
8 Radiative Cooling and Heating

Reading:
Katz et al. 1996, ApJ Supp, 105, 19, section 3
Thoul & Weinberg, 1995, ApJ, 442, 480
Optional reading:
Thoul & Weinberg, 1996, ApJ, 465, 608
Weinberg et al., 1997, ApJ, 477, 8
The latter two address the influence of photoionization on galaxy formation and the interplay
between physics and numerical resolution in cosmological simulations.
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We now turn our attention to the last term, in which

Γ ≡ volumetric radiative heating rate [ erg cm−3 s−1]

Λ ≡ volumetric radiative cooling rate [ erg cm−3 s−1].

Unfortunately, due to a shortage of Greek letters, Γ is also used to represent ionization rates. In
this section of the course and notes, therefore, I will denote the radiative heating rate by H, and
will reserve Γ for ionization rates.

I will focus on cooling and heating of a primordial composition, H/He plasma because (a) it’s simple
enough to treat fairly comprehensively, (b) you’ll encounter other cases in the ISM class, and (c)
it’s the case I know the most about.

8.1 Cooling processes in a primordial plasma

The cooling processes that affect a H/He plasma are:

Collisional excitation: free electron impact knocks a bound electron to an excited state; it decays,
emitting a photon.

Collisional ionization: free electron impact ionizes a formerly bound electron, taking energy from
the free electron.

Recombination: free electron recombines with an ion; the binding energy and the free electron’s
kinetic energy are radiated away (only the latter counts as a “loss” here — the binding energy was
“charged” to the collisional ionization process).

Free-free emission: free electron is accelerated by an ion, emitting a photon. (A.k.a. Bremsstrahlung.)

All of these processes are proportional to a function of temperature (different for each process)
times the electron number density times the number density of the relevant ionic species.
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At very high densities, formation of H2 molecules is an additional source of cooling.

8.2 Ionic abundances and ionization equilibrium

In order to calculate cooling rates using, say, the formulas for the above processes given in Table
1 of Katz et al. (1996), one needs to know the density of the various ionic species: ne, nH0

, nH+
,

nHe0 , nHe+ , nHe++
.

At fixed total gas density, the evolution of these densities is governed by equations like
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nH0
, (59)

where

αH+
(T ) = hydrogen recombination coefficient [ cm3 s−1] (60)

ΓeH0
(T ) = collisional ionization rate [ cm3 s−1] (61)

ΓγH0
≡

∫

∞

νT

4πJ(ν)

hν
σ(ν)dν = photoionization rate [ s−1], (62)

with

νT = ionization threshold frequency (e.g., 13.6 eV/h for H0)

σ(ν) = ionization cross-section [ cm−2]

J(ν) = radiation background intensity [erg s−1 cm−2 sr−1 Hz−1].

Suppose that the medium is ∼ 50% ionized (nH0
∼ nH+

∼ ne ∼ n) and the right hand side
equation (59) is far from balance.
The ionic density will evolve on a timescale
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For a typical estimate of the radiation background at z ∼ 2, J(ν) ∼ few×10−22erg s−1 cm−2 sr−1 Hz−1,

1

ΓγH0

∼ 1012 s ∼ 3 × 104 yr,

while for T ∼ 105 K
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If photoionization (ΓγH0
) is significant, the timescale is almost always short compared to the dynam-

ical timescale of cosmological systems, and even without photoionization it is usually still shorter
than the dynamical timescale.
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In many circumstances, therefore, one can safely assume that creation and destruction rates will be
balanced for each species, the condition known as ionization equilibrium. In this case, both sides
of equations like (59) are equal to zero.
In ionization equilibrium, the abundances of ionized and neutral hydrogen are determined by alge-

braic equations (much easier than differential equations),

ΓeH0
nenH0

+ ΓγH0
nH0

= αH+
nenH+

,

nH+
+ nH0

= nH

ne = nH+
+ nHe+ + 2nHe++

together with similar equations

destruction rate = creation rate

for nHe0 , nHe+ , nHe++
(Katz et al. eqs. 25-28).

In a numerical hydrodynamics code, one must decide whether to integrate the ionic abundance
equations like (59) or compute abundances assuming ionization equilibrium.
The appropriate choice depends on the physical situation. In some circumstances, departures from
ionization equilibrium are physically important. However, one must be sure to integrate the time-
dependent equations on a timscale short compared to the abundance evolution timescale, which
can be very short compared to other timescales of interest.
When the ionization equilibrium assumption is appropriate, it is much more efficient to use the
equilibrium equations.

