Supernova Remnants and Associated High-Energy Phenomena PWNe and compact objects

Samar Safi-Harb

samar.safi-harb@umanitoba.ca Dept of Physics & Astronomy U. of Manitoba (Canada)

Paris, July 7-8 (2014)

ASTRO-H summer school

Outline

- Supernova Remnants:
 - Significance (big picture)
 - Shock Dynamics, Classfication, Evolution (briefly)
 - High-Energy Emission Processes (briefly)
 - High-Energy Observations & Statistics:
 - SNRcat (X- and gamma-rays)

Non-thermal Emission (to be) covered by Felix Aharonian

Pulsar Wind Nebulae

Paris, July 7-8 (2014)

Associated Compact Objects (Diversity)

Prospects with ASTRO-H

Next lecture

Electromagnetic spectrum

Copyright © 2005 Pearson Prentice Hall, Inc.

High-energy missions

NASA Swift, Nov. 2004-

JAXA Suzaku, July 2005- (happy birthday!) NASA NuSTAR, June 2012-

X-ray astronomy: Achieved in 40 years what optical astronomy achieved in 400 years! (a billion times improvement in sensitivity and a quarter of a million times improvement in angular resolution (Chandra)).

- MeV-GeV: Integral, Fermi, AGILE
- TeV: HESS, VERITAS, MAGIC, MILAGRO

The future: (x-rays) ASTRO-H (2015), ASTROSAT, eROSITA, NICER, HXMT, ... Athena (~2028) (gamma-rays): The Cerenkov Telescope Array

Stellar Evolution and Recycling of the ISM

SN Types

(not to scale)

Core Implosion - Supernova Explosion - Supernova Remnant

Type IA (Thermonuclear) Supernova

(NOT TO SCALE)

single degenerate Mass accretion from a companion

core-collapse II/Ia/Ib/Ic

double degenerate white dwarf+white dwarf merger

Paris, July 7-8 (2014)

SN Types

Paris, July 7-8 (2014)

Supernovae

SN1987A - LMC the youngest and "closest" one we have been monitoring

TO; EUGENE BEIER

SENSATIONAL NEWS ! SUPERNOVA WENT OFF 4-7 DAYS AGO IN LARGE MADEILENIC CLOUD, SO KK AWAY . NOW VISIBLE MADENITUDE 4NS, WILL REACH MAXIMUM MADENITUDE (-IND) IN A WEEK. CAN YOU SEE IT ? THIS IS WHAT WE HAVE BEEN WAITING 35D YEARS FOR!

> SID BLUDMAN (215) 546-3083

"To predict the year of explosion of a supernova is not harder than to predict the year of funding a big accelerator or a big detector. I expect that the date of the next supernova is 2003 +/- 15 years." Prof. L. Okun (1988)

Paris, July 7-8 (2014)

Cosmic Ray Accelerators

SNRs as CR accelerators up tp the "knee" (1 PeV):

- energetics (10%)
- power law spectrum
 - composition

102 yrs into CR discovery by Victor HESS!

SN1006 in X-rays: CR acceleration to~200 TeV

Non-Thermal rims

Thermal interior

The first evidence for CR acceleration to 100's TeV energies from X-ray (ASCA, 0.3-10 keV) observations of **SN1006**: *Koyama et al. 1995, Nature*

RXJ1713 in gamma-rays: A most powerful CR accelerator

The first resolved gamma-ray (TeV) image of an SNR (G347.3-0.5) providing unambiguous evidence for CR acceleration to multi-TeV.

HESS, Aharonian et al. 2004, Nature

Supernova RemnantsSo why bother?

- Nucleosynthesis (creators of heavy elements that are essential for life!)
- Cosmic Ray (CR) Acceleration
- Interstellar Medium (ISM)
- Cosmology (standard candles)

- Neutrino, gravitational wave, GR astrophysics
- Extreme physics (compact object)—next lecture

Paris, July 7-8 (2014)

- 185 A.D. (RCW86)
- 393 A.D.? (G347.3-0.5)
- 386 A.D.? (G11.2-0.3)
- 1006 (SN1006)
- 1181 (3C58)
- 1054 (Crab)
- 1572 (Tycho)
- 1604 (Kepler)--shown
- 1680? (CasA)

- 185 A.D. (RCW86)
- 393 A.D.? (G347.3-0.5)
- 386 A.D.? (G11.2-0.3)
- 1006 (SN1006)
- 1181 (3C58)
- 1054 (Crab)
- 1572 (Tycho)
- 1604 (Kepler)--shown
- 1680? (CasA)

Paris, July 7-8 (2014)

• 185 A.D. (RCW86)

- 393 A.D.? (G347.3-0.5)
- 386 A.D.? (G11.2-0.3)
- 1006 (SN1006)
- 1181 (3C58)
- 1054 (Crab)
- 1572 (Tycho)
- 1604 (Kepler)--shown
- 1680? (CasA)

?<1900ish?? G1.9+0.3

CHANDRA & VLA

Paris, July 7-8 (2014)

Y. Uchiyama's classification:

The "firefox" SNR!

