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The distribution of stellar masses that form in one star-formation event in a
given volume of space is called the initial mass function (IMF). The IMF has
been estimated from low-mass brown dwarfs to very massive stars. Combin-
ing IMF estimates for different populations in which the stars can be observed
individually unveils an extraordinary uniformity of the IM F. This general in-
sight appears to hold for populations including present-day star formation in
small molecular clouds, rich and dense massive star-clusters forming in giant
clouds, through to ancient and metal-poor exotic stellar populations that may
be dominated by dark matter. This apparent universality of the IMF is a chal-
lenge for star formation theory because elementary considerations suggest that
the IMF ought to systematically vary with star-forming conditions.

The physics of star formation determines the conversion of gas to stars. The outcome of
star formation are stars with a range of masses. Astrophysicists refer to the distribution of
stellar masses as the stellar initial mass function. Together with the time-modulation of the
star-formation rate, the IMF dictates the evolution and fate of galaxies and star clusters. The
evolution of a stellar system is driven by the relative initial numbers of brown dwarfs (BDs,
<∼ 0.072 M⊙) that do not fuse H to He, very low-mass stars (0.072 − 0.5 M⊙), low-mass stars
(0.5−1 M⊙), intermediate-mass stars (1−8 M⊙) and massive stars (m > 8 M⊙). Non-luminous
BDs through to dim low-mass stars remove gas from the interstellar medium (ISM), locking-
up an increasing amount of the mass of galaxies over cosmological time scales. Intermediate
and luminous but short-lived massive stars expel a large fraction of their mass when they die
and thereby enrich the ISM with elements heavier than H and He. They heat the ISM through
radiation, outflows, winds and supernovae (1,2). It is therefore of much importance to quantify
the relative numbers of stars in different mass ranges and tofind systematic variations of the
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IMF with different star-forming conditions. Identifying systematic variations of star formation
would allow us to understand the physics involved in assembling each of the mass ranges, and
thus to probe early cosmological events. Determining the IMF of a stellar population with mixed
ages is a difficult problem. Stellar masses cannot be weigheddirectly in most instances (121)
so the mass has to be deduced indirectly by measuring the star’s luminosity and evolutionary
state.

The history of the subject began in 1955 at the Australian National University when Ed-
win E. Salpeter published the first estimate (3) of the IMF for stars in the solar-neighborhood
(122). For stars with masses in the range0.4 − 10 M⊙ he found that it can be described by
a power-law form with an indexα = 2.35. This result implied a diverging mass density for
m → 0, which was interesting because dark matter was speculated,until the early 1990’s, to
possibly be made-up of faint stars or sub-stellar objects. Studies of the stellar velocities in
the solar-neighborhood also implied a large amount of missing, or dark, mass in the disk of
the Milky Way (MW) (4). Beginning in the early 1950’s Wilhelm Gliese in Heidelberg began a
careful compilation of all known stars within the solar neighborhood with accurately known dis-
tance. The edition published in 1969 became known as the famousGliese Catalogue of Nearby
stars, the modern version of which (122,5) constitutes the most complete and best-studied stel-
lar sample in existence. During the early 1980’s newly developed automatic plate-measuring
machines made it possible to discriminate between many distant galaxies and a few nearby
main-sequence stars in the hundred thousand images on a single photographic plate. This al-
lowed Neill Reid and Gerard Gilmore at Edinburgh Observatory to make photographic surveys
of the sky with the aim of finding very low-mass stars beyond the solar neighborhood (6). To-
gether with the Gliese Catalogue this survey and others thatfollowed using the same technique
significantly improved knowledge of the space density of very low-mass stars (7,8). The form of
the IMF for low-mass stars was further revised in the early 1990’s in Cambridge (UK) through
improved theoretical understanding of the mass–luminosity relation of low mass stars and the
evaluation of the observational errors due to unresolved binary systems (9, 10), finding confir-
mation by subsequent work (11). For massive stars John Scalo’s (8) determination (α ≈ 2.7)
in Austin in 1986 remained in use. It is even today the most thorough analysis of the IMF
in existens. It is superseded now by Phillip Massey’s (12) work at Tucson who demonstrated
through extensive spectroscopic classification that Salpeter’s original result extends up to the
most massive stars known to exist withm ≈ 120 M⊙.

Today we know that the IMF for solar-neighborhood stars flattens significantly below about
0.5 M⊙. The IMF for BDs is even shallower, as shown by Gilles Chabrier at Berkeley in 2001
(13), so that very-low mass stars and BDs contribute an insignificant amount to the local mass
density. The need for dark matter in the MW disk also disappeared as improved kinematical
data of stars in the MW disk became available (14, 15). Popular analytical descriptions of the
IMF and some definitions are summarized in Table 1.

The Form of the IMF
Assuming all binary and higher-order stellar systems can beresolved into individual stars in
some population such as the solar neighborhood (122) and that only main-sequence stars are
selected for, then the number of stars per pc3 in the mass intervalm to m + dm is dN =
Ξ(m) dm, whereΞ(m) is the observed present-day mass function (PDMF). The number of stars
per pc3 in the absolute magnitude (123) intervalMP to MP + dMP is dN = −Ψ(MP ) dMP ,
whereΨ(MP ) is the stellar luminosity function (LF). It is constructed by counting the number of
stars in the survey volume per magnitude interval, andP signifies an observational photometric
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pass-band such as theV -band. Thus

Ξ(m) = −Ψ(MP ) (dm/dMP )−1. (1)

Because the derivative of the stellar mass–luminosity relation (MLR), m(MP ) = m(MP , Z, τ, s),
is needed to calculateΞ(m), any uncertainties in stellar structure and evolution theory on the
one hand or in observational ML-data on the other hand will bemagnified. The dependence of
the MLR on the star’s chemical composition,Z, its age,τ , and its spin vectors, is explicitly
stated here. This is because stars with fewer metals (lower opacity) than the Sun are brighter.
Main-sequence stars brighten with time and they lose mass. Rotating stars are dimmer because
of the reduced internal pressure. Mass loss and rotation also alter the MLR for intermediate and
especially high-mass stars (16).

