Strong gravity and accreting black holes

- Finish how to get the masses of black holes
- The AGN Zoo
- Black Hole systems
 - The spectrum of accreting black holes
 - X-ray "reflection" from accretion disks
 - Strong gravity effects in the X-ray reflection spectrum

Spectra of accreting black holes

4/12/11

Spectra of accretion flow: disc-C. Done

- Differential Keplerian rotation
- Viscosity : gravity \rightarrow heat
- Thermal emission: $L = A\sigma T^4$
- Temperature increases inwards
- GR last stable orbit gives minimum radius $R_{\rm ms}$
- $a=0: T_{max} = (M/M_{\odot})^{-1/4} (L/L_{Edd})^{1/4}$
 - 1 keV (10⁷ K) for 10 M_{\odot}
 - 10 eV (10⁵ K) for $10^8 M_{\odot}$
- $a=0.998 T_{max} \sim 2.2 T_{max} (a=0)$
- AGN: UV disc, ISM absorption, mass more uncertain. XRB...

What Do Broad Band Spectra of Black Holes Look Like

Derivation (See Rosswog and Bruggen sec 8.4)

- Derivation of previous eq
- L=2πR_{in}²f(cos i) ⁻¹; f is the flux from the surface of the disk, R is the radius
- Using the black body law

 $L=4\pi\sigma R^2 T_{in}^4$ σ is the Stefan- Boltmann constant

In fitting the spectrum T_{in} is directly observable We can thus take the 2 equations to get the innermost radius $R_{in} = sqrt(L/4\pi\sigma T_{in}^{4})$ and $T_{in} \sim 3M_{10}^{-1/4} keV$

$$T(r) = 6.3 \times 10^5 \mathcal{M}_{\mathcal{E}_{dd}}^{1/4} M_8^{-1/4} (r/r_s)^{-3/4}$$

(\mathcal{M}_{Edd} is 4/1/2/2010 to rate in Eddington units, $T=T_{in}$ for $r=r_s$)

Real Objects

 Amazingly data for galactic black holes agrees with the simple theory

 $L_{\rm bol} = \eta L_{\rm E} \propto \eta M$,

Todays Class

Review of Accretion Disk fits to AGN spectra

- Broad band spectra are not so simple- what's there in addition to the accretion disk
 - the geometry of the innermost regions
 - brief review of Comptonization
- Effects of 'reprocessing' the disk 'sees' the hard x-ray radiation and there are measurable effects

AGN

- AGN are very massive and so the predicted spectrum of the accretion disk is 'cool'
- T~8x10⁴ k for a Eddington limited M~10⁸M_☉ black hole

Malkan and Sun 1989

Can Fit AGN UVoptical data with accretion disk models

4/12/11

Fitted Parameters for UV Disk Fits

- Results are 'reasonable' but not unique
- Now have independent mass estimates- results can be checked
- Find that values are not quite right- need more complex accretion disk models (surface is not BB relativistic effects)

Effects of Strong Gravity (Spin), Inclination Angle on Spectrum of Disk (Merloni 2010)

Zheng et al. 1997; Li et al. 2005; Shafee et al. 2006; McClintock et al. 2006; Nowak et al. 2008; Steiner et al. 2010; Kubota et al. 2010

Life is Not So Simple

The broad band spectra of both AGN and Galactic black holes have major deviations from disk spectra

Normalized Log(vLv) (Arbitrary unit)

 $\overline{}$

AGN1 & AGN2

106

Emission from dust?

 Average Spectral Energy Distributions for 3 Classes of Objects Selected as X-ray Emitting AGN in a given xray₁, uninosity bin (Polletta et al 2007)

AGN

- A huge amount of work has gone into observing AGN across the entire electromagnetic spectrum
- There is a strong relationship between the optical-UV and the x-ray

4/12/11

Effects of Dust Can Be Dominant

- Remember for the M~10⁸ a T~5x10⁵ K so 'roll over' i is in the FUV
- E_{max}~3kT~ 10¹⁶ hz
- The effects of dust (Reddening) go at λ⁻²
- much bigger effects at shorter (UV) wavelengths- major effect on determination of temperature of accretion disk fits to quasars.

Figure 6. A fit for 0205 + 024 with and without a correction for internal reddening of E(B-V) = 0.05. The best fit parameters are

Laor 1990

4/12/11

Real Data

Where do the high energy photons arise?