SNR: Classification

Paris, July 7-8 (2014)

SNR Classification

Plerion=PWN

(ancient greek word pleres $\pi\lambda\eta\rho\eta s$)

Plerionic Composite

Paris, July 7-8 (2014)

Shell

SNR classification

S. Safi-Harb

SNR classification and X-ray emission: Thermal and Non-thermal

Shells (191):

- dominated by **thermal** X-ray emission from shock-heated plasma
- **non-thermal** X-ray emission due to particle acceleration at the SN shock

Plerions (filled-centre, 34):

• **non-thermal** emission due to **synchrotron** radiation from high-energy particles spiralling strong magnetic fields (aka pulsar wind nebula, PWN)

Composites (82):

- *plerionic (49)*: non-thermal X-ray emission due to a PWN
- thermal composites, aka mixed-morphology (34, including 8 with PWNe):
 - thermal X-ray emission (interior; *Rho & Petre 1998*)
 - Various models including evaporating clouds (*White & Long 1991*), thermal conduction (*Cox et al.*), a mix with ejecta...
 - recombining plasma: a new area in SNR astrophysics (*Suzaku*)

Paris, July 7-8 (2014)

Shock Dynamics

Paris, July 7-8 (2014)

Shock Jump Conditions

- Conservation of Mass
- Conservation of Momentum
- Conservation of Energy

$$\rho u = constant$$

$$P + \rho u^2 = constant$$

$$\frac{u^2}{2} + \frac{5P}{2\rho} = constant$$

assuming: no B, no E-losses due to Cosmic Rays e.g., t-independent **adiabatic** flow and mono-atomic gas

Paris, July 7-8 (2014)

Shock Jump conditions (shock frame)

$$\rho_{1} = \frac{\gamma + 1}{\gamma - 1}\rho_{0}$$

$$u_{1} = \frac{\gamma - 1}{\gamma + 1}u_{0}$$

$$P_{1} = \frac{2\rho_{0}u_{0}^{2}}{\gamma + 1}$$

$$\gamma = 5/3$$

$$\rho_{1} = 4\rho_{0}$$

$$u_{1} = \frac{1}{4}u_{0}$$

$$P_{1} = \frac{3}{4}\rho_{0}u_{0}^{2}$$

(1=downstram, 0 = upstream; compression ratio=4)

Paris, July 7-8 (2014)

Shock J	ump Con	ditions (La	ab frame)
	$u_0 \sim V_s$	$\gamma =$	= 5/3
$v_1 =$	$=rac{2}{\gamma+1}V_s$		
P_1	$=\frac{\rho_1\kappa I_1}{\mu m_H}$		$v_1 = \frac{3}{4}V_s$
$T_1 = 2 \frac{(\gamma - 1)}{(\gamma + 1)^2}$	$\frac{\mu m_H}{K} V_s^2$	$kT_1 = kT_s =$	$\frac{3}{16}\mu m_H \times V_s^2$
		$T_s~(K)~\sim 1.1$	$3 \times 10^5 (\frac{V_s}{10^7})^2$
	v (km/s)	Т (К)	(fully ionized gas)
	10000	1.13E+09	Y-ray regime
~1keV	1000	1.13E+07	A-lay regime
	100	1.13E+05	
Paris, July 7-8 (2014)	ASTRO-H SU	ummer school	UNIVERSITY MANITOBA

🗸 + 📕 - 🗸

X-ray temperature

$$T_s (K) \sim 1.13 \times 10^5 (\frac{V_s}{10^7})^2$$

(fully ionized gas)

	v (km/s)	Т		
	10000	1.13E+09	X-ray regime	
	1000	1.13E+07		
	100	1.13E+05		
Ho t	However: If there is another form of pressure, e.g. cosmic rays, then the compression factor at the shock can be >>4 and			

temperature will be lower than that derived

from the above $T=T(V_s)$ formula.

