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ABSTRACT

An analysis of the kinematics of 412 stars at 1–4 kpc from the Galactic mid-

plane by Moni Bidin et al. (2012b) has claimed to derive a local density of dark

matter that is an order of magnitude below standard expectations. We show

that this result is incorrect and that it arises from the assumption that the

mean azimuthal velocity of the stellar tracers is independent of Galactocentric

radius at all heights. We substitute the assumption, supported by data, that the

circular speed is independent of radius in the mid-plane. We demonstrate that the

assumption of constant mean azimuthal velocity is implausible by showing that it

requires the circular velocity to drop more steeply than allowed by any plausible

mass model, with or without dark matter, at large heights above the mid-plane.

Using the approximation that the circular velocity curve is flat in the mid-plane,

we find that the data imply a local dark-matter density of 0.008±0.003M⊙ pc−3 =

0.3±0.1GeV cm−3, fully consistent with standard estimates of this quantity. This

is the most robust direct measurement of the local dark-matter density to date.

Subject headings: Galaxy: disk — Galaxy: fundamental parameters — Galaxy:

halo — Galaxy: kinematics and dynamics — Galaxy: solar neighborhood —

Galaxy: structure

1. Introduction

The observed flatness of the Milky Way’s circular-velocity curve at Galactocentric dis-

tances larger than 20 kpc (e.g., Xue et al. 2008) shows that the visible Galactic disk is

embedded in a massive dark halo. The disk is composed of gas and stars (baryons), while

the dark halo is believed to be composed of non-baryonic matter of unknown nature. Despite

the dominance of the dark halo in the outer parts of the Milky Way, it remains unclear from

direct measurements whether there is any need for a substantial amount of dark matter to
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explain the circular-velocity curve interior to the solar radius, R0 = 8 kpc. Quantitatively,

the fraction of the total radial force at the solar radius that is due to the disk could be

as high as 90% (Sackett 1997). A promising avenue for constraining the local density of

dark matter is through a determination of the dependence of the gravitational potential

on distance above the mid-plane of the disk (“height”), from measuring the kinematics of

stars (e.g., Kapteyn 1922; Oort 1932; Bahcall 1984). However, a major obstacle is that the

uncertainty in the amount of baryonic matter in the disk makes it hard to determine the

relative contributions from dark and baryonic matter to the density near the mid-plane.

Studies limited to heights . 150 pc are consistent with no dark matter near the Sun, but

they cannot exclude the amount of dark matter expected for a standard dark-matter halo

(≈ 0.01M⊙ pc−3 = 0.38GeV cm−3; Crézé et al. 1998; Holmberg & Flynn 2000).

The contributions from baryonic and dark matter can be disentangled by measuring the

gravitational potential out to larger heights. At heights of several times the disk thickness,

the dark halo and the baryonic disk contributions to the potential have a different vertical

dependence (e.g., Kuijken & Gilmore 1989; Garbari et al. 2011). In particular, most of the

disk mass lies below ∼ 1.5 kpc, so above this height the disk contribution to the integrated

surface density Σ(Z) ≡
∫ Z

−Z
dz ρ(z) is roughly constant with height and the disk potential

varies as Φ ∝ |Z|, while the dark halo contributes Σ(Z) ∝ |Z| and Φ(Z) ∝ Z2. Thus, any

measured increase in the surface density at |Z| & 2 kpc must be due to the dark halo, and

the expected increase is ∼ 20M⊙ pc−2 for each kpc (for the standard value of the local dark

matter density of 0.01M⊙ pc−3; see above). Determinations of the surface density at ∼1 kpc

from the plane typically find values of Σ(1 kpc) = 70 to 80M⊙ pc−2 (Kuijken & Gilmore

1991; Siebert et al. 2003; Holmberg & Flynn 2004) while the baryonic contribution is esti-

mated to be around 50 to 60M⊙ pc−2 (Holmberg & Flynn 2004; Bovy et al. 2012a). Thus,

these studies are consistent with the expected dark-matter density, although they do not go

to large enough heights to detect the dark matter unambiguously.