The IMF follows by correcting the observed number of main sequence stars for the number
of stars that have evolved off the main sequence. Definingt = 0 to be the time when the
Galaxy that now has an aget = τG formed, the number of stars per pc3 in the mass interval
m, m + dm that form in the time intervalt, t + dt is dN = ξ(m, t) dm × b(t) dt. The expected
time-dependence of the IMF is explicitly stated, andb(t) is the time-modulation of the IMF.
This is the normalized star-formation history (SFH), with(1/τG)

∫ τG
0 b(t) dt = 1. Stars that

have main-sequence life-timesτ(m) < τG leave the stellar population unless they were born
during the most recent time intervalτ(m). The number density of such stars with masses in
the rangem, m + dm still on the main sequence and the total number density of stars with
τ(m) ≥ τG, are, respectively,

Ξ(m) = ξ(m)
1

τG

{

∫ τG
τG−τ(m) b(t)dt , τ(m) < τG,

∫ τG
0 b(t) dt , τ(m) ≥ τG,

(2)

where the time-averaged IMF,ξ(m), has now been defined. Thus, for low-mass starsΞ = ξ,
while for a sub-population of massive stars that has an age∆t ≪ τG, Ξ = ξ (∆t/τG) for those
stars of massm for which τ(m) > ∆t. This indicates how an observed high-mass IMF in an
OB association, for example, is scaled to the Galactic-field(124) IMF for low-mass stars. In
this case the different spatial distribution by different disk-scale heights of old and young stars
also needs to be taken into account, which is done globally bycalculating the stellar surface
density in the MW disk (7,8). In a star cluster or association with an ageτcl ≪ τG, τcl replaces
τG in eq. 2. Examples of the time-modulation of the IMF areb(t) = 1 (constant star-formation
rate) or a Dirac-delta function,b(t) = τcl × δ(t − t0) (all stars formed at the same timet0).

Massive stars Studying the distribution of massive stars is complicated because most of their
energy is emitted at far-UV wavelengths that are not accessible from Earth, and they have
short main-sequence life-times (12). For example, an85 M⊙ star cannot be distinguished from
a 40 M⊙ star on the basis ofMV alone. ConstructingΨ(MV ) to getΞ(m) for a mixed-age
population does not work if optical or even UV-bands are used. Instead, spectral classification
and broad-band photometry for estimation of the reddening of the star-light through interstellar
dust has to be performed on a star-by-star basis to measure the effective temperature,Teff , and
the bolometric magnitude,Mbol, from whichm is obtained, allowing the construction ofΞ(m).

Having obtainedΞ(m) for a population, the IMF follows by applying eq. 2. Studies that rely
on broad-band optical photometry consistently arrive at IMFs that are steeper with a power-
law indexα3 ≈ 3 (see eq. 4 below), rather thanα3 = 2.2 ± 0.1 consistently found using
spectral classification for a wide range of stellar populations (12). However, multiple systems
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that are not resolved into individual stellar companions hide their less-luminous members. This
is a serious problem because observations have shown that most massive stars are in binary
and higher-order multiple systems (17, 18). Correcting for the missed companions leads to
systematically largerα3 ≈ 2.7 values (19). The larger value,α ≈ 3 ± 0.1, is also suggested by
a completely independent but indirect approach relying on the distribution of ultra-compact HII
regions in the MW (20).

Massive main-sequence stars have substantial winds flowingoutwards with velocities of a
few 100 to a few 1000 km/s (21), but they do not loose more than about 10 per cent of their
mass (22,23). More problematic is that these massive stars are rapidly rotating when they form
and so are sub-luminous as a result of reduced internal pressure. They decelerate during their
main-sequence life-time owing to the angular-momentum loss through their winds and become
more luminous more rapidly than non-rotating stars (24). The mass–luminosity relation for
a population of stars that have a range of ages is therefore broadened making mass estimates
from Mbol uncertain by up to 50 % (16), a source of error also not yet taken into account in
the derivations of the IMF. Another problem is thatm >∼ 40 M⊙ stars may finish their assembly
after burning a significant proportion of their central H so that a zero-age-main sequence may
not exist for massive stars (25).

Intermediate-mass stars These stars have main-sequence life-times similar to the age of the
MW disk. Solving equation 2 becomes sensitive to the SFH of the solar neighborhood and to
the age and structure of the disk. None of these are known verywell. Conversion of the PDMF
to the IMF also depends on corrections for evolution along the main sequence if the ages of
the stars were known. Deriving the IMF for intermediate-mass solar-neighborhood stars is
therefore subject to difficulties that do not allow an unambiguous estimate of the IMF (26). The
gap between massive and low-mass stars is bridged by assuming the IMF is continuous and
differentiable.

Low-mass and very-low-mass stars in the Galactic field Galactic-field stars (124) have an
average age of about 5 Ga and represent a mixture of many star-formation events. The IMF
deduced for these is therefore a time-averaged IMF which is an interesting quantity for at least
two reasons, namely for the mass-budget of the MW disk, and asa bench-mark against which
the IMFs measured in presently occurring star-formation events can be compared with to distill
possible variations about the mean.

There are two well-tried approaches to determineΨ(MV ) in eq. 1 for Galactic-field stars.
The first and most straightforward method for estimating theIMF consists of creating a local
volume-limited catalogue of nearby stars with accurate distance measurements. The second
method is to make deep pencil-beam surveys to extract a few hundred low-mass stars from a
hundred-thousand stellar and galactic images. This approach leads to larger stellar samples
because many lines-of-sight into the Galactic field rangingto distances of a few 100 pc to
a few kpc are possible (125). The localnearby LF, Ψnear, and the deepphotometric LF, Ψphot,
are displayed in Fig. 1. They differ significantly for stars fainter thanMV ≈ 11.5 causing
controversy in the past (126). The solar neighborhood sample cannot have a spurious but statis-
tically significant over-abundance of very-low-mass starsbecause the velocity dispersion in the
disk is large,≈ 30 pc/My. Any significant overabundance of stars within a sphere with a radius
of 30 pc would disappear within one My, and cannot be created nor sustained by any physically
plausible mechanism in a population of stars with stellar ages spanning the age of the MW disk.

