Projection Effects
from M. Whittle

http://www .astro.virginia.edu/class/whittle/astr553/Topic07/t7_projection.h

Observed luminosity density

=i ' = [T de = 2 [ S rdr
I(‘R)‘—lnt‘egra.l over true density I(R) = [ ) de =2 fR S
distribution j(r) (in some wavelength

band) m To us

Same sort of projection for velocity R V

field but weighted by the density 2=r -R
distribution of tracers ar
I(R)0(r)?= 2f [(v, cosa.- IRGEE)

vgsina)?nr]/sqrt(r?-R?)
Density distribution solution is an
Abel integral (see appendix B.2 in Lo dr IR
B&T) with solution of the form ilr) = - Rl R

/(R _ .2
while the velocity field solution is also ™ J, 4R /(R? -7
an Abel integral

There are a few useful I(R) & j(r) pairs
that can both be expressed 30
algebraically

Orbits in a static spherical potential B& T sec 3.1

angular momentum ( L) is conserved

— d’r/dt>=¢(r)e, e, is the unit vector in radial direction; the radial acceleration
$d=d?r/dt?

d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d?r/dt>=g(r)r xe, =0;

— conservation of angular momentum L=rxdr/dt (eqgs. 3.1-3.5)

— Define L=rxdr/dt; dL/drt=0

Since this vector is constant, we conclude that the star moves in a plane, the orbital
plane.

This simplifies the determination of the star's orbit, for since the star moves in a
plane, we may use plane polar coordinates

for which the center is at r =0 and ¢ is the azimuthal angle in the orbital plane
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Stellar Dynamics B&T ch 3, S&G 3

* Orbits in a static spherical potential:
angular momentum is conserved
— d’r/dt>=g(r)e, e, is the unit vector in radial direction; the radial acceleration
g=d’r/dt?
— d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d’r/dt>=g(r)r xe, =0; conservation of angular
momentum L=rxdr/dt (egs. 3.1-3.5)around the z axis
Conservation of energy:
total energy =PE+KE or in above formalism
— stars move in a plane (orbital plane) 6=0
— Use plane polar coordinates (R,p,z) (Appendix B)
— eqs of orbits
R coordinate: d’R/dt>-R(d?@/dt*)=¢(R)
) coordinate :2(dR/dt)(dq/dt)+R(d*@/dt?)=0
equation of motion is (d’R/dt?)-(L?/R3)=¢p(R)
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Stellar Dynamics B&T ch 3

e Orbits in a static spherical potential:
angular momentum is conserved
— d’r/dt>=g(r)e, e, is the unit vector in radial direction; the radial acceleration
g=d’r/dt?
— d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d’r/dt>=g(r)r xe =0; conservation of angular
momentum L=rxdr/dt (egs. 3.1-3.5)
Conservation of energy:
total energy =PE+KE or in above formalism
» ifsubstituteu = 1/r, the energy equation takes the form :
o 2E/L%2=2¢/L2+u?+ (du/dd ).
* bound orbits are those in which the radius r is always finite , Thus, for bound
orbits u = 1/r is finite while for unbound orbits u tends to zero.
e In abound orbit the condition du/d$ =0, when this occurs
o u+2[¢p(1/uw)-E]/L?2 = 0.
e This equation has 2 roots, u, and u,. Andthus a "bound " star orbiting in a

conservative potential will thus move in an orbit twixt 2 radii r, =1/u, and r, =1/u,
; the pericenter and apocenter 33



Read B&T 143-147
* Since L=R?dg/dt
e (LYR?)d/dep(1/R2dR/dep)-LYR3=¢)(r);
* using u=1/R

[ d’u/dgp?+u=-p(1/u)/L*u?|eq. 3.11 in B&T

now putting in a spherical potential

$=-GM/R? and substituting

d*u/dg*+tu=GM/ L?

two general solutions, bound and unbound

bound orbits du/dg =0 and orbit is confined between pericenter and apocenter

* For a halo with outer radius r, a flat rotation curve, and circular velocity V_ the
escape velocity at R is V,.(R)? = 2V In(1+r,/R) (Binney & Tremaine)

€sc
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Some Simple Cases

* Point source potential (pg 147 B&T; eq 3.23 and following)
®(R)=-GM/R?: ¢(u)=-GMu?