A recent study of the kinematics of stars with heights 1.5 . |Z| . 4 kpc by

Moni Bidin et al. (2012b, MB12 hereafter) claims to have measured the surface den-

sity at these heights in a model-independent manner and found it to be constant, such that

the local density of dark matter must be smaller than 10−3M⊙ pc−3 (< 0.04GeV cm−3). If

true, this would imply that dark matter is less abundant in the solar neighborhood than

expected, by at least an order of magnitude. This would also shift experimental limits on the

cross-section for elastic scattering between dark-matter particles and baryons by an order

of magnitude, although this is far less than the uncertainty in the predicted cross-section.

In this paper, we show that the analysis used by MB12 is flawed. The main error is that

they assume that the mean azimuthal (or rotational) velocity V̄ of their tracer population
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is independent of Galactocentric cylindrical radius R at all heights (i.e., V̄ (R,Z) = V̄ (Z)).

This assumption is not supported by the data, which instead imply only that the circular

speed Vc is independent of radius in the mid-plane (e.g., Gunn et al. 1979; Feast & Whitelock

1997). In the solar neighborhood, the circular speed is larger by & 35 km s−1 than the mean

azimuthal velocity for the warm tracer population used by MB12, a phenomenon known as

asymmetric drift. The asymmetric drift is expected to vary with R—although this variation

cannot be measured for the sample of MB12 as the data do not span a large enough range

in R—so the assumptions that V̄ and Vc are independent of radius are not compatible.

In the absence of a measurement of the (R,Z) dependence of V̄ for the tracers, we show

that the assumption of an R-independent V̄ at all heights Z is highly implausible. By using

instead the data-driven assumption that the circular speed is independent of radius at Z = 0,

we demonstrate that the measurements and analysis of MB12 are fully consistent with the

standard estimate of the local dark matter density, approximately 0.01M⊙ pc−3, and indeed

provide the best available direct measurement of this quantity.

The outline of this paper is as follows. In § 2 we discuss the assumption made by MB12

that the mean azimuthal velocity of the tracer population is independent of R. In § 3, we

derive the surface density as a function of Z using the assumption that the circular-velocity

curve is flat in the mid-plane and we discuss the effect of relaxing this approximation. In

§ 4, we calculate the surface density using the data of MB12 but using the approximation

of constant circular speed and show that this leads to a surface density at 1.5 < |Z| < 4 kpc

that increases with height at the rate expected for a dark halo. Our conclusions are in § 5.

We follow MB12 in defining U , V , andW as the radial, azimuthal, and vertical velocities

in cylindrical coordinates and the inertial Galactocentric reference frame. Note that this

definition is non-standard, since (i) U , V and W are normally defined with respect to the

Local Standard of Rest; (ii) U is typically the velocity toward the Galactic center; (iii) our

conventions require either that the coordinate system is left-handed or that the positive

z-axis points to the South Galactic Pole. However, for the purpose of this paper these

distinctions do not matter. We use R0 = 8 kpc, as do MB12, and local circular speed

Vc = 220 km s−1 throughout this paper, assumptions which are consistent with the latest

measurements (Bovy et al. 2009). We abbreviate the surface density at the solar radius as

Σ(Z) ≡ Σ(R0, Z) =
∫ Z

−Z
dz ρ(R0, z).

2. Mean azimuthal velocity versus circular velocity

The analysis of MB12 uses the Poisson equation to calculate the surface density as a

function of height Z at the solar radius R0 using the radial force FR and the vertical force
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FZ (eq. 18). To estimate FR, MB12 make use of the radial Jeans equation

FR(R,Z) = −
∂Φ(R,Z)

∂R
=

1

ν

∂ (νσ2
U)

∂R
+

1

ν

∂ (νσ2
UW )

∂Z
+

σ2
U − σ2

V − V̄ 2

R
, (1)

where Φ is the gravitational potential, ν is the tracer-density profile, σ2
U and σ2

V are the radial

and azimuthal velocity dispersions squared, σ2
UW is the off-diagonal radial–vertical entry of

the dispersion-squared matrix, and V̄ is the mean azimuthal velocity; all of these quantities

are functions of R and Z. We have assumed a steady state such that time derivatives

vanish and the mean radial motion Ū is zero. In simplifying equation (1), MB12 use their

assumption VIII: “The rotation curve is locally flat in the volume under study”, which MB12

express as
∂V̄ (R0, Z)

∂R
= 0 . (2)

Moni Bidin et al. (2010) made the same assumption, although this was not explicitly stated.