Some of the energy goes into cosmic rays,

as observed e.g. in young SNRs (Tycho, Kepler, CasA, SN1006...)

Paris, July 7-8 (2014)

ASTRO-H summer school S. Safi-Harb

UNIVERSITY

of Manitoba

Energy loss to CR

Paris, July 7-8 (2014)

Miceli+10

Paris, July 7-8 (2014)

The power of X-ray spectroscopy

ASTRO-H summer school S. Safi-Harb

Paris, July 7-8 (2014)

What do we get from fitting the X-ray spectrum of an SNR?

- Column density, N_H, impacting soft X-ray distance(=>D)
- **Temperature** (=>thermal continuum) ~ V_s²
- **Density** from

$$EM = \int n_H n_e dV$$

- Metal abundances:
 - enhanced? => ejecta
 - "solar/sub-solar" => ISM/CSM
- If non-thermal X-ray spectrum (featureless):
 - photon index

Paris, July 7-8 (2014)

- any spectral break?
- => acceleration process, B field, non-thermal plasma
- Normalization => Flux => Luminosity (isotropic)

$$L = 4\pi D^2 F$$

Some factors affecting Temperature measurement from X-ray spectroscopy

- Loss of energy to cosmic rays: hard non-thermal X-ray emission/ gamma-ray SNRs era (non-thermal shells and SNRs interacting with molecular clouds)
- Non-equilibrium ionization of plasma (young SNRs, low-density medium)
- Recombining, over-ionized plasma (mixed-morphology SNRs, molecular cloud interaction): Suzaku era
- Contamination by other components (e.g. ejecta/ISM/CSM, PWN)composite-type SNRs
- Evolutionary stage of the SNR; expansion into inhomogeneous medium

Paris, July 7-8 (2014)

SNR Evolution

Paris, July 7-8 (2014)

SNRs evolution

Phase 1

Phase 2

inwards

Free expansion

Expansion slows

Reverse shock propagates X-ray bright

Phase 3

Energy of expansion radiated away, bright optical filaments

Fade to invisibility

Reverse shock heats the SN ejecta (heavy elements) to Xray emitting temperatures: detected as (hot) thermal emission the X-ray spectra of young SNRs

(core-collapse) SNR components

Paris, July 7-8 (2014)

SNRs evolution

- Free Expansion Phase, <u>v=constant</u> (a few 100 yr); ejecta-dominated phase
- Adiabatic, Sedov-Taylor: <u>energy conservation</u> <u>phase (a few 10⁴ yr)</u>; swept-up mass > ejecta mass
- **Radiative**, Snow-plough: <u>momentum conservation</u> <u>phase</u> (bright in optical)
- Eventually, the SNR merges with the ISM (merging phase)

Paris, July 7-8 (2014)

Some useful equations

Free Expansion

R = vt, $v = (2E_0/M_{ej})^{0.5}$

~5,000-10,000 km/s Mach>1000 shocks

³ Sedov-Taylor $R_{\rm s} = \left(\xi \frac{Et^2}{\rho_0}\right)^{1/5},$

$$V_{\rm s} = \frac{dR_{\rm s}}{dt} = \frac{2}{5} \left(\xi \frac{E}{\rho_0}\right)^{1/5} t^{-3/5} = \frac{2}{5} \frac{R_{\rm s}}{t}$$

R~t^{1/4} v~t^{-3/4}

Radiative phase

$$t_{\rm rad} = 1.5 \times 10^{-13} \left(\frac{\xi E}{\rho_0}\right)^{1/3}$$
$$= 1.4 \times 10^{12} \left(\frac{E_{51}}{n_{\rm H}}\right)^{1/3} \, \rm{s} \approx 44,600 \left(\frac{E_{51}}{n_{\rm H}}\right)^{1/3} \, \rm{yr},$$
$$R_{\rm rad} = 7.0 \times 10^{19} \left(\frac{E_{51}}{n_{\rm H}}\right)^{1/3} \, \rm{cm} \approx 23 \left(\frac{E_{51}}{n_{\rm H}}\right)^{1/3} \, \rm{pc},$$

Paris, July 7-8 (2014)

SNRs evolution

Reverse Shock in Young SNRs Ejecta Dominated phase

Paris, July 7-8 (2014)

Mapping Heavy elements Kepler

410 yr old (1604AD) 19 ly across

Paris, July 7-8 (2014)

Red: Oxygen Green: Fe, Ne, Mg Blue: Silicon+ non-thermal

No Neutron Star! Type Ia explosion (with CSM)