using
d*>u/dg*+u=-¢(1/u)/L2u?
d*u/dg*+u= -GM'u?

general solution: u(¢p)=Ccos(¢-¢,)=GM/L2
C and @, are constants

Nature of solutions; v, . =sqrt(GM/r)

C=0 circular orbits (B&T define the eccentricity as CL?/GM so if C=0, eccentricity=0
if C> GM/L? unbound orbit; e.g r can go to infinity if u=0

C<GM/L? bound orbit; we know this solution(!); ellipse with pt source at one focus and
complete a radial period in Ayy=2x
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From before
Potential energy (B&T) eq 2.41, 2.32
¢(R)=-d/dr(M(R))

R>a ¢(r)=4nGa’p,~-GM/r

R<a ¢(r)=-2nGp,(a2-1/3r2));

Use Cartesian coordinates x=r cosgp, y=rsing
F =-4nGRp, cos(p)e,=-4nGxp,e,
F =-4nGyp,e,

need to transform d’r/dt*=e d’x/dt*+e d’y/dt*
define Q2=47/3Gp,, ;d*x/dt>=-Q2x ; d?y/dt*=-Q?y
this the harmonic oscillator general solution
x=Acos (Qttk,); y=Bcos (Qt+k,);

A,B are amplitudes and k's the initial phase
going backwards to polar coordinates
R=sqrt[A%cos? (Qt+k, )+ B2cos® (Qt+k,)]
Y=tan"'[Bcos (Qt+k )/Acos (Qt+k,);]

'Real' Orbits

Constant Density
Sphere

The R and define a closed
ellipse on the center of the
sphere; A and B are the
major and semi-major axis.

Complete radial period in
Agp=n

Most mass distributions
will lie between a pt mass
and a uniform sphere so
radial and azimuthal
periods not the same ;
rosette pattern for orbits
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Fig 3.10 ‘Galaxies in the Universe' Sparke/Gallagher CUP 2007 ] e s
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e A few orbits, ~2 Gyr of orbits- 20 Gyrs from C. Flynn
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Stellar Dynamics B&T ch 3; S&G 3.3

Orbits of disk stars

only the component of angular momentum parallel to symmetry axis is constant.

— Since L is conserved, stars move in a plane - can use polar coordinates (R,p)
(do not need z, appendix B B&T B.24)

— R eq of motion dR?/dt>-Rdg?/dt?=¢(r)

— @ eq of motion (2dR/dt*dq/dt)+Rdg?/dt>=0 ; L=R?dq/dt is a constant

— total equation of motion dR%/dt?-L/R?=¢(r)

Stars whose motions are confined to the equatorial plane of an axisymmetric
galaxy 'feel' only an effectively spherically symmetric potential

Therefore their orbits will be identical with those discussed previously

;the radial coordinate R of a star on such an orbit oscillates between the peri and

apo-galacticon as the star revolves around the center, and the orbit forms a rosette
figure. 38

Orbits in Axisymmetric Potentials- B&T 3.2, S&G 3.3

cylindrical coordinate system (R; ¢; z) with origin at the galactic

center, the z axis is the galaxy's symmetry axis.

Stars in a axisymmetric galaxy 'see' a potential which is spherically
symmetric. orbits will be identical to those in such a potential

The situation is much more complex for stars whose motions carry them
out of the equatorial plane of the system.

orbits in axisymmetric galaxies can be reduced to a two-dimensional
problem by exploiting the conservation of the z-component of angular
momentum

S&G give nice physical description

d’r/dt? =-V® (R,z); which can be written in cylindrical coordinates as
d’R/dt? -Rdg?/dt? =-9®/dR
Motion in the ¢ direction : d/dt (R? dg/dt)=0; L= R*(d¢/dt)= 0 constant

z direction : d?z/dt? =-0®/dz
39



Orbits in Axisymmetric Potentials- B&T 3.2

* Eliminating dg/dt and putting in angular momentum
¢ d?R/d*-L2,/R3=-0D/0R - if we define an effective potential ® =P (R,z)+L? /2R?
*  d?R/d2=-0® /IR (see B&T eq 3.67-3.68)

e Unless it has enough energy to escape from the Galaxy, each star must remain
within some apogalactic outer limit.
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Orbits in Axisymmetric Potentials- B&T 3.2