We show in this section that this is an unreasonable assumption.

The mean azimuthal velocity of a population of stars differs from the circular velocity

due to the asymmetric drift. This offset arises because both the density of stars and the

velocity dispersion typically decline with radius. This means that more stars with guiding

centers at R < R0 are passing through the solar neighborhood than stars with guiding centers

R > R0; the former are on the outer parts of their orbits, where their azimuthal velocity

is less than the circular velocity. Equation (1) is typically used to estimate the asymmetric

drift (Binney & Tremaine 2008): since V 2
c = R∂Φ/∂R we find

V 2
c − V̄ 2 = σ2

V − σ2
U

[

1 +
∂ ln (νσ2

U)

∂ lnR
+

1

ν

R

σ2
U

∂ (νσ2
UW )

∂Z

]

. (3)

Now assume that (i) the dispersions-squared (σ2
U , σ

2
V , σ

2
UW ) decline exponentially with

radius with scale length hσ; (ii) the tracer density is an exponential function of radius and

height with scale lengths hR and hZ , that is, ν(R,Z) ∝ exp(−R/hR − |Z|/hZ). The second

assumption is only accurate at heights above a few hundred pc; closer to the mid-plane the

exponential form is not accurate but this is not a concern since we are interested in the region

|Z| & 1 kpc. These assumptions were also made by MB12 and in addition they assumed that

hσ = hR. Equation (3) then becomes

V 2
c − V̄ 2 = σ2

V + σ2
U

[

R

(

1

hR
+

1

hσ

)

− 1

]

+
R

hZ
σ2
UW − R

∂σ2
UW

∂Z
. (4)

To evaluate this, we use the expressions for the moments of the velocity distribution from
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Moni Bidin et al. (2012a)

σU(R0, Z) = (82.9± 3.2) + (6.3± 1.1) · (|Z|/kpc− 2.5) km s−1 (5)

σV (R0, Z) = (62.2± 3.1) + (4.1± 1.0) · (|Z|/kpc− 2.5) km s−1 (6)

σW (R0, Z) = (40.6± 0.8) + (2.7± 0.3) · (|Z|/kpc− 2.5) km s−1 (7)

and that for σ2
UW from MB12

σ2
UW (R0, Z) = (1522± 100) + (366± 30) · (|Z|/kpc− 2.5) km2 s−2 . (8)

We also take hz = 0.9 kpc and hR = hσ = 3.8 kpc as in MB12, although our own work

suggests somewhat smaller values hR = 2 kpc and hσ = 3.5 kpc (Bovy et al. 2012c). We find

that the solution to equation (4) can be fit by the formula

V 2
c − V̄ 2 = (191 km s−1)2 [1 + 0.19 (|Z|/kpc− 2.5)] , (9)

with an rms error of less than 2% for |Z| = 1–4 kpc. Equation (9) implies Vc− V̄ (1.5 kpc) =

80 km s−1 and Vc − V̄ (3.5 kpc) = 150 km s−1, in good agreement with the corresponding

measured values in Moni Bidin et al. (2012a), 70± 13 km s−1 and 130± 16 km s−1.

We can now ask what equation (4) predicts for the radial variation of V̄ . Taking the

radial derivative of equation (4), we find that

2 Vc
∂Vc

∂R
− 2 V̄

∂V̄

∂R
= −

(V 2
c − V̄ 2)

hσ
+ σ2

U

(

1

hR
+

1

hσ

)

+
1

hZ
σ2
UW −

∂σ2
UW

∂Z

= (V 2
c − V̄ 2)

(

1

R
−

1

hσ

)

+
σ2
U

R
−

σ2
V

R
. (10)

We can then estimate ∂V̄ /∂R for a flat circular-speed curve, by setting ∂Vc/∂R = 0:

V̄
∂V̄

∂R
= 110 km s−1 × 21 km s−1 kpc−1 [1 + 0.2 (|Z|/kpc− 2.5)] , (11)

with an rms error of less than 1% for |Z| = 1–4 kpc. In this equation, 110 km s−1 and

21 km s−1 kpc−1 are V̄ and ∂V̄ /∂R at |Z| = 2.5 kpc. We find that ∂V̄ /∂R is 7 km s−1 kpc−1

at Z = 0, growing to 11 km s−1 kpc−1 at |Z| = 1 kpc and 40 km s−1 kpc−1 at |Z| = 3.5 kpc.