X-RAY OBSERVATORY

ASTRO-H summer school S. Safi-Harb 0.75 Msec (~9 days) Reynolds et al. 2007

Tycho: la

Suzaku detection of Mn, Cr from Tycho (Tamagawa 2010)

Mn/Cr ratio=> Progenitor metallicity (Badenes et al. 2008)

Warren & Hughes 2005

ASTRO-H summer school S. Safi-Harb

SN1572

Mapping Heavy elements CasA: core-collapse

A surprise by NUSTAR (1Ms)

⁴⁴Ti produced in innermost regions of material ejected in CC SNe-same processes that produce Fe and ⁵⁶Ni

Si/Mg (Chandra): jet-induced explosion? Fe (Chandra) Ti (NuSTAR): decoupled from Fe!

(unlike expectation, implications on formation of compact object-later)

Grefenstette et al. 2014, Nature

Probing SN progenitors Nucleosynthesis

Transitioning to Sedov—>Sedov

~0.8-2.1 kyr

Kumar, SSH et al. 2014

caveats: Sedov phase assumed Uniform Ambient density Soft, enhanced abundances: Ejecta component Progenitor: >20 solar masses? (implications on black hole

formation!)

Hard component: solar abundances ISM/CSM

 n_0, τ , and E

Shock velocity, v_s (km s ⁻¹)	880 ± 70
Age, t (yrs)	$2,600^{+250}_{-200}$
Ambient density, $n_0 \ (\text{cm}^{-3})$	$0.51^{+0.15}_{-0.11}$
Explosion energy, E_0 (10 ⁵¹ ergs)	$0.18^{+0.08}_{-0.06}$
Swept-up mass, M_s (M _{\odot})	$15.6^{+4.5}_{-3.5}$

CTB109

(Sasaki et al. 104)

8.8-14 ky

(XMM)

~2.5-3 kyr

Park et al. 2007, Gonzalez & Safi-Harb 2003 Hughes et al. 01

Thermal X-ray Emission

continuum and line emission

Continuum: Brems (free-free emission), **recombination cont (free-bound)**, and two-photon emission.

Thermal bremsstrahlung: acceleration of electrons in Coulomb collisions with ions, nuclei or other electrons

Line emission from ionization and recombination: highly ionized elements, including O, Ne, Mg, Si, S, Ca, Fe in 0.5-10 keV (He-like and H-like ions for very hot plasma)

Paris, July 7-8 (2014)

Complications for spectral fitting =>SNR properties:

- Non-Equilibrium (NEI) effects
- Overionized, Recombining Plasma (RP)
- Energy Losses (CR) discussed
- Temperature equilibration (e- and p)
- Expansion in an inhomogeneous medium (e.g. RSG wind)

(all) best addressed with ASTRO-H (SXS)

Paris, July 7-8 (2014)

Thermal X-ray emission and Non-equilibrium ionization: NEI vs CIE

CSA'AS

NEI plasma

Ionization timescale:

electron density x time since passage of shock (age) n_e t (cm-3 s)

NEI: ne t < 1e13 cm⁻³ s

Paris, July 7-8 (2014)

Underionized Plasma-an example

Overionized/Recombining Plasma

Radiative recombination (RRC) due to recombination (free-bound) continuum.

> -Width prop. temp -t_rec ~1/n_e

The proportion of H-like ions is *larger* than that expected from kT_e: **overionized**, **recombining** plasma;

important in mixed-morphology SNRs/ interacting with Molecular clouds, including **IC443, W49B, W28**

Paris, July 7-8 (2014)

ASTRO-H summer school S. Safi-Harb CSA ASC

University

of Manitoba

kT _z > kT _{e=>} bump-like features in X-ray spectra of some thermal composites

$T_e vs T_{p;}$ Measurement of V_s

$$(T_e/T_p)_0 \propto v_S^{-2}$$

Te << Tp for fast-moving shocks (young SNRs)

=>can underestimate V_s from T_e

Line width measurements=>Ti

$$\sigma_{\rm E} = \left(\frac{E_0}{c}\right) \sqrt{\left(\frac{kT_{\rm i}}{m_{\rm i}}\right)}.$$

Ghavamian et al. 07: analysis of Balmer-dominated optical spectra from non-radiative shocks

thermal broadening

Paris, July 7-8 (2014)

Expansion in RSG wind

$$\rho_{CS} = \frac{M}{4\pi r^2 v_w} = Dr^{-2}$$
$$D_* = D/D_{ch}; D_{ch} = 1 \times 10^{14} gcm^{-1}$$
$$M_{sw} = 9.8D_* (R/5pc)M_{sun}$$

