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(a) Galaxies as physical systems.
(b) The Collisionless Boltzmann Equation.
(c) N-body simulation as a Monte-Carlo method.
(d) Force calculation algorithms.
(e) Time step algorithms.
(f) Errors and relaxation.
(g) Introduction to smoothed-particle hydrodynamics.

Outline



What is a galaxy?

Spiral Galaxy NGC 4414 in Canes Venatici.  HST, NASA.



A galaxy is a self-gravitating system composed of 
an interstellar medium, stars, and dark matter.

Interstellar 
Medium Stars Remnants

Gravity dominates galactic structure and evolution; 
other forces play “supporting” roles.



Gravity is Scale-Invariant

Two galaxies of superficially similar appearance.  Both images are 
4.5' square.

2MASS.2MASS.



M32 (left) and M87 (right) shown on the same physical scale.



Interstellar 
Medium

Stars Dark Matter

molecular gas main-sequence supermassive BH

dust brown dwarfs stellar-mass BHs

cool gas (102 K) giants neutral particles

warm gas (104 K) supergiants “stuff???”

hot gas (106 K) white dwarfs

magnetic fields neutron stars

cosmic rays

Galactic Ingredients



A “Typical” Disk Galaxy

1. Dark Halo: 
— mass: MH > 4×1011 M"
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A “Typical” Disk Galaxy

1. Dark Halo: 

2. Bulge:

3. Disk:

— scale: α−1 " 3.5kpc

4. Interstellar Medium:

— mass: MH > 4×1011 M"

— mass: MB ! 2×1010 M#

— mass: MD ! 6×1010 M#

— mass: MISM ! 1×1010 M#

— SFR: Ṁ∗ " 5M#/yr



Galactic Morphology

Hubble (1936)



Collisionless Dynamics

Dynamics may be described by the full N-body equation:

Working model of a galaxy: stars and particles of dark matter.

{(mi,!ri,!vi) | i = 1, . . . ,N }

d!ri

dt
=!vi ,

d!vi

dt
=

N

∑
j !=i

Gmj (!r j−!ri)
|!r j−!ri|3

This is too detailed to be useful!
1.  Bodies are not correlated with each other.
2.  Potential is approximated by smooth function           .
3.  The relaxation time               .

Φ(!r, t)
tr! H−1

0



Relaxation Time
b

!    v     t

Impulse approximation: body acquires velocity

Integrate over all impact parameters to get change per crossing:

Time required to randomize initial velocity is relaxation time:

Uncorrelated encounters ⇒ random walk in velocity; change due 
to encounters with impact parameter    to           per crossing isb b+db

δvt =
2Gm
bv

, b! bmin ≡
Gm
v2 #

R
N

d(v2) = (δvt)2dn =
(

2Gm
bv

)2 N
πR 2 2πbdb
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Distribution Function

Replace points with smooth distribution function (hereafter DF):

{(mi,!ri,!vi) | i = 1, . . . ,N } → f (!r,!v, t)

mass inf (!r,!v, t)d!r d!v≡ d!r d!v (!r,!v, t)at

Motion described by phase-flow:

(!̇r,!̇v) = (!v,−∇Φ)

Equation of continuity in 6 dimensions:

∂ f
∂t

+
∂
∂!r

( f!̇r)+
∂
∂!v

( f!̇v) = 0



Dynamical Equations

Continuity equation and phase-flow yield Collisionless Boltzmann 
(Vlasov) Equation (hereafter CBE):

∂ f
∂t

+!v · ∂ f
∂!r
−∇Φ · ∂ f

∂!v
= 0

Gravitational field is given by Poisson’s Equation (hereafter PE):

∇2Φ = 4πG
Z

d3!v f (!r,!v, t)

Stars and dark matter can be described by separate DFs; each 
obeys the CBE, and all contribute to PE:

f (!r,!v, t) = fs(!r,!v, t)+ fd(!r,!v, t)



N-Body Simulation

Solving the CBE with a 6-D grid takes too many cells.  Instead, 
we use a Monte-Carlo method.

π = 4Acircle/Asquare ! 4ncircle/n

Example: Monte-Carlo calculation of    .π
Scatter    points in square; count number
         falling within circle.

n
ncircle

Typical uncertainty:

|πest−π| = O(n−1/2)



Representing the Distribution Function

Replace smooth distribution with bodies:

This requires that for any phase-space volume   ,V

E.g., select           with probability proportional to            ,  and
assign all bodies equal mass:

(!ri,!vi) f (!ri,!vi)

mi =
1
N

Z
d!rd!v f (!r,!v)

Z

V
d!rd!v f (!r,!v) =

〈
∑ (!ri,!vi)∈Vmi

〉

f (!r,!v) → {(mi,!ri,!vi) | i = 1, . . . ,N}

f (!r,!v)!
N

∑
i=1

miδ3(!r−!ri)δ3(!v−!vi)



Advancing Time

Move bodies along phase flow (method of characteristics):

Estimate potential from N-body representation:

This will yield the usual N-body equation for point masses.  But 
singular potentials are awkward, so we smooth the density field:

δ3(!r−!ri) →
3

4π
ε2

(|!r−!ri|2 + ε2)5/2

This substitution yields the following equations of motion:

Plummer (1911)
smoothing

Aarseth (1963)
d!ri

dt
=!vi

d!vi

dt
=

N

∑
j !=i

Gmj (!r j−!ri)
(|!r j−!ri|2 + ε2)3/2

(!̇ri,!̇vi) = (!vi,−(∇Φ)i)

∇2Φ
∣∣
!r = 4πG

N

∑
i=1

miδ3(!r−!ri)



Comments

2.  Sampling proportional to             is the simplest option, but
not the only one; other weighting schemes are also possible.

f (!ri,!vi)

1. N-body models relax at roughly the same rate as real stellar 
systems with the same    ; the relaxation time isN

tr !
N

8ln(R /ε)
tc

Any such scheme must obey
Z

V
d!rd!v f (!r,!v) =

〈
∑ (!ri,!vi)∈Vmi

〉



E.g., use different masses when sampling            and           , or 
make     depend on            .  But note effect on relaxation time!

fs(!r,!v) fd(!r,!v)
mi f (!ri,!vi)

Comments

2.  Sampling proportional to             is the simplest option, but
not the only one; other weighting schemes are also possible.

f (!ri,!vi)

1. N-body models relax at roughly the same rate as real stellar 
systems with the same    ; the relaxation time isN

tr !
N

8ln(R /ε)
tc

3.  Plummer smoothing is just one of many possibilities, and may 
not be optimal; one alternative with less of a “tail” is

δ3(!r−!ri) →
15
8π

ε4

(|!r−!ri|2 + ε2)7/2
Dehnen (2001)



Force Calculation: Direct Summation

!ai =
N

∑
j !=i

Gmj (!r j−!ri)
(|!r j−!ri|2 + ε2)3/2

Simplest method: sum over all other bodies.

Advantages: robust, accurate, completely general.

Disadvantage:  computational cost per body is         ; 
need           operations to compute forces on all bodies.

O(N)
O(N2)

However, direct summation is a good fit with 
1.  Individual timesteps (see Sverre’s lectures)
2.  Specialized hardware (see Simon’s lectures)



Tree Codes

Saul Steinberg, “A view of the World from 9th Avenue, 1976.

Long-range gravitational field dominated 
by monopole term:

Divide system into hierarchy (i.e. “tree”) 
of compact cells:

N

∑
i
→

Nc

∑
c

Barnes & Hut (1986)

φ!−Gm
r

+O(r−3)

Replace sum over    bodies with sum 
over                      cells; cost to find
forces on all bodies is                  .

N
Nc ! O(logN)

O(N logN)



1. To compute potential at    due to a cell   :
a)  if    is “too close” to    , sum the potentials of its sub-cells;
b) otherwise, approximate the potential as                      .

!r c
c !r

−Gmc/|!r−!rc|

Tree Codes Continued

3. Different tree structures give roughly equivalent results:
a) oct-trees: 1 cube     8 cubes (Barnes & Hut 1986),
b) kd trees: divide at median along          (Dikaiakos & Stadel 1996),
c) particle trees: group nearest neighbors (Appel 1985, Press 1986).

x,y,z
→

2.  “too close” can be defined in various ways; e.g.:
a) geometrically:                       (BH86) or                   (B95),
b) dynamically:                                    (GADGET-2: Springel 2005).

|!r−!rc| < "c/θ < !c/θ+δc
|!r−!rc|4 < GMc"

2
c/α|!a|

4. Higher moments improve accuracy:
a) quadrupole potential term:                             (Hernquist 1987),
b) source/sink symmet. ⇒ momentum cons.,          (Dehnen 2000).

1
2Gδ!r · Qc · δ!r/δr5

O(N)

cell’s center 
of mass



Self-Consistent Field Method

Represent potential and density as sums:

Φ(!r) = ∑
k

AkΦk(!r) , ρ(!r) = ∑
k

Akρk(!r)

where     are coefficients and the basis functions      and     are 
bi-orthogonal and satisfy the PE:

Φk ρkAk

The coefficients are computed using overlap integrals:

Ak =
1
Ik

Z
d!r ρ(!r)[Φk(!r)]∗ =

1
Ik

∑mi[Φk(!ri)]∗

Ik δk k′ =
Z

d!r ρk(!r)[Φk′(!r)]∗ , ∇2Φk = 4πGρk

The cost of calculating forces on all bodies is just         .O(N)

With the right basis set, SCFM yields good forces for spheroidal 
systems with only a few terms (Hernquist & Ostriker 1992).  



Time Step Algorithms

The underlying symmetry of the N-body equation of motion 
becomes evident in Hamiltonian formulation:

d!r
dt

=
∂H
∂!p

,
d!p
dt

=−∂H
∂!r

This symmetry has important consequences:
1. dynamical evolution conserves phase space volume
2. Hamiltonian systems have no attractors
3. dynamical evolution is reversible.