If we use hσ = 3.5 kpc (Bovy et al. 2012c), the gradients are larger by about 20%.

For comparison, MB12 estimate that a gradient ∂V̄ /∂R = 17 km s−1 kpc−1 is needed

to make their analysis consistent with the expected amount of dark matter, which is close

to our estimate of 21 km s−1 kpc−1. MB12 dismiss this possibility, apparently because they

confuse constraints on ∂Vc/∂R with constraints on ∂V̄ /∂R, as there are, in fact, no direct

observational constraints on ∂V̄ /∂R.
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While ∂V̄ /∂R is not measured for the MB12 sample, constraints on this gradient do

exist for a slightly more metal-rich sample of stars at moderate distances from the mid-

plane, which we can use to show that our estimate of ∂V̄ /∂R using equation (10) agrees

with observations. Casetti-Dinescu et al. (2011) study a sample of metal-rich red clump

stars at 1.0 kpc ≤ |Z| ≤ 2.5 kpc, selected using 0.6 ≤ J − Ks ≤ 0.7, while the MB12

data were selected using 0.7 ≤ J − Ks ≤ 1.1 to obtain a lower-metallicity, larger-distance

sample. Casetti-Dinescu et al. (2011) report that (σU , σV , V̄ ) = (60, 42, 180) km s−1 at |Z| ≈

1 kpc, such that equation (10) assuming a flat circular-speed curve predicts that ∂V̄ /∂R =

6.5 km s−1 kpc−1; similarly, they find (σU , σV , V̄ ) = (80, 60, 150) km s−1 at |Z| ≈ 1.5 kpc

and (σU , σV , V̄ ) = (90, 65, 140) km s−1 at |Z| ≈ 2 kpc, such that we predict that ∂V̄ /∂R =

13 km s−1 kpc−1 and 15 km s−1 kpc, respectively. These predictions are in good agreement

with the measurements of Casetti-Dinescu et al. (2011), who find 6.0 ± 1.5 km s−1 kpc−1,

13.0± 4.5 km s−1 kpc−1, and 12.0± 8.1 km s−1 kpc−1 at these |Z|.

The discussion so far in this section has assumed that Vc is constant with Z and R,

whereas observations only show that Vc is independent of R at Z = 0. The circular velocity

declines with |Z| for any reasonable local mass distribution, as the following argument shows.

As V 2
c = −RFR, we can write

∂V 2
c

∂Z
= −

∂

∂Z
(RFR) = −R

∂FZ

∂R
, (12)

where we have used the fact that FR and FZ are both derivatives of the potential Φ, such

that

∂FR

∂Z
= −

∂

∂Z

(

∂Φ

∂R

)

= −
∂

∂R

(

∂Φ

∂Z

)

=
∂FZ

∂R
. (13)

As shown below in § 3, to a good approximation FZ = −2πGΣ(R,Z) (for Z > 0), where

Σ(R,Z) is the surface density. Therefore

2 Vc
∂Vc

∂Z
≃ 2πGR

∂Σ(R,Z)

∂R
= −2πG

R

hΣ

Σ(R,Z) , (14)

assuming that Σ(R,Z) declines exponentially with radius with scale length hΣ, which we

assume is equal to 3.5 kpc (Bovy et al. 2012c). This means that near the mid-plane, where

the density is approximately 0.1M⊙ pc−3,

∂Vc

∂Z
≃ −2.8 km s−1 kpc−1

(

Z

100 pc

)

|Z| . hZ , (15)

while for |Z| > 1.5 kpc, where Σ(R0, Z) ≃ 50M⊙ pc−2

∂Vc

∂Z
≃ −7 km s−1 kpc−1 |Z| ≫ hZ . (16)
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Taken together, these results imply that Vc likely does not decrease by more than 30 km s−1

out to |Z| = 4 kpc. Such a decrease does not change the conclusions of this section.