IIL/b

Sedov (adiabatic) phase

$$R = (\frac{3E}{2\pi D})^{1/3} t^{2/3}$$

$$v_s = 2R/3t$$

$$t_{wind}/\mathcal{P}_{uniform} = 1.247$$
Recall: uniform medium
$$R \sim t^{2/5}$$

$$V \sim (2/5) (R/t)$$

Chevalier 2005 (application): Kum<u>ar, SSH et al. 2014</u> Non-thermal high-energy emission (as probes for CR acceleration)

X-ray Imaging and Spectroscopy
Gamma-ray observations
Simulations

ASTRO-H summer school S. Safi-Harb

Paris, July 7-8 (2014)

Non-thermal X-ray emission: CR acceleration

Kepler

SN1604

SN1006

Tycho SNI 572

CasA

Blue/purple rims (hard X-rays): non-thermal hard X-ray emission indicating CR acceleration of electrons up to a 100 's of TeV.

How about the protons??

Paris, July 7-8 (2014)

Non-thermal emission: CR acceleration in Tycho

thin rim: modified shock, amplified B field

school

Synchrotron Radiation

particle index

$$N(E)dE = KE^{-\gamma}dE,$$

radio spectral index $\alpha = -$

$$\alpha = -\frac{(\gamma - 1)}{2}$$

$$I_{\nu} = K B^{(\gamma+1)/2} \nu^{-(\gamma-1)/2}$$

for $\alpha = 0.5 - 0.8$, $\gamma = 2\alpha + 1 = 2 - 2.6$

Paris, July 7-8 (2014)

Synchrotron Radiation

magnetic energy density

$$P_{sync} \sim \gamma^2 c \sigma_T U_B$$
$$U_B = B^2 / 8\pi$$

Total Electrons Energy (E₁-E2)

H=magnetic field

$$U_{\rm e} = 10^{12} \frac{L}{H^{3/2}} \frac{v_2^{1/2+\alpha} - v_1^{1/2+\alpha}}{v_2^{1+\alpha} - v_1^{1+\alpha}} \frac{(2\alpha+2)}{(2\alpha+1)} \quad \text{erg,}$$

$$U_{\rm T} = U_{\rm p} + U_{\rm m} = a U_{\rm e} + \frac{V H^2}{8 \pi},$$

Equipartition B (or H)

$$\boldsymbol{B} = 20 \left(\frac{(1+\eta)S_9 D_{kpc}^2}{\phi R_{pc}^3} \right)^{2/7} \mu \boldsymbol{G}$$

Paris, July 7-8 (2014)

Synchrotron Radiation (R-X)

• Radio emission: Presence of GeV electrons

$$h\nu = 0.5 \ (\frac{B}{100 \ microG})(\frac{E}{GeV})^2 \ GHz$$

• Non-thermal X-ray emission: TeV emitting electrons

$$h\nu = 13.9 \left(\frac{B}{100 \ microG}\right) \left(\frac{E}{100 \ TeV}\right)^2 \ keV$$

(Koyama et al. 1995, Nature)

Paris, July 7-8 (2014)

Other non-thermal processes:

gamma-ray emission

Inverse Compton Scattering (leptonic)

low-E photons: up scatter the Cosmic Microwave Background (CMB)

$$E_{IC} = \frac{4}{3}E_0\gamma^2$$
$$P_{IC} = \frac{4}{3}\sigma_T c\gamma^2 \beta^2 U_{ph}$$

similar shape to synchrotron

$$\frac{P_{sync}}{P_{IC}} = \frac{U_B}{U_{ph}}$$

Pion Decay (hadronic)

$$p+p => \pi_0 => 2\gamma$$

requires **high-density** (and higher B) **Direct evidence for ion acceleration**

Spectral index~particle index

Non-thermal Emission from SNR shells

Simulated broadband SNR spectrum undergoing DSA of e- and p. (Slane et al. 2014)

R-X-gamma multi-wavelength: SN1006

synchrotron (GeV e-, B) thermal emission synchrotron (TeV e-s)

Inverse Compton (TeV e-s) ? pion decay (TeV p) ?

SN1006: non-thermal limbs

Acero et al. 2010

RXJ1713-3946—all non-thermal (?) a most powerful CR accelerator!

RXJ17133946—a most efficient CR accelerator!

H.E.S.S. (100 GeV-10 TeV) image with X-ray contours (Aharonian et al. 2004, Nature)

no thermal X-rays (yet!)