The three-dimensional motion of a star in an axisymmetric potential (R; z) can be
reduced to the two dimensional motion of the star in the (R; z) plane (the
meridional plane

* Since the change in ang mom in the z direction is zero (planar orbits)
0/0z(12 J2R?) = 0; d?z/d2=-0D ./0z;
The effective potential is the sum of gravitational potential and KE in the ¢ direction.

and rises very steeply near the z axis

The minimum in ®_; has a "simple" physical meaning (see next page)

0= 0P,,/0R = 0P/0R-L2/R? . which is satisfied at a particular radius - the guiding
center radius R; where

(0P/IR)l =L2,/R® =R (dep/dt)?

and 0=0®d,./dz which is satisfied in the equatorial plane

these are the conditions for a circular orbit with angular speed deo/dt
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Orbits in Axisymmetric Potentials- B&T 3.2

e the minimum of ®_; occurs at the radius at which a circular orbit has angular
momentum L, and the value of ®_, at the minimum is the energy of this circular
orbit

e Unless ® has a special form these eq's cannot be solved analytically
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Orbits in Axisymmetric Potentials- B&T 3.2.3

If assume in disk galaxies that the orbits are nearly circular
What approx can we make to the orbits??

let x = R- R,; where Ry(L,) is the guiding-center radius for an orbit of
angular momentum L, (eq. 3.72).

Expand @, around x (see B&T eq 3.76) ; the epicycling approx ignores
all terms of xz? or higher

Then define 2 new quantities:

K2(Rg) =(0%,,/0R?); VA(R;) =(0°®,/d7?%); then keeping the lower orders
d?x/dt*=-k?x; d?z/dz>=-v?z; these are the harmonic oscillator eq's around
x and z with frequencies k and v.

K is the epicycle freq and v the vertical frequency

this gives a vertical period T=27/v~6x107 yrs for the MW
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EpiCycles B&T,S&G 3.3

Remember the Oort constants??

Well in the same limit (remember v =RQ(R))

circle

Q=A-B; K2 =-4B(A-B)=4BQ ~ 2Q? (eq 3.84); using the measured values of these

constants one finds that near the sun K02= 37km/sec/kpc and the ratio of the freq of
the suns orbit around the GC and the radial freq Ky/Qq=sqrt(-B/(A-B))= 1.35

Stellar orbits do not close on themselves in an inertial frame, but form a rosette
figure like those discussed above for stars in spherically symmetric potentials

The ratio v2/K? ~3/2 p/<p> a measure of how concentrated the mass is near the

plane
The value of this approximation is in its ability to describe the motions of stars in the
disk plane (does not work well for motion perpendicular to the plane) .

The angular momentum on a circular orbit is R2Q(R);

if it increases outward at radius R, the circular orbit is stable. This condition always
holds for circular orbits in galaxy-like potentials.
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Motion in Both Coordinates B&T 3.91-3.94

d?x/dt’=-k?x; d’z/dz>=-v*z; these are the harmonic oscillator eq's around x and z with
frequencies K and v.

and the general solution is

x(t)=C cos(kt+A); C>0 and A are arbitrary constants

the solution for the ¢ direction is a bit messier and is
o=(L/R?)t-(k/2B)(C/R sin(kt+A)+q,

B&T go back to Cartesian coordinates (argh!) and define
y=-(k/2B)Csin(kt+A)=Y sin(kt+A)

In the (x; y) plane the star moves on an ellipse called the epicycle around the guiding
center

star

circular motion of guiding center==§» /'
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Epicycles
Why did we go thru all that??

Want to understand how to use stellar
motions determine where the mass is.

the orbits of stars take them through Y

different regions of the galaxies -their

motions at the time we observe them . T
have been affected by the gravitational - 20X /i
fields through which they have l
travelled earlier. -

use the equations for motion under
gravity to infer from observed motions
how mass is distributed in those parts
of galaxies that we cannot see directly.
Q(Rg)

The motions we have considered so

] |
far are the SlmpleSt ' Fig 3.9 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Using epicycles, we can explain the
observed motions of disk stars near the 46
Sun.