A different way of illustrating the inconsistency of MB12’s assumptions is to ask what

the radial behavior of Vc has to be such that ∂V̄ /∂R = 0. The necessary ∂Vc/∂R decreases

from approximately −5 km s−1 kpc−1 at Z = 0, which is consistent with local measurements

of the slope of the circular-speed curve, to −14 km s−1 kpc−1 at |Z| = 4 kpc; for hσ = 3.5 kpc,

the gradients are larger in absolute value by 20%. Such a steep drop of the circular velocity

with R is about the value of a Keplerian drop-off, −1

2
Vc/R0 = −14 km s−1 kpc−1. Such steep

gradients are inconsistent with observational evidence: (i) in the limiting case where there

is no dark-matter halo and all the mass is in an exponential disk (with parameters given in

Figure 1), |∂Vc/∂R| is only 3 km s−1 kpc−1 at |Z| = 4 kpc, and if a dark halo is present the

value is even smaller; (ii) we show below in § 3 that ∂Vc/∂R increases as |Z| grows, whereas

maintaining constant V̄ requires that ∂Vc/∂R decreases with |Z|.

3. Poisson equation at large heights

Having shown that the assumption of a radially constant V̄ is suspect, we now ask what

the MB12 data do have to say about the surface density at large height |Z|. Following MB12,

we start from the Poisson equation in cylindrical coordinates,

Σ(R,Z) = −
1

2πG

[
∫ Z

0

dz
1

R

∂(RFR)

∂R
+ FZ(R,Z)

]

, (17)

where we have assumed symmetry around the Z = 0 plane. FZ(R,Z) is obtained from the

steady-state vertical Jeans equation

FZ(R,Z) = −
∂Φ(R,Z)

∂Z
=

1

ν

∂(νσ2
W )

∂Z
+

1

Rν

∂ (Rνσ2
UW )

∂R
. (18)

One can then proceed (e.g., Kuijken & Gilmore 1989) by approximating the integrand in

the first term in square brackets in equation (17) by its value in the plane. This is zero

for a flat circular-speed curve, as RFR = −V 2
c . Kuijken & Gilmore (1989) show that this

approximation is good to a few percent at |Z| . 1.5 kpc for any plausible mass distribution.

We now revisit this question at larger heights.

Figure 1 shows the error introduced by approximating ∂ (RFR) /∂R by its value at

Z = 0, for three different mass distributions: an exponential disk with parameters that

are representative of the Milky Way’s disk (Bovy et al. 2012a,b), a Navarro-Frenk-White

(NFW; Navarro et al. 1997) halo, and a combination of the two in which the disk provides
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85% of the radial force at R0 (this yields a flat circular-speed curve at R0). This figure shows

the fractional difference between the true surface density and that calculated from equation

(17) by approximating ∂ (RFR) /∂R by its value in the plane. The errors introduced by

this approximation can be as large as 15% at 4 kpc above the plane. Thus a systematic

uncertainty of 10 to 20% in Σ(4 kpc) is unavoidable without fully modeling the potential.

It is, however, possible to show that neglecting the Z-dependence of ∂Vc/∂R almost

always leads to an underestimate of the surface density, so this approximation gives a robust

lower limit on the surface density. We start by writing the Z derivative of the integrand in

equation (17) as
∂

∂Z

(

1

R

∂(RFR)

∂R

)

=
∂

∂Z

(

FR

R
+

∂FR

∂R

)

. (19)

If we again use the fact that ∂FR/∂Z = ∂FZ/∂R, we find that

∂

∂Z

(

1

R

∂(RFR)

∂R

)

=
1

R

∂FZ

∂R
+

∂2FZ

∂R2
. (20)

If the first term in square brackets in equation (17) is neglected, we have FZ = −2πGΣ(R,Z)

(at Z > 0). This approximation is quite accurate if there is substantial mass in a thin disk

and |Z| is small, or if the circular-speed curve is nearly flat, since then RFR is almost

independent of radius (see Figure 1). If we then drop this term and approximate the radial

derivatives then as those of the exponential disk, equation (20) becomes

∂

∂Z

(

1

R

∂(RFR)

∂R

)

≃
2πG

RhΣ

(

1−
R

hΣ

)

Σ(R,Z) . (21)

Since R0/hΣ is 2 or more in any reasonable model for the Milky Way, the right side of this

equation is negative, which in turn implies that the integrand in equation (17) decreases with

increasing |Z|. Thus replacing FR by its value in the mid-plane leads to an underestimate

of the surface density, and dropping the integral in equation (17) when the circular-speed

curve is locally flat also leads to an underestimate of the surface density.

