with decreasing radius than the material stresses Therefore one expects that far from the star, material stresses dominate
- Close to the star, magnetic stresses will dominate if the field is strong enough;
- A magnetic moment of $\mu_{30} = 10^{30} \text{ G cm}^3$ which gives a surface field of ~10¹² G is typical of neutron stars in high-mass X-ray binaries.

radius of a neutron star is $R \approx 10^6$ cm, the accretion flow onto a strongly magnetized neutron star is dominated by the magnetic field.

Where Does the Magnetic Field Start to Dominate?

the **Alfvén** radius is the radius at which the pressure due to the pulsar's magnetic field equals the ram pressure of infalling material.

So : $\rho v_{ff} = \mathcal{M} / (4\pi r^2)$ The free fall velocity $v_{ff} = (GM_x/2r)^{1/2}$

The Kinetic energy $E_{kinetic}=1/2 \rho v_{ff}^2 = \mathcal{M} \sqrt{G} M_x r^{-5/2} / 8\pi \sqrt{2}$ The magnetic energy is $E_{mag} = B^2 / 4\pi = \mu^2 / 4\pi r^6$ The magnetic field is important for accretion if $\rho v_{ff}^2 < (B^2 / 8\pi) (R/r)^6$ where R is the NS radius and r is the distance from the center

Where Does the Magnetic Field Start to Dominate?

the Alfvén radius is the radius at which the pressure due to the pulsar's magnetic field equals the ram pressure of infalling material.

- Balancing the two one finds that the Alfven radius is
- $r_A = [2\pi^2/G \mu_0^2]^{1/7} \{B_s^4 R_s^{12} / M_* \mathcal{M}^2\}^{1/7} eq. 14.60 Longair$

Or putting in typical numbers

- $r_{A} \sim 3.2 \times 10^{8} \mathcal{M}_{16}^{-2/7} \mu_{30}^{4/7} M_{*}^{-1/7} \odot cm$: notice dependencies
- For a solar mass neutron star accreting at the Eddington luminosity,

L = $\mathcal{M} \eta c^2$ = 1.3 x 10³⁸ ergs/sec. Adopting η = 0. 1, B = 10⁸T and R_{*} = 10 km, we have

 $r_A = 10^3$ km, ~100 times the radius of the neutron star. But $r_A \sim r_*$ for a white dwarf

Fig. 1.— Rough sketch of the accretion flow in a disk being picked up by a strong neutron star magnetic field. From http://lheawww.gsfc.nasa.gov/users/audley/diss/img203.gif

• Putting in typical numbers the radius where magnetic and material stresses are equal is the Alfven radius

$$r_A = \left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7} = 3.2 \times 10^8 \dot{M}_{17}^{-2/7} \mu_{30}^{4/7} \left(\frac{M}{M_\odot}\right)^{-1/7} \, {\rm cm} \; . \label{eq:r_A}$$

 M_{17} is the accretion rate in units of 10^{17} gm/sec- why do we scale it this way??

So How Does Matter Get In??

- For luminous X-ray sources, the immediate vicinity of the neutron star is magnetically dominated
- Matter can, however, be accreted onto the surface of the neutron star, if the matter flows along the magnetic field lines onto the poles of the rotating neutron star

• releasing the binding energy of the infalling matter as radiation

in an *accretion column* associated with the infall of matter onto strongly magnetic neutron stars.

An Additional Effect

- If the magnetic field is weak enough to allow a disk to form, but still strong then ...
- Since the magnetic field lines are pinned to the compact object, and have an angular velocity equal to Ω *, the angular velocity with which the compact object rotates.
- At radii $R \ge R_A$, the accreting gas rotates with an angular velocity $\Omega(R) = (GM_*/R^3)^{1/2}$.
- At radii $R \le R_A$, the gas flows along the magnetic field lines, and hence rotates with an angular velocity $\Omega(R) = \Omega_*$.
- For accretion to occur, $\Omega_* \leq (GM_*/R_A^3)^{1/2}$
- Numerically, this requires that $\Omega_* < 2 \sec^{-1} \mu_{30}^{-6/7} \mathcal{M}_{16}^{-3/7} M_*^{5/7}$
- \mathcal{M}_{16} in units of 10¹⁶ gm/sec, M* in solar units, μ_{30} is the magnetic moment of the star, measured in units of 10³⁰G cm³;
- If the NS rotates more rapidly than this, gas will be unable to accrete.(Ryden 2016)

Pulsars

- The rate of change of the pulse period can
 - measure the orbital period of the source
 - The accreted angular momentum (e.g. the amount of material accreted)
- (dP/dt)/P~(L/10³⁷)^{6/7} (Ghosh and Lamb 1978); Longair 14.62, 14.63
 Spin-up is the result of the torque exerted by the accretion disk on the magnetic field of the neutron star.