8.3 The collisional equilibrium cooling curve

The above equilibrium equations can be recast into the form

nH0

nH

=
αH+

αH+
+ ΓeH0

+ ΓγH0
/ne

,

with analogous equations for the fractions of neutral helium and singly ionized helium.
If there is no photoionization, ΓγH0

= 0, then, since ΓeH0
and αH+

depend only on temperature
(not density), the relative abundances of ionic species depend only on temperature. All cooling
processes are therefore a function of temperature times the square of the total gas density ρ (or,
equivalently, the total hydrogen number density nH = Xρ/mp, where X ≈ 0.76 is the hydrogen
mass fraction).

Since ionic abundances are determined by equilibrium of collisional processes, this situation is called
collisional equilibrium (a.k.a. coronal equilibrium). Cooling rates in collisional equilibrium are fully
described by the function Λ(T )/n2

H, known as the cooling curve (e.g., Katz et al. Figure 1).

At high temperatures the gas is fully ionized, so the only cooling process is free-free emission, with

Λ

n2
H

∼ 2.5 × 10−23

(

T

108 K

)1/2

.
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The dominant processes at low temperatures are collisional line excitation of hydrogen (T ∼

104.2 K) and collisional line excitation of He+(T ∼ 105 K).

Below 104 K, collisions are not energetic enough to ionize atoms or even excite them out of the
ground state, so the cooling rate drops to zero.

The timescale on which gas can radiate away its thermal energy is

tcool ∼
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since Λ ∝ ρ2.
If the gas is confined by gravity or by ambient pressure, loss of thermal energy is usually accom-
panied by an increase in density (to restore the pressure gradient or equilibrium with the ambient
medium).
The increase in density usually decreases the cooling timescale, so cooling tends to be a runaway
process.
For a primordial composition cooling curve, gas that starts to cool (i.e., has tcool less than the age
of the system) usually cools fairly rapidly to 104 K, at which point it can cool no further (at least
by atomic processes).

8.4 Cooling and galaxy formation

In an expanding universe, the gravitational collapse of a homogeneous spherical perturbation pro-
duces a virialized object whose average density is roughly 200 times the background critical density
at the time of collapse.
For a given virial mass, one can use this density to compute a characteristic radius R, velocity
dispersion σ2 ∼ GM/R, and virial temperature T ∼ GMmp/(kR), given a collapse redshift (which
determines the cosmic background density).
A plausible assumption is that any gas that participates in this collapse is heated to this virial
temperature by shocks, and one can then calculate a cooling time from the temperature and density.

Some of the early analytic papers on galaxy formation (Binney 1977, ApJ, 215, 483; Silk 1977, ApJ,
211, 638; Rees & Ostriker 1977, MNRAS, 179, 541) argued that the characteristic mass scale of
galaxies was determined by the requirement that this cooling time be shorter than the dynamical
time (or, perhaps, than the age of the universe).

More massive objects have higher virial temperatures and tend to collapse later (at lower density),
so they tend to have longer cooling times, and the gas in them would therefore be unable to cool
and form stars. The cooling argument therefore implies an upper limit on galaxy masses, at a scale
that is not too far from what is observed.

In my view, this argument is fatally flawed by the assumption that all of the collapsed gas is at
the same density. More realistically, the gas will have a density profile, and the dense gas near the
center will be able to cool even if the more diffuse gas at larger radii cannot.
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White & Rees (1978, MNRAS, 183, 341) introduced a more realistic picture, in which the amount
of gas that cools in a collapsed dark matter halo is determined by the cooling radius, the radius at
which the cooling time is equal to the time that the object is around before merging with another
object of comparable mass (which reheats the gas and “resets the clock.”) — or the age of the
universe if that is longer.

In this case, the fraction of the mass that cools decreases as the mass of the halo increases, but the
total cooled mass still increases. This model therefore does not yield a sharp upper cutoff in galaxy
masses.

The cooling radius approach, combined with a more firmly based cosmological model and a more
sophisticated framework for calculating halo merger rates, is the basis of “semi-analytic” methods
for modeling galaxy formation. Gas cooling must be supplemented with a model for how the gas
density determines the star formation rate and, crucially, how the star formation influences the
surrounding gas (“feedback”).

Apart from the uncertainties associated with star formation and feedback, the key uncertainty in
this approach is whether the density profiles and temperatures inferred from the spherical collapse
picture are realistic at the desired level of accuracy. In particular, there are suggestions from 3-d
simulations of the hierarchical build-up of galaxies that much of the gas that ends up in the cold
component is never heated to the virial temperature of a typical galaxy halo. It may yet turn out
that this suggestion is a flaw in the numerical simulations themselves, but if it is correct then it
calls into question one of the key assumptions of the semi-analytic methods.

8.5 Photoionization

At redshift z < 6 (and perhaps higher, but that is still a matter of debate), the universe is pervaded
by an ultraviolet radiation background, produced by quasars and (perhaps) star-forming galaxies.
(There is no question that high mass stars produce some UV photons energetic enough to ionize
hydrogen and even helium. The unknown factor is what fraction of these photons escape from the
ISM to become part of the intergalactic UV background.)