The slope of the MLR (Fig. 2) is very small at faint luminosities leading to large uncer-
tainties in the MF near the hydrogen burning mass limit (≈ 0.072 M⊙, (29)). Any non-linear
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structure in the MLR is mapped into observable structure in the LF (eq. 1), provided the MF
does not have compensating structure. The derivative has a sharp maximum atMV ≈ 11.5, this
being the origin of the maximum inΨphot nearMV = 12 (30).

In addition to the non-linearities in the MLR relation unresolved multiple systems affect
the MF derived fromΨphot. This is a serious issue because no stellar population is known to
exist that has a binary proportion smaller than 50 %. Supposean observer sees 100 systems.
Of these 40, 15 and 5 are binary, triple and quadruple, respectively, these being realistic pro-
portions. There are thus 85 companion stars which the observer is not aware of if none of the
multiple systems are resolved. Because the distribution ofsecondary masses for a given primary
mass is not uniform but typically increases with decreasingmass (31), the bias is such that low-
mass stars are underrepresented in any survey that does not detect companions (32,33,34,31).

Comprehensive star-count analysis of the solar neighborhood need to incorporate unre-
solved binary systems, metalicity and age spreads and the density fall-off perpendicular to the
Galactic disk. Such studies show that the IMF can be approximated by a two-part power-law
with α1 = 1.3 ± 0.7, 0.08 < m/M⊙ ≤ 0.5 andα2 = 2.2, 0.5 < m/M⊙ ≤ 1, a result obtained
for two different MLRs (35). Fig. 3 demonstrates simplified models that, however, takeinto ac-
count a realistic population of triple and quadruple stellar systems. The two best-fitting MLRs
shown in Fig. 2 are used. The difference between the single-star and system LFs is evident in
all cases, being most of the explanation of the disputed (126) discrepancy between the observed
Ψnear andΨphot. It is also evident however, that the model system LFs do not approximate
Ψphot very well. This is probably due to the used MLRs not accounting for the full height of
the maximum in the LF.

Star clusters Most star clusters offer populations that are co-eval and equidistant with the
same chemical composition. As a compensation for these advantages the extraction of faint
cluster members is very arduous because of contamination from the background Galactic-field
population. The first step is to obtain photometry of everything stellar in the vicinity of a cluster
and to select only those stars that lie near one or a range of isochrones, taking into account that
unresolved binaries are brighter than single stars. The next step is to measure proper motions
and radial velocities of all candidates to select only thosehigh-probability members that have
coinciding space motion with a dispersion consistent with the a priori unknown but estimated
internal kinematics of the cluster. Because nearby clusters for which proper-motion measure-
ments are possible appear large on the sky, the observational effort is horrendous. For clusters
such as globulars that are isolated the second step can be omitted, but in dense clusters stars
missed due to crowding need to be corrected for. The stellar LFs in clusters turn out to have the
same general shape as the photometric Galactic-field LF,Ψphot (Fig. 1), although the maximum
is slightly offset depending on the metalicity of the population (30). This beautifully confirms
that the maximum in the LF is due to structure in the derivative of the MLR. A 100 Ma isochrone
(the age of the Pleiades) is also plotted in Fig. 2 to emphasize that for young clusters additional
structure in the LF is expected (eq. 1). This is due to stars with m < 0.6 M⊙ not having reached
the main-sequence yet (36,37).

LFs for star clusters are, likeΨphot, system LFs because binary systems are not resolved in
the typical star-count survey. The binary-star populationevolves due to encounters. After a few
initial crossing times only those binary systems survive that have a binding energy larger than
the typical kinetic energy of stars in the cluster. Calculations of the formation of an open star
cluster demonstrate that the binary properties of stars remaining in the cluster are comparable
to those in the Galactic field even if all stars initially formin binary systems (38). A further
disadvantage of cluster LFs is that star clusters preferentially loose single low-mass stars across
the tidal boundary as a result of ever-continuing re-distribution of energy during encounters.
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With time, the retained population has an increasing binaryproportion and increasing average
stellar mass. The global PDMF thus flattens with time with a rate inversely proportional to
the relaxation time. For highly evolved initially rich openclusters it evolves towards a delta
function near the turnoff mass.

If a star cluster is younger than a few Ma classical pre-main sequence theory fails. This
theory assumes hydrostatic contraction of spherical non-rotating or sometimes slowly rotating
stars from idealized initial states. However, Wuchterl hasshown that stars this young remember
their accretion history (39). They are rotating rapidly and are non-spherical. Pre-main sequence
tracks taking these effects into account are not available yet because of the severe computational
difficulties. Estimates of the IMF in such very young clusters have to resort to classical calcu-
lations despite this gap in our theoretical understanding.Furthermore, the age-spread of stars is
comparable to their age requiring spectroscopic classification of individual stars to place them
on a theoretical (but hitherto classical) isochrone to estimate their masses (40). Binary sys-
tems are also not resolved. A few results are shown in Fig. 4. Taking the Orion nebula cluster
(ONC) as the best-studied example (41,42,43), the figure shows how the shape of the deduced
IMF varies with improving (but still classical) pre-main sequence evolution calculations. This
demonstrates that any apparent sub-structure in the IMF cannot yet be relied upon to reflect
possible underlying physical mechanisms of star formation.

For the much more massive and long-lived globular clusters (N >∼ 105 stars) theoretical
stellar-dynamical work shows that the MF measured for starsnear the cluster’s half-mass radius
is similar to the global PDMF. Inwards and outwards of this radius the MF is flatter (smallerα)
and steeper (largerα), respectively. This comes from dynamical mass segregation (44). Strong
mass loss in a strong tidal field flattens the global PDMF such that it no longer resembles the
IMF anywhere (45).