We can further work out equation (21) to find the change in the radial slope of the

circular-speed curve with height

∂

∂Z

(

∂Vc

∂R

)

≃
πG

hΣ Vc

(

R

hΣ

− 1

)

Σ(R,Z) , (22)

a result that can also be derived by differentiating equation (14). Using the same reasoning

that led to equations (15–16), we find

∂

∂Z

(

∂Vc

∂R

)

≃ 0.45 km s−1 kpc−2

(

Z

100 pc

)

, |Z| . hZ , (23)



– 9 –

and
∂

∂Z

(

∂Vc

∂R

)

≃ 1.1 km s−1 kpc−2 , |Z| ≫ hZ . (24)

Thus, the radial gradient of the circular speed remains close to its value in the plane through-

out the region |Z| < 4 kpc that we are investigating.

4. Moni Bidin et al. (2012) revisited

We have shown that approximating the integrand in equation (17) as constant with Z

leads to a robust lower limit on the surface density as a function of Z. Armed with this result,

we can revisit the MB12 analysis. Since the circular-speed curve is flat in the mid-plane,

the integrand is zero in the mid-plane, so the approximation that the integrand is constant

implies that the integral can be neglected. Substituting equation (18) into equation (17) we

find

Σ(Z) = −
1

2πG

[

−
1

hZ
σ2
W +

∂σ2
W

∂Z
+ σ2

UW

(

1

R
−

1

hR
−

1

hσ

)]

, (25)

where we distinguish between the radial scale length hR of the tracer population and the

radial scale length hσ of the dispersion-squared. MB12 assumed hR = hσ = 3.8 kpc, but

recent direct measurements of the thicker populations of stars in the Milky Way have shown

that their radial scale length is much shorter than that of the dominant, thinner components,

such that hR = 2 kpc is more accurate; we also prefer a shorter scale length for the dispersions,

hσ = 3.5 kpc (Bovy et al. 2012b,c). We will nevertheless show results mostly for the values

hR = hσ = 3.8 kpc assumed by MB12. We also follow MB12 in assuming hZ = 900 pc (see

below). Note that the surface density as calculated using equation (25) does not depend on

the value of the local circular speed Vc, and our estimate of the local dark matter density is

therefore not affected by the uncertainty in Vc.

Using the kinematics from Moni Bidin et al. (2012a) and MB12 in equation (25), we

get the curve labeled as “correct ∂Vc/∂R = 0 approximation” in Figure 2. As we have

discussed, this gives a lower limit to the surface density. The gray shaded region in the

Figure shows the range of surface densities obtained after including the radial integral in

equation (17), using the bottom and top curves in Figure 1. These can be compared to the

curve labeled “incorrect ∂V̄ /∂R = 0 approximation”, which is the curve presented in MB12

as their primary result (their Figure 1).

We can also compare these curves with Galactic mass models in the literature, showing

the same mass models as MB12. The estimated contribution to Σ(Z) from baryonic matter

(VIS for “visual” in Figure 2) is composed of a thin 13 M⊙ pc−2 layer of interstellar medium,
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plus a stellar halo and “thick” and “thin” disk components with parameters taken from

Jurić et al. (2008); in this model the normalization is chosen so that Σdisk(1.1 kpc) = 40M⊙

pc−2 (Holmberg & Flynn 2004). Figure 2 also shows the expected surface density when

various dark-matter halo models are added to this baryonic mass. The OM halo model has

a profile

ρDM(R0, Z) = ρc

(

R2
c

R2
c +R2

0 + Z2

)

, (26)

with Rc = 8.01 kpc and ρc = 0.0103 M⊙ pc−3 (Olling & Merrifield 2001), such that ρ⊙,DM =

0.0084 M⊙ pc−3. The other halo models were all taken from Weber & de Boer (2010) and

have densities following

ρDM(r) = ρ⊙,DM

(

r

R0

)−α (

1 + (r/Rc)
β

1 + (R0/Rc)β

)−γ

, (27)

where r is the Galactocentric spherical radius. The Standard Halo Model (SHM) has an