The NS is accreting angular momentum from the disk at the rate $\mathcal{M}R^2_A\Omega(R_A)=\mathcal{M}(G\mathcal{M}_*R_A)^{1/2}$

 $log_{10} (dP/dt)/P = -4.4 + log_{10}PL_{37}^{6/7}$ L₃₇ is the luminosity in units of 10³⁷ ergs/ sec

Violation of Eddington Limit ??

- The accretion rate of, ~ 0.1 the Eddington limit falls onto a surface area only 10^{-3} of the star !
- So the local flux generated >> Eddington limit
- For such accretion to persist, the radiation cannot escape back up the accretion funnel (remember the incoming material is interacting with the radiation for the Eddington limit to be defined).
- Instead the radiation has to come out where there is little or no accreting material (**out the sides**).
- The Eddington flux is a limit only for spherically symmetric systems, and in this case we have a system that is very aspherical
- the radiation pattern can be a "fan beam" (radiation escaping out the sides), so that we might get two peaks per cycle from the funnel (one from one side, one from the other) as opposed to the one peak we would expect if this were just a thermally glowing hot spot.

Origin of Field ?

- If the field is due to the 'original' star The fields in MS stars are ~1G.
- For a MS progenitor of radius 4x10¹¹cm (the sun has a radius of 7x10¹¹cm) the star would contain a magnetic flux of ~510²³ Gcm² (πr²B)
- If flux is conserved during the collapse then a neutron star with the same flux would have surface field strength of 5x10¹¹G, sufficient for a pulsar
- However no one really knows if flux is conserved in the formation of the NS during the Supernova explosion and collapse and there are good reasons to believe that this is not true

Mass of the NS Star- Not in Longair

• In order to measure the mass of the neutron star and its optical companion we need to measure the mass function. For a circular orbit this is

 $f = P_{orb} K_{O}^{3} / 2\pi G = M_{x}^{3} \sin^{3} i / (M_{o} + M_{x})^{2}$

- P is the period of the orbit and i is the inclination of the orbital plane to the line of sight. K₀ is the semi-amplitude of the velocity of the companion star
- f gives a strict lower limit on the mass of the x-ray source

• K_X and P can be obtained very accurately from X-ray pulse timing delay measurements

• K_o is measured from optical spectra for the companion

Orbit

7

- Sign and phase of the pulses are due to the Doppler effect
- Amplitude of the sine pulse curve gives the size of the orbit (39.75 lt sec) with a 2.09 day orbit
- Eclipses are due to occultations of the NS by its companion
- Circular orbit from shape of time variation of pulses
- Get mass of system and orbital parameters
- Period of 4.8 sec shows that it must be a collapsed object (NS)

$$v \sin i \equiv \frac{Ac}{\tau_0} = 415.1 \pm 0.4 \,\mathrm{km \, s^{-1}},$$

 $\sin i \equiv \frac{T}{2\pi} v \sin i = (1.191 \pm 0.001) \times 10^{12} \,\mathrm{cm},$

 $\frac{M^3 \sin^3 i}{(M+m)^2} \equiv \frac{(2\pi)^2}{GT^2} (r \sin i)^3 = (3.074 \pm 0.008) \times 10^{34} \,\mathrm{g} \,.$

Mass Function-Longair 13.33

- $F(m_1, m_2, i) = m_1^3 sin^3 i / (m_1 + m_2)^2$ ٠
- Re-writing this as $M_x = F_x q(1+q)^2 / sin^3$

٠

q=ratio of the mass of the x-ray star to its companion

The delays in the observed arrival time of the pulses gives $a_2 \sin i/c$ and the period thus $F(m_1, m_2, i)$ The duration of the eclipse tells us about the star size

FIG. 1.—Eclipse half-angles in the equatorial plane, for cases in which the eclipsing star is nonrotating and fills its tidal lobe, and in which it rotates synchronously with the binary orbital period and fills its Roche lobe.

For Cen X-3 he eclipse lasts 0.488 days out of the 2.1 day period or an opening angle of 43 degrees (.488/2.1/2). We know the mass function

 $M_*^3 \sin^3/(Mx+M_*)^2=15$ in this case) $M_x \sim 1$

Measurement of Orbit Via Pulse Timing

Neutron Star Orbits

Charles and Seward

How much energy is released by accretion onto a compact object?

- Consider matter in an accretion disk assume that...
 - The matter orbits in circular paths (will always be approximately true)
 - Centripetal acceleration is mainly due to gravity of central object (i.e., radial pressure forces are negligible... will be true if the disk is <u>thin</u>)

$$\frac{v^2}{r} = \frac{GM}{r^2}$$

• Energy is..

$$E = \frac{1}{2}v^2 - \frac{GM}{r} = -\frac{GM}{2r}$$