
Solutions to Astr 540 HW #1

1) a. Using interactive software of your choice (eg., IDL, spread-
sheet, Mathematica,....) fit these data with a two-component model
using a bulge and a disk. You should turn in a plot showing your
fit, the functional forms you used, and the fitting parameters. Do
not be tempted to use one of the canned bulge/disk fitting pro-
grams that are relatively easy to find, as part of the value of this
exercise is for you to see how tricky it can be to perform this type
of fitting, and to see why there have been debates about disk cen-
tral surface brightnesses, and so on. Don’t worry about trying to
produce the very best fit, but get close and indicate what you think
is a plausible range that encompasses the best fit parameters.

Fit the bulge using log I(r)/I(re) = −3.33[(r/re)1/4
−1] (see slide 4 from

Lec 5). (note that there are alternative formulations that are also acceptable)
Fit the disk using I(r) = I0e

−r/h (see slide 9 from Lec 2).
Typical fit parameters: (in magnitudes):
re = 875” I(re) = 10.70 mags/sq. arc sec (recall that I(re) is flux within

re)
I0= 20.11 mags/sq. arc sec r0 = 1475”

1

b. Knowing that these data are from M31, what are the physical
lengths associated with your fitting parameters?

D= 0.78 Mpc 1” = 4.84x10−6 rad which corresponds to 3.8 pc at M31 so
re= 3.3Kpc and r0=5.6kpc.

c. Using data out to ∼5000 arc sec, what’s the bulge-to-disk
luminosity ratio for M31? Does this match its Hubble type

Compute using your fit: B
D

=

∑

r

[BFit(r2)+BFit(r1)]

2
∗π∗(r2

2
−r2

1)
∑

r

[DFit(r2)+DFit(r1)]

2
∗π∗(r2

2
−r2

1)
– need to sum

over the flux x area product
Fits above give B/D = 0.37 – shown as a line below so this looks on the

high side but plausible for an early-type spiral (should be more careful about
specifying what wavelength was used for the observation - plot is for K!).

d. If the stars in the M31 bulge have M/L = 3, over what
distance would a nuclear black hole with mass=107 MSun dominate
the gravitational field?

This amounts to determining at what r the gravitational field of the black
hole equal the field from the enclosed stellar mass.:

FBH = GMBH

r2 = GMr(∗)
r2

M
L

= 3 in solar units so for MBH = 1x107MSun

L = 3.3x106LSun

To complete the calculation, the observed magnitudes need to the con-
verted to luminosities - the homework didn’t specify a wavelength for the

2

data which would be needed to answer this question rigorously. For an esti-
mate type of calculation, note that m-M for M31= 24.5 and that MV = +4.7
for the Sun. We want the r for which the integrated flux equals the L above.
The luminosity quoted above corresponds to an absolute magnitude MV =
-2.5*log(3.3x106LSun) + 4.7 = -11.6.

Apparent magnitude is V = 24.5 + -11.6 = 12.9
Looking at the data and finding the point where the type of sum computed

for b) but from the total observed flux, the r will be around 0.8” = 3.0 pc.
However, the stellar population in M31’s nucleus doesn’t have the same color
as the Sun so realistic bolometric corrections should be applied - actual r is
likely to be slightly smaller than what we’ve computed here. Nonetheless,
this makes the point that the black hole does not directly influence much of
the surrounding galaxy.

2) Rotation curve for a generalized NFW halo.
a. For a spherical dark matter halo density profile given by

ρ(r) = ρ0
1

(r/rs)α(1 + r/rs)3−α
(1)

derive the disk rotation curve in terms of rotation speed at the
virial radius v200, scaled radius x ≡ r/rs and concentration c ≡ r200/rs

(along with inner slope α). Assume that the mean density within
the virial radius is 200 times the critical density. You can ignore
the contributions to the rotation curve from baryonic components.
Show your work.

Assuming spherical symmetry and no baryonic component, we can write

vc(r) =
√

GM(< r)/r. To obtain the mass contained within radius r, M(<

r), we integrate the radial density profile given above:

M(< r) =
∫ r

0
ρ(r′)4πr′2dr′ (2)

Substituting x = r/r200 and c = r200/rs gives r/rs = xc, and if we define
y ≡ r′/rs then we obtain

M(< r) = 4πr3
s

∫ xc

0
ρ0

y2

yα(1 + y)3−α
dy. (3)

3

Defining the integral

µ(x) =
∫ x

0
y2−α(1 + y)α−3dy, (4)

we can write
M(< r) = 4πr3

sρ0µ(xc) (5)

Now we note that vc,200 =
√

GM(< r200)/r200, where

M(< r200) = 4πr3
sρ0µ(c), (6)

since x = 1. Hence

vc = v200

√

√

√

√

µ(xc)r200

µ(c)r
(7)

= v200

√

√

√

√

µ(xc)

xµ(c)
. (8)

This is the formula given in equation 6 of Swaters et al. (2003).
b. Write a C program to input v200, c, and α, and output the

rotation curve out to the virial radius, in units of kpc vs. km/s.
You can email the C program to Romeel; it should compile under
gcc. If you do not know C, this is a good chance to learn!

To write such a program with actual values requires knowing r200, in
order to scale x to physical units. One way to obtain this is from Mo, Mao
and White (1998), who give r200 = v200/10H(z). We will assume z = 0
and H0 = 70 km/s/Mpc. A program to do this calculation using a 2nd-
order accurate integrator (trapezoidal rule) is shown below (sorry about the
messed up indentation– apparently latex doesn’t like tabs in the verbatim
environment; too lazy to fix).

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define NSTEPS 200 /* number of integration steps */

#define H0 0.070 /* in km/s/kpc */

4

float mu_int(float x, float alpha) // integrate using trapezoidal rule

{

float y,dy,mu,int0,int1;

dy = x/NSTEPS;

for(y=0, mu=0; y<x; y+=dy) {

int0 = pow(y,2-alpha)*pow(1+y,alpha-3); // integrand at start

int1 = pow(y+dy,2-alpha)*pow(1+y+dy,alpha-3); // integrand at end

mu += 0.5*(int0 + int1)*dy; // average to obtain 2nd order accuracy

}

return mu;

}

int main(int argc,char **argv)

{

float v200,c,alpha;

float x,dx,v;

if(argc != 4) { // argc = # of command-line values

fprintf(stderr,"usage: vrot v200 c alpha\\n");

exit(-1);

}

else {

sscanf(argv[1],"%g",&v200); // argv = array containing parsed

sscanf(argv[2],"%g",&c); // strings of command-line input

sscanf(argv[3],"%g",&alpha);

}

dx = 1./NSTEPS; // width of integration steps

/* calculate rotation curve */

for (x=dx; x<=1.+0.5*dx; x+=dx) {

v = v200 * sqrt(mu_int(x*c,alpha)/(x*mu_int(c,alpha)));

fprintf(stdout, "%f\t%f\n", x*v200/10./H0, v); // x -> r

}

exit(0);

}

5