 $\label{eq:vs} \begin{array}{l} v_s {\sim} 3000 \ km/s \\ Te << T_p \\ (\text{even more so since E=>CR}) \end{array}$

$$\sigma_{\rm E} = \left(\frac{E_0}{c}\right) \sqrt{\left(\frac{kT_{\rm i}}{m_{\rm i}}\right)}.$$

Vela Junior: another non-thermal SNR, powerful CR accelerator!

HESS image XMM-Newton contours *Aharonian et al. 2009*

Fermi: GeV Lemoine-Goumard et al. 2012 Yuan et al. 2014

HESSJ1731-347 A TeV discovered SNR!

SNR/MC interaction

Fig. 9 Schematic diagram of SNR/MC interaction in which postshock region in SNR contains dense clumps within shocked interclump material. The low-density shocked interclump gas emits X-rays. Protons acceleration by the SNR encounter all of gas in the shell, and γ -rays are produced primarily through collisions with the dense clumps.

W51C, W44, IC443, 3C391, CTB109, CTB37A, G8.7-0.1, G349.7+0.2, ... ~15 SNRs

Zhou, SSH et al. 2014 (ApJ, in press)

In conclusion: the debate remains re. hadronic vs leptonic models for the high-energy emission. ASTRO-H will help: -fill an energy gap -constrain the hard X-ray spectrum (HXI) => B -search for thermal emission (SXS) => constraints on kT and n_

ASTRO-H summer school S. Safi-Harb

Paris, July 7-8 (2014)

3D Simulations:

Effect of particle acceleration on shock geometry and broadband emission

Paris, July 7-8 (2014)

ASTRO-H summer school S. Safi-Harb

UNIVERSITY

OF MANITOBA

3D Simulations:

Effect of particle acceleration on shock geometry and broadband emission

Energetic protons, accelerated at the shock front, don't radiate as efficiently as electrons, however:

- they affect shock dynamics (thinner)
- 2) thermal X-ray emission: cooler and lower EM
- NT emission (R, X, γ): emission level and cutoff energies

Ferrand, Decourchelle & Safi-Harb 2012, 2014

(see also Lee et al. 2013, Patnaude et al. 2010, Slane et al. 2014)

SNR statistics

Paris, July 7-8 (2014)

Statistics: SNRcat

- Currently: **317 SNRs** (with age and distance estimates from PSR/SNR):
 - · Green's 2009 catalogue has 274 SNRs, being updated
 - SNRcat updated regularly with new SNR detections, including X-ray only (PWN) and arXiv papers (almost daily)
- . 65 SNRs listed interacting with a molecular cloud
- . 86 contain PWNe or PWN candidates (65 SNRs are associated with both a NS and PWN), and the list keeps growing!
- . 108 contain a neutron star (NS) or candidate, 90 identified as a pulsar (PSR)
- . 6 AXPs + 2 soft γ -ray repeaters (SGRs) + 2 high-B = 10 magnetars/candidates
- . 15 central compact objects (CCOs) or candidates

• 1268 records of HE observations made with 39 observatories (added several legacy instruments + some new instruments)

Note: 307 of these are actually non-detections, and in some cases, the emission might not be coming from the SNR

. 1737 references as ADS bibcodes plus 100s of other URLs

Ferrand & Safi-Harb 2012

http://www.physics.umanitoba.ca/snr/SNRcat/SNRcat_stats_20140617.pdf

Paris, July 7-8 (2014)