In both AGN and Black Hole binaries it is thought that this spectral component is due to Comptonization of a 'seed photon' population of for highly energetic electrons produced 'above' the disk

Comptonized Spectra

- The free parameter for the power law slope is y which controls the spectral slope
- However the smaller τ is larger T has to be to get the same slope - the 'bumpier' the spectra are
- spectrum steeps at high E (max T)
- y~1 is the usual case

■y~4kT/m_ec²(max τ,τ^2) ■slope α ~-3/2+(9/4+y)^{1/2}

Figure 1.8 a) shows how the spectrum built up from repeated thermal Compton up scattering events for optically thin ($\tau \leq 1$) material. A fraction τ of the seed photons (red) are boosted in energy by $1 + 4\Theta$ and then these form the seed photons for the next scattering, so each scattering order (thin lines: blue in electronic version) is shifted down and to the right by the same factor, as indicated by the arrows (cyan), giving a power law (green solid line). b) shows that the same spectral index can be obtained by higher Θ and lower τ but the wider separation of the individual scattering orders result in a bumpy spectrum (green solid line) than a smooth power law (green dotted line).

19

4/12/11

AGN

- 3 Broad bands of energy
- Disk dominates in optical-UV
- Comptonization in X-ray
- Reprocessed radiation in IR

102

More On BH Spectra

- Relationship of components
- Why do we think disk exists
- Geometry of central regions
- Reprocessing- how can we learn about the material in and around the black hole from spectral and temporal signatures in the spectra
- Spin and its influence

X-ray to UV Relationship

- Over 10³ in luminosity the UV and x-ray track each in type I AGN
- Direct connection of disk emission to xrays

Lusso et al 2010²²

How do we know that there really is a disk??

- Recent microlensing observations of a few QSOs have 'resolved' the x-ray and optical sources
- The optical source size and dependence of luminosity on wavelength are consistent with standard disk theory- e.g. Microlensing perturbations to the flux ratios of gravitationally lensed quasar images can vary with wavelength because of the chromatic dependence of the sources apparent size. 4/12/11

MicroLensing

As we saw last time in a disk T(r)~T_{max}r^{-3/4}

- Writing it out in full
- $T_{eff}(r) = \{(3G^2M_{BH}^2m_pf_{Edd})/2c\sigma_{SB}\epsilon r^3)\}^{1/4} (1-r_{in}/r)^{1/4}$
 - f_{Edd} is the Eddington ratio M_{BH} is the BH mass, s_{SB} the Stefan Boltzman constant , ϵ is the relation between energy generation and mc²
- Thus the disk emits most of its short wavelength light at small radii
- Integrating the disk temperature profile (Blackburne et al 2010) one gets that the half light radius as a function of size is

24

- $r_{1/2} \sim 1.7 \times 10^{16} \text{cm} (M_{BH}/10^9 M_{\odot})^{2/3} (f_{Edd}/\epsilon)^{1/3} (\lambda/\mu)^{4/3}$
- Inapther words the effective size $\sim \lambda/^{4/3}$

- The size of the disk is in Einstein radius units which are converted to cgs units with a model of the grav potential of the lensing galaxy
- To compare to model disks, have to assume and M_{BH}, f_{Edd}/ε

Figure 5. Posterior probability distribution for the size of PG 1115 in the *i'* band, resulting from considering both *i'*-band and X-ray flux ratios. The size of PG 1115 in the size

X-ray MicroLensing Also

 Probability distribution of optical and x-ray source size (Zimmer et al 2010, Chartas et al 2008)

Results are In Rough Agreement With Theory

- Chartas 2008
- X-rays are emitting near the Schwarzschild radius
- Optical ~10x further out

Spectral States of Black Hole Binaries

- thought to be due to changes in disk structure not seen in AGN (yet)
 - Dramatic changes in continuum – single object, different days
 - Underlying pattern in all systems
 - High L/L_{Edd} : soft spectrum, peaks at kT_{max} often disc-like, plus tail
 - Lower L/L_{Edd}: hard spectrum, peaks at high energies, not like a disc (McClintock & Remillard 2006)

Where do the Spectral Components Arise?