Brown dwarfs Brown dwarfs were theoretical constructs since the early 1960’s (46) until
the first cases were discovered in 1995 (47). For the solar neighborhood, near-infrared large-
scale surveys have now identified about 50 BDs probably closer than 25 pc. Because these
objects do not have reliable distance measurements an ambiguity exists between their ages and
distances. Only statistical analysis which relies on an assumed SFH for the solar neighborhood
can presently constrain the IMF, findingα0

<∼ 1 for the Galactic-field BD IMF (13).
Surveys of young star clusters have also discovered BDs by finding objects that extend the

color–magnitude relation towards the faint locus while being kinematical members. Given the
great difficulty of this endeavor only a few clusters now possess constraints on the IMF. The
Pleiades star cluster has proven especially useful, given its proximity (≈ 127 pc) and young age
(≈ 100 Ma). Results indicateα0 ≈ 0.5 − 0.6 (Table 3). Estimates for other clusters (ONC,
σ Ori, IC 348; Table 3) also indicateα0

<∼ 0.8.
There appears to be no lower-mass limit for BDs. Free-floating planets (FFLOPs) (<∼ 0.01 M⊙)

have been discovered in the very young ONC (48, 49) and in theσ Orionis cluster (50, 51, 52).
The IMF for FFLOPs appears to be similar to that for the more massive BDs.

The above estimates of the IMF suffer under the same bias affecting stars, namely unseen
companions. BD–BD binary systems are known to exist (47), notably in the Pleiades clus-
ter where their offset in the color–magnitude diagram from the single-BD locus makes them
conspicuous. But their frequency is not yet very well constrained because detailed scrutiny of
individual objects is time-intensive on large telescopes.Calculations (38, 53) of the formation
and dynamical evolution of star clusters show that after a few crossing times the binary pro-
portion among BDs is smaller than among low-mass stars. The distribution of separations does
not extend to the same distances as for stellar systems. Thisis a result of the weaker binding
energy of BD–BD binaries. These calculations also show thatafter a few crossing times the
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star–BD binary proportion is smaller than the star–star binary proportion. This is consistent
with the results of a number of searches that have found no wide BD companions to nearby
stars (47). Radial-velocity surveys of BD companions to nearby low-mass stars also show that
star–BD binaries are very rare for separations<∼ 3 AU. The general absence of BD companions
is referred to as thebrown-dwarf desert, because stellar companions and planets are found at
such separations (54, 55). A few very wide systems with BD companions can form during the
final stages of dissolution of a small cluster (56), and three such common proper-motion pairs
have perhaps been found (57).

The average IMF The constraints arrived at above form <∼ 1 M⊙ andm >∼ 8 M⊙ can be con-
veniently described by a multi-part power-law form (eqs. 4 and 5 in Table 1). Because this IMF
has been obtained from solar-neighborhood data for low-mass and very low-mass stars and from
many clusters and OB associations for massive stars it is an average IMF. Form < 1 M⊙ is is
the IMF for single stars because unseen companions are corrected for in this sample. Inde-
pendent measurements of the IMF are consistent with the average multi-part power-law form
(Fig. 5) .

The number fractions, mass fractions and mass densities contributed to the Galactic-field
total by stars in different mass-ranges are summarized in Table 2. Main-sequence stars make up
about half of the baryonic matter density in the local Galactic disk. Of the stellar contribution to
the matter density, BDs make up about 40 % in number and about 7% in mass. The numbers in
the table are consistent with observed star-formation events such as in Taurus–Auriga (TA). In
TA groups of a few dozen stars form that do not contain stars more massive than the Sun. The
table also shows that a star cluster loses about 10 % of its mass through stellar evolution within
10 My if α3 = 2.3 (turnoff-massmto ≈ 20 M⊙), or within 300 My if α3 = 2.7 (turnoff-mass
mto ≈ 3 M⊙). After about 10 Gy the mass loss through stellar evolution alone amounts to about
40 % if α3 = 2.3 or 30 % if α3 = 2.7. Mass loss through stellar evolution therefore poses no
risk for the survival of star clusters for the IMFs discussedhere, because the mass-loss rate is
small enough for the cluster to adiabatically re-adjust. A star-cluster may be destroyed through
mass loss from supernova explosions ifα ≈ 1.4 for 8 < m/ M⊙ ≤ 120 which would mean
a mass-loss of 50 % within about 40 My when the last supernova explodes (53). None of the
measurements in a resolved population has found such a lowα for massive stars (Fig. 5).

Variation of the IMF and Theoretical Aspects
Is the scatter of data points in the alpha-plot (Fig. 5) a result of IMF variations? Before this can
be answered affirmatively any non-physical sources for scatter in the power-law index determi-
nations need to be assessed.

For a truly convincing departure from the average IMF a measurement would need to lie
outside the conservative uncertainty range of the average IMF. Significant departures from the
average IMF only occur in the shaded areas of the alpha plot. These are, however, not reliable.
The upper mass range in the shaded area near1 M⊙ poses the problem that the star-clusters have
evolved such that the turn-off mass is near to this range so that conversion to masses critically
depends on stellar-evolution theory and the adopted cluster ages. Some clusters such asρ Oph
are so sparse that more massive stars did not form. In both these cases the shaded range is
close to the upper mass limit. This leads to possible stochastic stellar-dynamical biases because
the most massive stars meet near the core of a cluster due to mass segregation, but three-body
or higher-order encounters there can cause expulsions fromthe cluster. The shaded area near
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0.1 M⊙ poses the problem that the low-mass stars are not on the main sequence for most of
the clusters studied. They are also prone to bias through mass-segregation by being underrep-
resented within the central cluster area that is easiest to study observationally. Especially the
latter is probably biasing the M35 datum. Some effect with metalicity may be operating though,
because M35 appears to have a smallerα near the H-burning mass limit than the Pleiades cluster
which has a similar age but has a larger abundance of metals (Fig. 4).

