SAG 4.5 Hint
D

The Lagrange pint $L,-L_{3}$ are local maxima of The effective potential \Rightarrow a test particle at one of the points experiences no net force along x.

$$
\text { (} E=-\nabla \Phi_{\text {elf if }} \text {, hence eq. (4.7) solving for } \frac{\partial \Phi_{e f f}}{\partial x}=0 \text {) }
$$

Step 1: Write down pie balance:
distance to c.o.m

$$
\begin{aligned}
& 0=\mp \underbrace{\frac{G m}{x^{2}}}+\frac{G \mu(D-x)}{\left(D-x^{2}\right)}-\Omega^{2}\left(\frac{D \mu}{\mu+m}-x\right) \\
& \text { ram } x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the } f x<0 \text {) the; size halo is } \\
& \text { extended the offerive } \\
& \text { mas felt detention } x \text {. } \\
& \begin{array}{l}
\mu \text { and } \Omega \text { here } \\
\text { are form the to bala }
\end{array} \\
& \text { problem, so } \mu=\mu(L D) \\
& \text { and } \Omega^{2}=\frac{G(\mu+m)}{D^{3}} \text { (Keple-3) } \\
& \text { That os the germen that } \\
& \text { Both are melependirt of } x \text {. }
\end{aligned}
$$ is afferent for the halo mass, compreed 15 a point mail; she $M(<0-x)$ f as we more away fin the halo and rice vena.

Step 2 : understand what's different
Question hins that you should replace the "frore from the dark halo mass" - this explains the difference.

Case A M a point mass. Then the pone as a function of distance r from it is just

$$
\begin{aligned}
F & =\frac{G \mu}{r^{2}} \\
\Rightarrow F(x) & =F(0)+\left.x \frac{d F}{d x}\right|_{x=0}+\cdots \quad \text { Tagda expansion. } \\
& =\frac{G M}{D^{2}}+x\left[+\frac{G M}{D^{3}}\right]+\cdots
\end{aligned}
$$

(since $\mathrm{dx}=-\mathrm{dr}$)
Case B M is now an extended hate described by

$$
M(<r)=\frac{r v_{H}^{2}}{G}\left(1-\frac{q_{1}}{r} \arctan \left(\frac{r}{q_{H}}\right)\right)
$$

And the fore is, at distance r,

$$
F(r)=\frac{v_{H}^{2}}{r}\left(1-\frac{a_{r}}{r} \arctan \left(\frac{r}{a_{t}}\right)\right) \approx \frac{v_{H}^{2}}{r}, r>a_{H} \quad \text { (t) }
$$

$F(r)=\frac{G \mu(r)}{r^{2}}$. where k_{4}^{2} can be related $x \mu=\mu(<D)$ by

$$
v_{4}^{2} \approx \frac{G \mu}{D}
$$

By section of the forms of (t) and (T), one s $\alpha \frac{1}{r^{2}}$ white the other is $\propto \frac{1}{r}$, so the perturbed fore has a different $\left.\frac{d F}{d x}\right|_{x=0}$ change. This leads eventually to efferent fraction a the solution for ($\left(\frac{x}{D}\right)$.