ASTRO-H summer school S. Safi-Harb

University

<u>of</u> Manitoba

domain		instrument	records by instrument	records b	ls by domain						
		ASCA	121 + 3 = 124								
X-rays		BeppoSAX	19 + 0 = 19								
		Chandra	126 + 2 = 128								
		Einstein	55 + 7 = 62								
		EXOSAT	19 + 0 = 19								
		Ginga	19 + 0 = 19								
		HEAO-1	1 18 + 0 = 18 698 + 35 - 733								
	leav	INTEGRAL	22 + 7 = 29	098 + 3	55 = 755						
	ĸev	NuSTAR	7 + 0 = 7								
		CGRO/OSSE	4 + 0 = 4								
		ROSAT	87 + 3 = 90								
		RXTE	21 + 5 = 26								
		Suzaku	54 + 1 = 55								
		SWIFT	13 + 2 = 15								
		Uhuru $10 + 0 = 10$									
		XMM	103 + 5 = 108								
	MeV	CGRO/COMPTEL	4 + 0 = 4								
		INTEGRAL	1 + 2 = 3	6+2=8							
		NCT	1 + 0 = 1								
		AGILE	9 + 0 = 9								
		COS-B	7 + 0 = 7								
	GeV	CGRO/EGRET	26 + 20 = 46	146 + 217 = 363							
		Fermi	101 + 197 = 298								
		SAS-2	3 + 0 = 3								
		$AS-\gamma$	1 + 0 = 1								
		ARGO-YBJ	4 + 0 = 4								
		CANGAROO	6 + 8 = 14								
		CAT	1 + 0 = 1								
γ-rays		CELESTE	1 + 1 = 2		$262 \pm 272 = 525$						
		GT-48	1 + 0 = 1		203 + 272 = 555						
		HAGAR	1 + 0 = 1								
	TeV	HEGRA	4 + 4 = 8								
		H.E.S.S.	53 + 11 = 64	111 + 52 - 164							
		MAGIC	7 + 13 = 20	111 + 53 = 104							
		Milagro	10 + 0 = 10								
		PACT	1 + 0 = 1								
		ShALON	6 + 0 = 6								
		STACEE	1 + 1 = 2								
		TACTIC	1 + 0 = 1								
		THEMISTOCLE	1 + 0 = 1								
		VERITAS	10 + 6 = 16								
		Whipple	2 + 9 = 11								
ALL		TOTAL	961 + 307 = 1268	961 + 30	7 = 1268						

www.physics.umanitoba.ca/snr/SNRcat

Paris, July 7-8 (2014)

SNRcat Demo

ID	names	context	SN	age	distance	type	CHANDRA		XMM ¢	SUZAKU 🔶	ROSAT +	ASCA +	FERMI +	AGILE +	HESS 4	VERITAS	MAGIC +	MILAGRO +
							all	÷	all 🛟	all 🛊	all 🛟	all 🛟	all 🛊	all 🛊	all 🛊	all 🛊	all 🛟	all 🛟
G000.0+00.0	Sgr A East, 1FGL J1745.6-2900c, 2FGL J1745.6-2858, 1FHL J1745.6-2900, HESS J1745-290	contains CXOGC J174545.5-285829 = the cannonball = NS candidate and possibly PWN, close to BH Sgr A*, interacts with molecular cloud		1200 - 10000 yr	8 kpc	composite	CHANDR	R	ХММ	SUZAKU		ASCA	FERMI		HESS			
G000.1-00.1	1FGL J1746.4-2849c, 1FHL J1746.3- 2851	contains PWN G0.13-0.11, interacts with molecular cloud??				composite?	CHANDR	RA	XMM				FERMI					
G000.3+00.0	G0.33+0.04 , G0.4+0.1					shell							FERMI					
G000.9+00.1	HESS J1747-281	contains PSR candidate J1747-2809 + PWN G0.87+0.08		1900 yr PSR: 5000 yr	8.5 - 10 kpc PSR: 13 kpc	composite	CHANDR	R	XMM			ASCA	FERMI		HESS			
G001.0-00.1	Sgr D, G1.05 0.1 , G1.05 0.15	close to star forming region Sgr D and other SNR candidates, interacts with molecular cloud			8 kpc	shell			ХММ	SUZAKU		ASCA	FERMI					
G001.4-00.1		interacts with molecular cloud				shell							FERMI					
G001.9+00.3				150 - 220 yr	8.5 kpc		£14											
G003.7-00.2	G003.8-00.3					Global	filter	•	(Fe	rmi-exte	nded) AN	ID Cloud			_			
G003.8+00.3					(r	eset all filter	·s											
G004.2-03.5					Ċ	eset un miter	<u> </u>											
G004.5+06.8	Kepler, SN1604, 3C358, Kes 57		1604	SN: 410 yr	3 - 6.4 kpc													
G004.8+06.2	G4.5+6.2										Nu	mber of	obiects	display	ed: 15			
G005.2-02.6													,					
G005.4-01.2 ?	Milne 56, G5.3 1.0 , G5.27 0.9 , 2FGL J1802.3-2445c	offset PSR J1801-2451 = B1757-24 = the Duck + PWN G5.27-0.9, interacts with molecular cloud		PSR: 15488 yr	4.3 - 4.5 kpc PSR: 5 kpc	composite	CHANDR	RA					FERMI					
G005.5+00.3	G5.55+0.32					shell							FERMI					
G005.7-00.1 ?	G5.71-0.08 , HESS J1800-240C	close to SNR G006.4-00.1 = W28, interacts with molecular cloud				shell?									HESS			
G005.9+03.1						shell							FERMI					
G006.1+00.5	G6.10+0.53					shell							FERMI					
G006.1+01.2	G6.1+1.15					filled-centre?							FERMI					
G006.4+04.0						shell												
G006.4-00.1	W28, C6.6.0.2 , 0FGL J1801.6-2327, 1FGL J1801.3-2322c and J1800.5-2359c, 2FGL J1801.3-2326e, 1FHL J1801.3- 2326e, HESS J1801-233 and HESS J1800-240[A/B/C]	close to (unrelated) PSR B1758-23 = J1801-2304, close to SNRs G5.7-0.1, G6.5-0.4, G7.0-0.1, interacts with molecular cloud		33000 - 36000 yr	1.6 - 2.2 kpc	composite	СНА	res	Global set all filter	filter:	Ŀ	IESS-exte	ended AN	ID PWN				
G006.5-00.4	G6.51-0.48 , G6.67-0.42 , HESS J1801- 233	close to SNR G006.4-00.1 = W28				shell							N	lumbor	ofobior	te dienla	und: 23	
G007.0-00.1	G7.06 0.12	close to SNR G006.4-00.1 = W28				shell								uniber	or objec	is uispia	yeu. 23	
G007.2+00.2	G7.20+0.20					shell												
G007.5-01.7 ?		contains PWN G7.4-2.0 = Taz, close to PSR J1809-2332		≥ 15000 yr	1.7 - 2 kpc PSR: 2 kpc	composite	CHANDR	AS	XMM		ROSAT	ASCA	FERMI					
G007.7-03.7	1814-24				3.2 - 6 kpc	shell						ASCA	FERMI					
G008.3-00.0	G8.31 0.09					shell							FERMI					
G008.7-00.1	W30, C8.6 0.1 , Suzaku J1804-2142 and J1804-2140, 1FGL J1805.2-2137c and J1806.8-2109c, 2FGL J1805.6-2136e, 1FHL J1805.6-2136e, HESS J1804-216	inside W30 complex, PSR J1803- 2137 = B1800-21 and PWN G8.40+0.15 at the edge, interacts with molecular cloud		15000 - 28000 yr PSR: 15800 yr	3.2 - 6 kpc PSR: 4 kpc	composite	CHANDR	RA		SUZAKU	ROSAT		FERMI		HESS			
G008.7-05.0						shell							FERMI					
G008.9+00.4	G8.00+0.40					shell							FERMI					
G009.7-00.0	G9.7-0.1 , G9.70-0.06	interacts with molecular cloud				shell							FERMI					
G009.8+00.6						shell							FERMI					
G009.9-00.8	G9.95 0.81	thack form	fo	reach	SNR	shell							FERMI					
G010.5-00.0	G10.59 0.04			Cacil		shell						ASCA	FERMI					
		http://	han	www.mbwc		monit	aha	0			Poot							