Measurements of the IMF for massive stars that are too far from star-forming sites to have
drifted to their positions within their life-times yieldα3 ≈ 4.5 (12). This value is discordant
with the average IMF and is often quoted to be a good example ofevidence for a varying IMF,
being the result of isolated high-mass star-formation in small clouds. However, accurate proper-
motion measurements show that even the firmest members of this isolated population have very
high space motions (58). Such high velocities are most probably the result of energetic stellar-
dynamical ejections when massive binary systems interact in the cores of star-clusters in normal
but intense star-forming regions located in the MW disk. Thelargeα3 then probably comes
about because the typical ejection velocity is a decreasingfunction of ejected stellar mass, but
detailed theoretical verification is not yet available.

To address such stellar-dynamical biases an extensive theoretical library of binary-rich star
clusters has been assembled (53) covering 150 My of stellar-dynamical evolution taking into
account stellar evolution and assuming the average IMF in all cases. Evaluating the MF within
and outside of the clusters, at different times and for clusters containing initially800−104 stars
leads to a theoretical alpha-plot which reproduces the spread in α(lm) values evident in the
empirical alpha-plot (Fig. 5). This verifies the conservative uncertainties adopted in the average
IMF but implies that the scatter in the empirical alpha-plotaround the average IMF cannot be
interpreted as true variations.

Enough IMF data have been compiled to attempt the first analysis of the distribution of
power-law indices. If all stellar populations have the sameIMF then this should be reflected by
this distribution. It ought to be a Gaussian with a mean<α> value corresponding to the true
IMF, and a dispersion reflecting the measurement uncertainties. The distribution ofα data for
m > 2.5 M⊙ (Fig. 6) shows a narrow peak positioned at the Salpeter value, with symmetric
broad wings. The empirical data are therefore not distributed like a single Gaussian function.
The theoretical alpha-plot shows a distribution consistent with a single Gaussian. Its width is
comparable to the broad wings in the empirical data. Interestingly, the spread,σα,f = 0.08, of
the narrow peak in the empirical data is very similar to the uncertainties quoted by Massey in
an extensive observational determination of the IMF for massive stars,α = 2.2 ± 0.1. It is not
clear at this stage if the empirical distribution does reflect true IMF variations. The symmetry of
the broad wings suggests a superposition of at least two Gaussians with different measurement
uncertainties but the same underlying IMF for massive stars.

If α3 = 2.3 ± 0.1 is adopted for massive stars, then the measurementα = 1.6 ± 0.1 for
the massive Arches cluster (Table 3), which is situated nearthe Galactic center and difficult to
observe, would definitely mean an IMF that is top-heavy for this extreme population. There
are also indications of top-heavy IMFs in star clusters in the starburst (127) galaxy M82 which
has a low metalicity. The galaxy is too distant for its clusters to be resolved into individual
stars and binaries, so that the stellar LF cannot be measured. However, spectroscopy of the
massive M82-F cluster allows measurement of the velocity dispersion of the stars in the cluster.
Together with the cluster size this gives a mass for the cluster if it is assumed that the cluster is in
gravitational equilibrium. The derived mass-to-light ratio is significantly smaller than the ratio
expected from the average IMF for such a young (about 60 Ma) population. The implication
is that the M82-F population is significantly depleted in low-mass stars, or top-heavy (59).
Stellar-dynamical modeling of forming star clusters is needed to investigate if M82-F may have
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been stripped off its low-mass stars by the tidal field. Furthermore, X-ray observations of M82
suggest that the relative abundances of some heavy elementsseem to be inconsistent with the
expectation of the Salpeter IMF, and that stars with masses above25 M⊙ seem to contribute
significantly to the metal enrichment of the galaxy (60, 61). These studies are independent of
the unresolved cluster issue and suggest that the slope of the IMF for massive stars is likely
to be smaller than the Salpeter value,α3

<∼ 2. This indirect approach, however, relies on exact
knowledge of nucleosynthesis yields and the processes governing injection of enriched material
back into the ISM. Additional evidence for variations of theIMF come from the central regions
of very young star clusters. For example, the center of the ONC is deficient in low-mass stars
(Fig. 4) although the global MF for this cluster is similar tothe average IMF. The interpretation
of a locally varying IMF depends on whether mass segregationin the ONC is primordial, or
whether it is the result of stellar-dynamical evolution.

Two well-studied and resolved starburst clusters haveα3 ≈ 2.3 (30 Dor and NGC 3603,
Table 3). These are also massive and very young clusters, butthey oppose the suggestion from
the Arches and M82-F clusters that starbursts may prefer top-heavy IMFs. From the ONC
we know that the entire mass spectrum0.05<∼m/M⊙

<∼ 60 is present roughly following the
average IMF (Fig. 4). Low-mass stars are also known to form inthe much more massive 30 Dor
cluster (62) although their IMF has not been measured yet due to the largedistance of about
55 kpc. The available evidence is thus that low-mass stars and massive stars form together even
in extreme environments without, as yet, convincing demonstration of a variation of the number
ratio.

The observational study by Luhman (42) of many close-by star-forming regions using one
consistent methodology finds that the IMF does not show measurable differences from low-
density star-forming regions in small molecular clouds (n = 0.2−1 stars/pc3 in ρ Oph) to high-
density cases in giant molecular clouds (n = (1 − 5) × 104 stars/pc3 in the ONC). This result
extends to the populations in the truly exotic ancient and metal-poor dwarf-spheroidal satellite
galaxies. These are speculated to be dominated by dark matter and thus probably formed under
conditions that were different from present-day events. Two such close companions to the MW
have been observed (63,64) finding the same MF as in globular clusters for0.5 <∼m/M⊙