Optically-thick part of the accretion disk emits thermal spectrum... black body radiation with

$$T = \left(\frac{3GM\dot{M}}{8\pi r^3\sigma_{\rm SB}}\right)^{1/4}$$

X-ray "tail" probably comes from a hot corona that sandwiches the disk... inverse Compton scattering of thermal disk emission by electrons with T~10⁹K

Cygnus X-1 Spectral States and Ideas on Geometry

In galactic black holes there is a pattern to the spectral/intensity changes

The high soft state is disk dominated

The low hard state is dominated by the x-ray power law

The 'variability' - represented by the root mean square (RMS) variations is also related to the state

It is believed that these states are related to the geometry of the accretion flow

 Many (but not all) black hole binaries follow a similar track

 (each color is a different object)

Even More Possible Geometries

From C. Done

Components in High State- R. Reis 2010

Todays Lecture and ...

Need your project titles on Thursday------

Reprocessing- how can we learn about the material in and around the black hole from spectral and temporal signatures in the spectra

Spin and its influence

 X-ray "reflection" imprints well-defined features in the spectrum 4/12/11

Disc X-ray reverberation

 Some are reflected (iron line and reflection continuum)

The absorbed fraction is thermalised and re-emitted at the local disc temperature

'Reflection'- Reprocessing of Photons in the Disk

The larger cross section at low energies of photoelectric absorption $\tau_{Thompson} = 1$

means that low E photons are absorbed not scattered and some are re-emitted as lines via fluorescence. Compton scattering reduces the energy of the high energy photons. The combination produces a characteristic peak in the spectrum.

Iron Ka fluorescence from the Sun

energy levels for Cu

Parmar et al. (1984) Solar Maximum Mission (Benne Crystal Spectrometer)

With very high resolution there are 2 Fe K flourescent feature $K\alpha 1$, $K^{A4}_{\alpha} 2$

X-ray reflection "Reflection' is Compton scattering

Important consequence of corona: underlying disk is irradiated by intense X-ray source... results in a characteristic spectrum being "reflected" from the disk surface layers Different amounts of flux can change ionization of disk

4/12/1 NGC4593 (Active Galactic Nucleus; Seyfert 1)

46

Relativistic effects- C. Done

- Relativistic effects (special and general) affect all emission (Cunningham 1975)
- Hard to easily spot on continuum components
- Fe Kα line from irradiated disc
 broad and skewed! (Fabian et al 1989)
- Broadening gives an independent measure of Rin – so spin if ISO (Laor 1991)
- Models predict increasing width as go from low/hard to high/soft states

Relativistic effects imprint characteristic profile on the emission line...

Observations of relativistic emission lines

- First seen in 1994 with ASCA observatory
- 5 day observation of Seyfert-1 galaxy MCG-6-30-15
- Needed long observation to collect enough photons to form detailed spectrum

Power-law continuum subtracted ASCA: Tanaka et al. (1995) 49

Relativistic Effects

- Light rays are bent by strong gravity- making the geometry rather complicated
- Do not know 'where' x-ray source is try to use data to figure it out

- Modern XMM-Newton observations
- Confirm relativistic line with extreme redshifts
- If no line emission from within ISCO, need to invoke spinning black hole to get strong enough redshifting

Power-law continuum subtracted XMM: Fabian et al. (2002)

if we only knew where the x-rays come from ($h_s \sim$ r_{s)} from time váriability arguments

5 10 15 20

-20 -15 -10 -5

Strong light bending

Spectra are quite complex...

Why Measure Spin

- BH has only 3 measurable properties Mass, spin, charge.
- Black hole spins affects
 - the efficiency of the accretion processes, hence the radiative output
 - how much energy is extractable from the hole itself
 - the retention of black holes in galaxies
 - gravitational wave signature
 - possible origin of jets.
- Origin of BH Spin
 - natal
 - history

Spin

- For galactic black holes- not enough accretion to account for spin being due to accretion of angular momentum- need to accrete ~3/4 of the mass to spin it up to the maximal spin
- If accreting at the Eddington limit takes a very long time (~10⁸ yrs)
 - too long for wind fed or Roche Lobe systems
 - too much mass for low mass companions
- Spin is natal

Spin

- For supermassive black holes- If accreting at the Eddington limit ($\sim 10^8 M_{\odot}$ accretes 0.25 M_ \odot /yr) so takes $4x10^8$ yrs to double its mass and spin up
- Spin can be due to accretion
- Requires 'organized' accretion of angular momemtum

Alternatively spin could be due to mergers of black holes

mergers only (left), mergers and prolonged accretion (center), and mergers and chaotic accretion

L.Brenneman

4/12/11

Present knowledge of spin in Galactic Black Holes- R. Reis 2010