At z ∼ 2 − 3, when the quasar population is at its peak, the hydrogen photoionization rate is
estimated to be

ΓγH0
∼ 10−12 s−1,

which corresponds to a background intensity at the Lyman limit frequency νT of J(ν) ∼ few ×

10−22erg s−1 cm−2 sr−1 Hz−1 (see eq. 62).
The helium photoionization rates ΓγHe0 and ΓγHe+ are more uncertain, probably lower by a factor
of a few (ΓγHe0

) and by a factor of 10-100 (ΓγHe+
).

For gas near the cosmic mean density, the photoionization rate is much higher than the recombi-
nation rate, so the hydrogen is nearly all ionized and the helium is nearly all doubly ionized.

Photoionization has two important effects on gas cooling.
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(1) It eliminates line excitation and ionization as cooling processes at low densities, by eliminating
H0, He0, and He+. Recombination cooling increases, but the net effect is to severely reduce cooling
rates at T ∼ 104 − 105 K for low density gas. At high densities (where the recombination rate
becomes comparable to or larger than the photoionization rate), the cooling rates move back towards
their collisional equilibrium values.

(2) It heats the gas because photoelectrons carry off residual energy. The heating rate is

H = nH0
εH0

+ nHe0εHe0 + nHe+εHe+ , (64)

where, for example

εH0
=

∫

∞

νT

4πJ(ν)

hν
σ(ν)(hν − hνT )dν [ erg s−1].

The heating rate decreases with increasing temperature because the recombination rates (and hence
the fraction of neutral “targets” for the photons) decline.

At low densities, H ∝ n2
H because, e.g.,

nH0
∝ nH ×

recombination rate per atom

photoionization rate per atom
∝ n2

H.

The net rate of radiative energy change per unit volume is H − Λ. The leading dependence on
density is H − Λ ∝ n2

H, but there is a slow change with nH0
because of the competition between

photoionization and recombination rates. Thus there is a density dependent “cooling curve”

H− Λ

n2
H

(T ),

(e.g., Katz et al. 1996, Figure 2).

8.6 The equilibrium temperature

In the presence of photoionization, primordial (H/He) gas gets heated at low temperatures and
cooled at high temperatures. There is thus a value of T at which

H(Teq) − Λ(Teq) = 0.

If other processes (e.g., shock heating, compression, expansion) can be ignored, the gas will even-
tually settle to this equilibrium temperature. It is then said to be in thermal equilibrium. (Note
that this has nothing to do with local thermodynamic equilibrium.)

For photoionized H/He, Teq is always in the range 104 − 105 K. It is higher for a harder (bluer)
ionizing background spectrum because the residual photoelectron energy is higher if the typical
ionizing photons are more energetic.
Teq decreases with increasing density because at higher densities ionization and line cooling pro-
cesses become more important.

The timescale for achieving thermal equilibrium is the cooling time, equation (63), but now with
Λ replaced by H− Λ.
At low densities or high temperatures, tcool can be very long, so thermal equilibrium is a less robust
assumption than ionization equilibrium. Systems often change on a timescale much shorter than
that required to reach thermal equilibrium.
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8.7 Some general lessons

There are many other radiative heating and cooling processes that are important in astrophysical
situations, e.g.

metal-line cooling (the CII fine-structure line is especially important)
Compton cooling (fast electrons lose energy by upscattering photons; at z ∼

> 7, Compton cooling
off microwave background photons can be the dominant cooling process)
synchrotron cooling
molecular line cooling
molecular formation cooling
Compton heating by X-rays or γ-rays
Cosmic ray heating

However, the H/He plasma illustrates a number of features that appear in many situations.
(1) For a general treatment, one must integrate time-dependent equations to compute the abun-
dances of each species, then use these abundances to compute cooling rates.
(2) If ionization and recombination timescales are short, one can compute abundances using ion-
ization equilibrium.
(3) If ionization equilibrium applies, cooling/heating rates are still usually strongly dependent on
temperature. In simple cases they are ∝ ρ2, though in general the density is more complex.
(4) If there are both heating and cooling processes, then there is usually an equilibrium temperature
where H−Λ = 0. The gas will relax to this equilibrium temperature if it has sufficient time, though
at low densities it often does not.

In some cases, the dependence of equilibrium temperature on density leads to thermal instability.
A small amplitude perturbation can cause the gas to spontaneously separate into two phases that
are in pressure equilibrium at different values of Teq, a cool dense phase and a warm diffuse phase
with equal pressure. Thermal instability is probably important in determining the structure of the
ISM. (See discussion in Shu, chapter 8.)
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