<∼ 0.9.
Thus, again there are no significant differences to the average IMF. This apparent universality
of the IMF is also supported by available chemical evolutionmodels of the MW (65). The IMF
for metal-poor and metal-rich populations of massive starsis the same (12). Between about
10 M⊙ andmu > 70 − 100 M⊙ the IMF is a power-law withα = 2.1 ± 0.1 for 13 clusters
and OB associations in the MW (metalicityZ ≈ 0.02 = Z⊙, which is the Solar mass fraction
of metals),α = 2.3 ± 0.1 for 10 clusters and OB associations in the Large Magellanic Cloud
(Z = 0.008) andα = 2.3±0.1 for one cluster in the Small Magellanic Cloud (Z = 0.002). The
data imply that the mass of the most massive star,mmax > 70 − 100 M⊙, is independent ofZ,
and only depends on the number of stars in the star-forming event. The most massive star that is
present in a population is consistent with stars being sampled randomly from the IMF without
an upper mass limit,mmax, the IMF taking on the meaning of a probability density function.
This questions the concept of a fundamental maximum upper stellar mass, although unresolved
multiple systems may be mistaken for very massive stars. It follows that radiation pressure on
dust grains during star-assembly cannot be a physical mechanism establishingmmax (128).

However, there may be some IMF variation for very-low mass stars. Present-day star-
forming clouds typically have somewhat higher metal-abundances (log10(Z/Z⊙) ≈ [Fe/H] ≈
+0.2) compared to 6 Ga ago ([Fe/H]≈ −0.3) (66). This is the mean age of the popula-
tion defining the average IMF. The data in the empirical alpha-plot indicate that some of the
younger clusters may have a single-star IMF that is somewhatsteeper than the average IMF if
unresolved binary-stars are corrected for (53). Clouds with a larger [Fe/H] appear to produce

9



relatively more very low-mass stars. This is tentatively supported by the M35 result (Fig. 4)
and by the typically flatter MFs in globular clusters (45) that have [Fe/H]≈ −1.5. The recent
finding that the old and metal-poor ([Fe/H]≈ −0.6) thick-disk population has a flatter IMF
below 0.3 M⊙ with α ≈ 0.5 (67) also supports this assertion. If such a systematic effect is
present, then form <∼ 0.7 M⊙,

α ≈ 1.3 + ∆α [Fe/H], (3)

with ∆α ≈ 0.5. Many IMF measurements are needed to verify if such a variation exists because
it is within the present uncertainty inα. As a possible counterexample, the IMF measured for
spheroidal MW stars that have [Fe/H]≈ −1.5 does not appear to be significantly flatter than
the average IMF (68), so the issue is far from being settled.

Theoretical considerations do suggest that for sufficiently small metalicity a gas cloud can-
not cool efficiently causing the Jeans mass required for gravitational collapse to be larger. In
particular, the first stars ought to have large masses because of this effect (69, 70). If the IMF
of the first stars were similar to the average IMF then long-lived low-mass stars should exist
that have no metals. However, none have been found (71), possibly implying that the IMF of
the first stars was very different from the average IMF. Finding the remnants of these first stars
poses a major challenge. An easier target is measuring the IMF for low-mass and very-low mass
stars in metal-poor environments, such as young star-clusters in the Small Magellanic Cloud.
Metalicity does play a role in the planetary-mass regime because the detected exo-planets occur
mostly around stars that are more metal-rich than the Sun (72). This suggests that metal-richer
environments may favor the formation of less-massive objects.

While the Jeans-mass argument should be valid as a general indication of the rough mass
scale where fragmentation of a contracting gas cloud occurs, the concept breaks down when
considering the stellar masses that form in star clusters. The central regions of clusters are
denser, formally leading to smaller Jeans masses which is the opposite of the observed trend.
Even in very young clusters massive stars tend to be located in the inner regions. More complex
physics is involved. Stars may regulate their own mass by powerful outflows (73), and the
coagulation of protostars probably plays a role in the densest regions where the cloud-core
collapse time,τcoll, is longer than the fragment collision time-scale which is the cluster crossing
time, tcr. The collapse of a fragment to a protostar with>∼ 90 % of the final stellar mass takes
no longer thanτcoll ≈ 0.1 My (39), so thattcr < 0.1 My implies M/R3 > 105 M⊙/pc−3.
Such densities are only found in the centers of very populousembedded star clusters. This
may explain why massive stars are usually centrally concentrated in very young clusters (74,
75). However, until accurateN−body computations are performed for a number of cases, the
observed mass segregation in very young clusters cannot be taken as evidence for primordial
mass segregation, and thus for coagulation and local IMF variations. For example, models of
the ONC show that the degree of observed mass segregation canbe established dynamically
within about 2 My (Fig. 4) despite the embedded and much denser configuration having no
initial mass segregation.

The origin of most stellar masses is indicated by recent observations of star formation in
the ρ Oph cluster. In this modest proto-cluster the pre-stellar and protostar MFs are indis-
tinguishable. Both are indistinguishable from the averageIMF upon correction for binaries
that presumably form in the cores (76, 77). The pre-stellar cores have sizes and densities
that agree with the Jeans-instability argument for the conditions in theρ Oph cloud. Cloud-
fragmentation therefore appears to be the most-important mechanism shaping the stellar IMF
for masses0.05 <∼m/M⊙

<∼ 3, and the shape of the IMF is determined by the spectrum of den-
sity fluctuations in the molecular cloud. The computations of cloud fragmentation by Klessen
are beginning to reproduce the initial stages of this process (78), but suggest that the emerging
IMF depends on the star formation conditions. The empiricaldata indicate that stars freeze
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out of the molecular gas much faster than the motions betweenthe stars thereby preserving the
distribution of density fluctuations in the cloud (79). The majority of stellar masses making
up the average IMF thus do not appear to suffer subsequent modifications such as competitive
accretion (80) or protostellar mergers. In particular, the flattening of the IMF near0.5 M⊙ does
not appear to be a result of the decay of few-body systems thateject unfinished protostellar
cores (81), although this mechanism must operate in at least some cases. This notion as the
dominant source of BDs is also in conflict with the apparent abundance of BDs in the ONC but
the virtual absence of BDs within the TA star-forming clouds(82). The ejection process should
operate in both environments. The problem with the unfinished-protostellar-core ejection sce-
nario is that the BDs leave their parent cluster within a timeshorter than the cluster crossing
time thus rendering them unlikely to be seen in the cluster (83). However, the four BDs detected
in far-outlying regions of TA (84) may constitute examples of ejected cores. The intriguing re-
sult fromρ Oph is consistent with the independent finding that the properties of binary systems
in the Galactic field can be understood if most stars formed inmodestρ Oph-type clusters with
primordial binary properties as observed in TA (85). However, the average IMF is also similar
to the MF in the dense ONC (Fig. 4), implying that fragmentation of the pre-cluster cloud there
must have proceeded similarly. It is not clear why the spectrum of density fluctuations in the
pre-cluster cloud should have been similar under such different conditions.