NFW profile (α = β = 1, γ = 2) with Rc = 10.8 kpc and ρ⊙,DM = 0.0084 M⊙ pc−3. The

N97 model also has an NFW profile with Rc = 20 kpc and ρ⊙,DM = 0.0061 M⊙ pc−3. The

MIN model has a profile as in equation (26) (i.e., α = 0, β = 2, γ = 1) with Rc = 5 kpc and

ρc = 0.019 M⊙ pc−3 (Weber & de Boer 2010), such that ρ⊙,DM = 0.0053 M⊙ pc−3. All of

these models were constrained by assuming that Vc(R0) = 244 ± 10 km s−1, except for the

OM model which has Vc(R0) = 220 km s−1. The difference between the predictions of these

models for Σ(Z) in Figure 2 is mainly due to their different value for ρ⊙,DM.

It is clear from Figure 2 that the MB12 data are fully consistent with the predictions from

several standard dark matter models when using the correct assumption ∂Vc/∂R = 0. In

particular, the values of the surface density throughout the range |Z| = 1–4 kpc are consistent

with the standard halo model (SHM) which has ρDM ≃ 0.01M⊙ pc−3 = 0.38 GeV cm−3.

Figure 2 also shows the effect of using the more appropriate radial scale length hR = 2 kpc,

which increases the surface density even further. The slope of the measured Σ(Z) implies a

minimum dark-matter density of ρDM = 0.007±0.001 M⊙ pc−3 = 0.27±0.04 GeV cm−3 for

hR = 3.8 kpc, and ρDM = 0.0085±0.0015 M⊙ pc−3 = 0.32±0.06 GeV cm−3 for hR = 2.0 kpc.

These uncertainties are statistical and do not include the systematic uncertainty associated

with the approximation that the circular-velocity curve is flat at all heights, which adds

at most 0.1 GeV cm−3 (see Figure 1), or that associated with the measurement of the

dispersions (see, e.g., the erratic behavior of σ2
UW in figure 8 of Moni Bidin et al. 2012a),

or the assumption that the tracers follow an exponential distribution in radius and height

with the assumed scale lengths. These systematic uncertainties are at least of the same

magnitude as the statistical uncertainties. For example, if instead of hZ = 900 pc we use

hZ = 700 pc, which is the mass-weighted mean scale height in the range 2 to 4 kpc using

the measurements of Bovy et al. (2012a,b), ρDM increases by 0.001 M⊙ pc−3; using a varying
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mass-weighted hZ as a function of |Z| as given by those same measurements changes ρDM

by 0.002 M⊙ pc−3. Taking these systematics into account, our best estimate for the local

dark-halo density is ρDM = 0.008± 0.003M⊙ pc−3 = 0.3± 0.1GeV cm−3.

5. Conclusions

In this paper, we have shown that the assumption of a radially constant mean azimuthal

velocity for the stellar tracers used by MB12 is physically implausible. This assumption is

the reason why the MB12 analysis finds a constant Σ(Z) at 2 . |Z| . 4 kpc, in seeming

contradiction with the standard expectation of a dark-matter density ρDM ≈ 0.01M⊙ pc−3 =

0.38 GeV cm−3 in this region. The mean azimuthal velocity V̄ of the warm tracer population

of stars used by MB12—stars that are part of the thicker components of the Milky Way disk

that reach large heights above and below the plane—is significantly different from the circular

velocity Vc, with V̄ . 0.5Vc at |Z| = 3 kpc. We have shown in § 2 that for a circular-speed

curve that is close to flat, the expected ∂V̄ /∂R reaches tens of km s−1 kpc−1 at a few kpc

from the Galactic mid-plane. Indeed, the assumption that ∂V̄ /∂R = 0 requires that the

circular-speed curve falls off in a Keplerian manner at a few kpc above the plane, in clear

contradiction with observations.