An integration algorithm with Hamiltonian symmetry is 
desirable; such an integrator is known as symplectic.

Hamiltonian systems are not structurally stable; most 
integrators will not preserve these properties.



Leapfrog Integrator

This very simple integrator explicitly preserves the symmetry 
of the Hamiltonian equations of motion: 

!r [k+1]

i =!r [k]

i +∆t!v [k+1/2]

i

!v [k+3/2]

i =!v [k+1/2]

i +∆t!ai(!r
[k+1])

!v [k+1/2]

i =!v [k]

i + ∆t
2 !ai(!r

[k])
!r [k+1]

i =!r [k]

i +∆t!v [k+1/2]

i

!v [k+1]

i =!v [k+1/2]

i + ∆t
2 !ai(!r

[k+1])

In addition, it is accurate to second order, meaning that the error 
is            per step, and requires very little storage.O(∆t3)

A drawback of the leapfrog is that velocities are a half-step out 
of sync with positions; this can be avoided as follows:

This formulation introduces a one-time error of            but is 
otherwise equivalent to the standard leapfrog.

O(∆t2)



Individual Time Steps?

Leapfrog becomes inaccurate if      is not constant 
and identical for all bodies.  This seems inefficient.

∆t

However, the symplectic properties of the leapfrog 
give it much more stability than most integrators.

Springel (2005)

Algorithms in which     is determined by current 
conditions are not reversible.  Symmetrizing the
time step between endpoints    and           works
but imposes a significant overhead (Hut et al. 1995).

∆t

t t +∆t

A 4th order symplectic scheme allowing individual 
and adaptive time-steps is now available (Farr & 
Bertschinger 2007).



Errors and Relaxation

In theory, these effects can all be controlled — at a price.  Error 
#1 is seldom an issue, while errors #2 and #3 are easily limited.  
Smoothing and relaxation are harder to balance; high resolution 
demands shorter timesteps and more bodies.

Finally, all N-body systems with           are potentially chaotic, 
while the role of chaos in real galaxies is unclear.

N > 2

N-body simulations diverge from exact 
solutions of CBE and PE for several reasons:
1. Roundoff errors.
2. Truncation in time stepping. 
3. Force calculation approximations.
4. Density field smoothing.
5. Relaxation due to finite    .N

“An Introduction to Error Analysis”, John R. Taylor



Parameter Choices

The number of bodies     is the key parameter:N

— Monte-Carlo errors: O(N−1/2)
— 2-body relaxation time: tr ! Ntc/8ln(R /ε)

Maximum duration of simulation must be          .t! tr

Typical errors in acceleration should be                      .|δa/a| ! N−1/2

Global energy should be conserved to                        .     |δE/E| ! N−1/2

Smoothing length is typically                                    .R N−1/2 < ε < R N−1/3

WARNING: these rules are not definitive.  Tests with different 
parameter values are useful; a skeptical attitude is advised!

Leapfrog time-step should be                                                .∆t ! 0.03tmin ! 0.09(Gρmax)−1/2



Introduction to Smoothed Particle Hydrodynamics

Fluid equations in conservation form:

∂ρ
∂t

+∇ · (ρ!v) = 0mass:

∂!v
∂t

+(!v · ∇)!v =−∇Φ+
1
ρ

∇Pmomentum:

∂u
∂t

+(!v · ∇)u =−P
ρ

∇ ·!v+ u̇

∂a
∂t

+(!v · ∇)a = (γ−1)ρ1−γu̇
⎨
⎧

⎩
energy or
entropy:

P = (γ−1)ρu P = a(S)ργ

Equation of state (ideal gas):



ρ(!r)!
N

∑
i

miW (!r−!ri,h)

ρ(!r),!v(!r), u(!r), a(!r) → {(mi,!ri,!vi, ui, ai) | i = 1, . . . ,N}

d!ri

dt
=!vi

d!vi

dt
= (−∇Φ)i +

(
−1

ρ
∇P

)

i
+!a

visc

i

dui

dt
=

(
−P

ρ
∇ ·!v

)

i
+ u̇i + u̇

visc

i
dai

dt
= (γ−1)ρ1−γ

i (u̇i + u̇
visc

i )

SPH Formalism

Particle representation (c.f. N-body):

Density estimate uses smoothing kernel             with scale   :hW (!x,h)

where                         ; estimates of gradients become sums
involving gradients of             .

R
d!xW (!x,h) = 1

W (!x,h)

Dynamical equations:



Comments

1.  The smoothing kernel             has compact support, so only
nearby bodies are included in the sums.  Most SPH codes adapt 
the smoothing length    to the local particle density.

W (!x,h)

h

2.  Adaptive timesteps are generally necessary to satisfy the 
Courant condition;  most SPH integrators are not symplectic.

3.  Artificial viscosity is required to keep particles from streaming
through shocks.  The best formulation is not entirely clear.

4.  SPH is often criticized as a poor approximation to proper gas 
dynamics.  However, the ISM is much more complex than an ideal 
gas.  In the context of galaxy-scale simulations, momentum and 
energy conservation may be all we can expect of a code.



To be continued.