In summary, the Galactic-field IMF (eq. 5 in Table 1) appears to be remarkably universal,
with the exception in the sub-stellar mass regime. A weak empirical trend with metalicity is
suggested for very-low mass stars: More metal-rich environments may be producing relatively
more low-mass objects. For massive stars a correlation withstar-forming conditions has not
been found despite intense searches. The evidence for top-heavy IMFs come either from clusters
that cannot be resolved or clusters that are very difficult toobserve, or from entirely indirect
arguments such as peculiar abundances of elements. This maymean that only in those rare
starburst cases that are not easily accessible to the observer does the IMF begin to deviate
towards a top-heavy form. Alternatively, maybe presently not understood biases are affecting
the interpretation of such extreme systems that require indirect deductions about the IMF.

Uncertainties of the IMF arise because of the bias due to unresolved multiple systems and
due to uncertainties in theoretical stellar models with rotation and theoretical models for ages
younger than approximately one Ma. For massive stars the true IMF may be closer to Scalo’s
valueα3 ≈ 2.7 rather than the Salpeter valueα3 ≈ 2.3. This is valid for all studied populations
provided they have similar binary-star properties.

The majority of stellar masses appear to be determined by thefragmentation of molecular
clouds with little subsequent modifications such as ejections of unfinished cores or competitive
accretion. It is unclear why this fragmentation process should lead to indistinguishable IMFs
despite very different star forming conditions. There appears to be no empirical maximum
stellar mass, nor an empirical minimum mass for BDs. Only formassive stars are cloud-core
or protostellar interactions probably important. BDs are probably cores that lost their envelopes
due to chance proximity to an O star. This hypothesis may explain their occurrence in relatively
rich star clusters and their virtual absence in TA.
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125. The disadvantage of the LF created using this techniqueis that the distance measurements
are indirect by relying on photometric parallax. The underlying principle of this technique is
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from spectral analysis. The apparent luminosity then givesa distance estimate. Such surveys
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and ages. Intrinsically more luminous stars enter the flux-limited sample. This biases the
inferred absolute luminosities and the inferred stellar spatial densities. Malmquist bias can
be corrected for (91), and is similar to the Lutz-Kelker bias (130).

126. The discrepancy evident in Fig. 1 between the nearby LF,Ψnear, and the photometric LF,
Ψphot, invoked a significant dispute (27, 86) as to the nature of this discrepancy. On the
one hand (27) the difference is thought to be due to unseen companions in the deep but
low-resolution surveys used to constructΨphot, with the possibility that photometric calibra-
tion for very-low-mass stars may remain problematical so that the exact shape ofΨphot for
MV

>∼ 14 is probably uncertain. On the other hand (86) the difference is thought to come
from non-linearities in theV − I, MV color–magnitude relation used for photometric paral-
lax. Taking into account such structure it can be shown that the photometric surveys under-
estimate stellar space densities so thatΨphot moves closer to the extended estimate ofΨnear

using a sample of stars within 8 pc or further. While this is animportant point, the extended
Ψnear is incomplete (129) and theoretical color-magnitude relations do not have therequired
degree of non-linearity. The observational color–magnitude data also do not conclusively
suggest a feature with the required strength (28). Furthermore,Ψphot agrees almost perfectly
with the LFs measured for star clusters of solar and population II metalicity (Fig. 1) so that
it appears unlikely that non-linearities in the color–magnitude relation significantly affect
Ψphot.

127. A starburst is a region in which star formation is ongoing with a very high rate. For a
star-formation event to be classified as a starburst> 106 M⊙ of stars have to be produced
within about 1 My giving a star-formation rate of> 1 M⊙/My (119).

128. The physics of formation of massive stars is controversial (17). Radiation pressure from
the growing core of a massive star should halt spherical accretion for m >∼ 10 M⊙ so that
massive stars should be produced through collisions of intermediate-mass protostars in dense
cluster cores (74). Accretion through massive disks or with very high rates (>∼ 10−5 M⊙/yr)
may, however, overcome radiation pressure causing the formation of massive stars to remain
an unsolved problem (25). Possible physics limiting the mass of the most massive stars is
reviewed in (92). Very massive stars may finish their main-sequence life before the accretion
process completes possibly rendering the most massive stars undetectable.

129. Very low-mass stars cannot be detected to large distances so that the nearby LF is poorly
constrained. It is therefore important to increase the sample of nearby stars, but controversy
exists as to the maximum distance to which the very-low-massstar census is complete. Using
spectroscopic parallax it has been suggested that the localcensus of very-low mass stars is
complete to distances of 8 pc and beyond (86). However, Malmquist bias (125) allows stars
and unresolved binaries to enter such a flux-limited sample from much larger distances (35).
The increase of the number of stars with distance using trigonometric distance measurements
shows that the nearby sample becomes severely incomplete for distances larger than 5 pc and
for MV > 12 (87, 88). Recently discovered companions (89, 90) to known primaries in the
distance range5 < d < 12 pc confirm that the extended sample is not yet complete.