nttp://www.physics.umanitoba.ca/snr/SNRca

Paris, July 7-8 (2014)

ASTRO-H summer school S. Safi-Harb

University

<u>of</u> Manitoba

EST-1877

Statistics (gamma-ray)

- 33 detected by Fermi+HESS, including
 - 15 detected as extended
- 10 SNRs detected by VERITAS, 7 by MAGIC and 1- by MILAGRAO

• With Cloud

- 40 in Fermi
 - including <u>15</u> as extended
- 25 in HESS
 - including <u>15</u> as extended
- 14 in Fermi+HESS
 - including <u>7</u> as extended

• With PWNe

- 26 in both Fermi+HESS,
 - including <u>11</u> as extended
- 34 by HESS
 - including 23 as extended
- 21 by Fermi
 - including <u>11</u> as extended
 - http://www.physics.umanitoba.ca/snr/SNRcat/

Paris, July 7-8 (2014)

Extensions to SNRcat

- **Bilateral** SNRs catalogue (connection between SNRs morphology and the Galactic B field)
 - Jennifer West (PhD)
- **PWN** catalogue (relevant to next lecture)
 - Heather Matheson (PhD)=>Ben Guest
- Multi-wavelength images for all SNRs
 - Yitchen Zhan (undergrad) and others

Paris, July 7-8 (2014)

PRELIMINARY!

Montage by J. West (U. Manitoba)

Paris, July 7-8 (2014)

Selected (bright/famous/good for ASTRO-H!) SNRs X-ray movie

Stay tuned!

Paris, July 7-8 (2014)