We derived an alternative formula for Σ(Z) that assumes that the circular-velocity

curve is flat at all heights above the plane and we showed that this approximation leads to

a lower limit for all plausible mass distributions. This approximation sidesteps the issue of

the unknown radial trend of V̄ and as such makes no assumptions about it. Applying this

alternative formula, we find that the MB12 data give a lower limit that is fully consistent with

the standard local density of dark matter of ρDM ≈ 0.01M⊙ pc−3, and that they imply a local

dark-matter density of 0.008 ± 0.003M⊙ pc−3 = 0.3 ± 0.1GeV cm−3, where the error bars

include both statistical and less well-known systematic errors. Therefore, our analysis shows

that the locally measured density of dark matter is consistent with that extrapolated from

halo models constrained at Galactocentric distances r & 20 kpc: for example, extrapolating

the best-fit halo profiles of Xue et al. (2008) and Deason et al. (2012), obtained from fitting

halo stars with 20 . r . 60 kpc, gives ρDM ≈ 0.006 to 0.011 M⊙ pc−3.

The breakdown of the assumptions made in this simple, “model-independent” Jeans

analysis are such that the measurement has a systematic uncertainty reaching 10 to 20%

at |Z| = 4 kpc. Therefore, a precise determination of the local dark matter density from

observations at large Z using the Jeans analysis of MB12 requires data that span a wide range

in R such that the radial gradient of the velocity moments, foremost V̄ , can be determined.

The Gaia mission (Perryman et al. 2001) will provide such measurements in the near future.
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Currently, data that span multiple kpc in R and Z are available from the SDSS/SEGUE

survey (Yanny et al. 2009). In contrast to the data from Moni Bidin et al. (2012a), the

SEGUE volume selection is known in detail (e.g., Bovy et al. 2012b) so both the spatial

structure and kinematics can be obtained for the same set of tracer stars. The SEGUE data

also have the advantage that they contain information on the elemental abundances of each

star, allowing the tracers to be divided into sets of stars with simple distribution functions

(e.g., Bovy et al. 2012b,c).

Finally, we note that our estimate is of the mean halo density between 1 and 4 kpc

above the Galactic mid-plane. The halo density at the Sun, which is the relevant quantity

for direct dark-matter detection experiments, is likely to be larger because of two effects.

The density in the mid-plane for a spherical NFW halo with a scale radius of 22.25 kpc

(Xue et al. 2008) is 7% larger than at |Z| = 2.5 kpc. Besides this purely geometric effect, the

gravitational influence of the disk further increases the mid-plane dark-matter density. An

isothermal halo with isotropic velocity dispersion σ has a density ρ ∝
∫

d~v e−E/σ2

= e−Φ/σ2

,

so we expect that

ρDM (|Z|)

ρDM(0)
− 1 ≃ −

2πGΣdisk|Z|

σ2
= −0.20

Σdisk

50M⊙ pc−2

(

130 km s−1

σ

)2
|Z|

2.5 kpc
. (28)

These two effects imply that the dark-matter density in the mid-plane is enhanced over the

value derived in this paper by about 30%. This agrees with the estimated enhancement in

an N -body simulation by Garbari et al. (2011).
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Fig. 1.— Fractional difference between the true surface density Σtrue(R0, Z) and that

obtained by approximating the integrand in equation (17) by its value in the plane,

Σapprox(R0, Z). Shown are an exponential disk, a spherical NFW halo, and a combination of

the two that has a circular-speed curve that is flat near R0 = 8 kpc.



– 16 –

Fig. 2.— The surface density as a function of height using the invalid assumption that

∂V̄ /∂R = 0 (lower black curve) and the more realistic assumption that ∂Vc/∂R = 0 in the

mid-plane (upper black curve). The latter assumption is shown in § 3 to give a robust lower

limit to the surface density. The dashed curve shows the effect of reducing the radial scale

length of the tracer from MB12’s value hR = 3.8 kpc to the more likely value of 2 kpc. Also

shown as the gray band is the range of surface densities that results from applying the lower

and upper curves in Figure 1 to correct the approximation that Vc is independent of height;

a similar gray band would apply to the dashed curve. 68% uncertainty intervals on the

observed surface density are shown at a few representative points. The curves representing

estimates of the visible matter (‘VIS’) and the predictions of various dark-matter halo models

(‘OM’,‘SHM’,‘N97’, and ‘MIN’), defined in § 4, are the same as in Figure 1 of MB12.
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