Virial Theorem

S+G pg 120-121, MBW 5.4.4, B&T call the 'virial 'Q

pg 360

A rather different derivation (due to H Q= | dI - ) dr )

Rix) ——=mzl.—=2p1
2 dt dt

Consider (for simplicity) the 1-D Jeans
eq in steady state (more later)

310X [pV2]+pod/dx=0
Integrate over velocities and dQ/dt= 2 Fr+2T
then over positions...

_2Ekin=Epot

or restating in terms of forces

if T= total KE of system of N
particles < >= time average

2<T>=-%(F\°r;); summation
over all particles k=1,N 47



Virial Theorem - Simple Cases

 Circular orbit: mV%/r=GmM/r?
e Multiply both sides by r mV?=GmM/r
e mV?=2KE; GmM/=-W so 2KE+W=0

e Time averaged Keplerian orbit PE and KE of Kepler Ellipse (e = 0.7)

define U=KE/IWI; as show in figure it
clearly changes over the orbit; but

take averages
~W.=<GM/r>=GM<1/r>=GM(1/a)

KE=<1/2mV?>=GM<]1/r-1/2a>
=1/2GM(1/a) and again 2KE+W=0

| 1 L
0 0.2 0.4 0.6 0.8 1

Time (fraction of period)

Red: kinetic energy (positive) starting at perigee

Blue: potential energy (negative) 48

Virial Theorem

* Another derivation following Bothun
http://ned.ipac.caltech.edu/level5/Bothun2/Bothun4 1 1.html

* Moment of inertia, I, of a system of N particles

e I=2myr? sum over i=1,N (express r; as (X >+y;>+z;%)
* take the first and second time derivatives ; let dx?/dt> be symbolized by X, y, Z
o dI¥/dt?=Em, (dx/dt+dy>/dt+dz.>/dt)+Zm,(x, X+y.y+2.2)

mv? (KE)+Potential ener& (W) r ¢(ma)

after a few dynamical times, if unperturbed a system will
come into Virial equilibrium-time averaged inertia will
not change so 2<T>+W=0

For self gravitating systems W=-GM?/2R; ; is the harmonic radius- the sum of the
distribution of particles appropriately weighted

1/Ry=1/NZ 1/,

The virial mass estimator is M=20°R,/G; for many mass distributions R;;~1.25 R 4
. . . . . . . 49

where R is the half light radius o'is the 3-d velocity dispersion



Virial Thm MBW 544

If I is the moment of inertia
1/2d%1/t2 =2KE+W+X

— where X is the work done by
external pressure

— KE is the kinetic energy of the
system

— w is the potential energy (only if
the mass outside some surface S
can be ignored)

For a static system (d?I/t*> =0)
2KE+W+2 =0
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Time Scales for Collisions

N particles of radius r, Cross section for a direction collision o =mr?,
Definition of mean free path; if V is the volume of a particle 4/37tr?

A=V/no, where n is the number density of particles (particles per unit volume)
n=3N/4xr’,

and the characteristic time between collisions (Dim analysis)is
tcollisionzx/v'y ( e/rp)zt
for a body of size ¢, t

/N where v is the velocity of the particle.
=V

cross™

Cros

So lets consider a galaxy with ¢~10kpc, N=1010 stars and v~200km/sec

ifr,=R ~102! yrs

sun® tcollision

For indirect collisions the argument is more complex (see S+G sec 3.2.2, MWB pg
231) but the answer is the same - it takes a very long time for star interactions to
exchange energy (relaxation).

t Nt.. ./ 10InN

relax~+ Y Ccross
Its only in the centers of the densest globular clusters and galactic nuclei that'this is
imnortant



How Often Do Stars Encounter Each Other

For a 'strong' encounter GmM/r>1/2mv?e.g.
potential energy exceeds KE
So a critical radius is r<r,=2GM/v?

Putting in some typical numbers m~1/2Mg
v=30km/sec r=1AU v, -
So how often do stars get that close?

consider a cylinder Vol=nr?vt; if have n stars
per unit volume than on average the encounter
occurs when

nar’vt=1, t=v3/ 4nnG’m?

Putting in typical numbers
=4x10'2(v/10km/sec)3*(m/Mg)2(n/pc3)! yr- a
very long time (universe is only 10'°yrs old-

galaxies are essentially collisionless .

What About Collective Effects ? sec 3.2.2

For a weak encounter b >>
Need to sum over individual interactions- effects are also small

V

impact F

parameter b deflection

velocity

mass M

53