130. The Lutz-Kelker bias affects volume-limited star-count surveys in a similar way as the
Malmquist bias (125) affects flux-limited surveys. Distance observations haveerrors. Be-
cause the number of stars increases non-linearly with the distance there are more stars just
outside the formal distance limit than inside. There are thus more stars with true distances
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outside the limit that enter as a result of erroneous measurements than stars that are dis-
counted from the survey because erroneous measurements place them outside although they
are actually nearer than the distance limit. This results ina bias in the deduced average dis-
tances and stellar number densities (120).
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The multi-part power-law IMF:
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The average, or Galactic-field, single-star IMF hask = 0.877 ± 0.045 stars/(pc3 M⊙) for scaling to the
solar neighborhood with

α0 = +0.3 ± 0.7 , 0.01 ≤ m/M⊙ < 0.08 , n = 0
α1 = +1.3 ± 0.5 , 0.08 ≤ m/M⊙ < 0.50 , n = 1
α2 = +2.3 ± 0.3 , 0.5 ≤ m/M⊙ < 1 , n = 2
α3 =+2.7±0.3

+2.3±0.3 , 1 ≤ m/M⊙ , n = 3.

(5)

Table 1: Summary of different proposed analytical IMF forms. Notation: lm ≡ log10(m/M⊙) =
ln(m/M⊙)/ln10; dN is the number of single stars in the mass intervalm to m + dm and in the
logarithmic-mass intervallm to lm + dlm. The mass-dependent IMF indices,α(m) (eq. ind), are
plotted in Fig. 5 using the line-types defined here. Eq.MS was derived by Miller&Scalo assuming a
constant star-formation rate and a Galactic disk age of 12 Ga(the uncertainty of which is indicated in
the lower panel of Fig. 5). Larson (69) does not fit his forms (eqs.La andLb) to solar-neighborhood
star-count data but rather uses these to discuss general aspects of likely systematic IMF evolution; the
mo in eq.La andLb given here are approximate eye-ball fits to the average IMF. In the multi-power-
law IMF, α3 = 2.3 is consistent with the data (Fig. 5), but correction for unresolved binary systems
increases this toα3 = 2.7. The uncertainties correspond to a 99 % confidence interval for m > 0.5M⊙

(Fig. 5), and to a 95 % confidence interval for0.1−0.5M⊙ (10). The nearby Hipparcos LF,Ψnear(Hipp)
(Fig. 1), hasρ = (5.9± 0.3)× 10−3 stars/pc3 in the intervalMV = 5.5− 7.5 corresponding to the mass
interval m2 = 0.891 − 0.687M⊙ (35) using the KTG93 MLR (Fig. 2).

∫ m2

m1
ξ(m) dm = ρ yields

= 0 877 0 045 stars/(pc3 ).



mass range ηN ηM ρst Σst

[M⊙] [per cent] [per cent] [M⊙/pc3] [M⊙/pc2]
α3 α3 α3 α3

2.3 2.7 4.5 2.3 2.7 4.5 4.5 4.5
0.01–0.08 37 38 39 4.1 5.4 7.4 3.2 × 10−3 1.6
0.08–0.5 48 49 50 27 35 48 2.1 × 10−2 10
0.5–1 8.9 9.1 9.3 16 21 29 1.3 × 10−2 6.4
1 – 8 5.7 4.6 2.4 32 30 15 6.5 × 10−3 1.2
8 – 120 0.40 0.14 0.00 21 7.8 0.08 3.6 × 10−5 6.5 × 10−3

m/M⊙ = 0.38 0.29 0.22 ρst
tot = 0.043 Σst

tot = 19.6

α3 = 2.3 α3 = 2.7 ∆Mcl/Mcl

mmax Ncl Mcl Ncl Mcl mto [per cent]
[M⊙] [M⊙] [M⊙] [M⊙] α3 = 2.3 α3 = 2.7

1 16 2.9 21 3.8 80 2.1 0.5
8 250 74 730 200 60 3.8 0.9

20 810 270 3400 970 40 6.5 1.6
40 2000 700 1.1 × 104 2300 20 12 3.5
60 3400 1200 2.2 × 104 6400 8 21 7.8
80 4900 1800 3.6 × 104 1.1 × 104 3 24 9.7

100 6500 2500 5.3 × 104 1.5 × 104 1 36 24
120 8300 3100 7.2 × 104 2.1 × 104 0.7 39 28

Table 2:The number fraction isηN = 100
∫ m2

m1
ξ(m) dm/

∫ mu

ml
ξ(m) dm. The mass fraction isηM =

100
∫ m2

m1
m ξ(m) dm/Mcl, Mcl =

∫ mu

ml
m ξ(m) dm. Both are in per cent for main-sequence stars in mass

intervalsm1 to m2. The stellar contribution to the Oort limit,ρst, and to the Galactic-disk surface mass-
density,Σst = 2hρst. The above quantities assume for the lower and upper mass limits, respectively,
ml = 0.01M⊙ andmu = 120M⊙. The Galactic-disk scale-heighth = 250 pc for m < 1M⊙ (10) and
h = 90 pc for m > 1M⊙ (8). Results are shown for the average IMF (eq. 5 in Table 1), forthe high-
mass-star IMF approximately corrected for unresolved companions (α3 = 2.7,m > 1M⊙), and for the
PDMF in the solar neighborhood (α3 = 4.5 (8,10)) which describes the distribution of stellar masses now
populating the Galactic disk. The ISM contributesΣISM = 13±3M⊙/pc2, ρISM ≈ 0.04±0.02M⊙/pc3

and stellar remnants contributeΣrem ≈ 3M⊙/pc2, ρrem ≈ 0.003M⊙/pc3 (94). BDs do not constitute a
dynamically important mass component of the Galaxy, even when eq. 5 is extrapolated to0.0M⊙ giving
ρBD = 3.3 × 10−3 M⊙/pc3. The average stellar mass ism =

∫ mu

ml
m ξ(m) dm/

∫ mu

ml
ξ(m) dm. Ncl is

the number of stars that have to form in a star cluster so that the most massive star in the population
has the massmmax. The mass of this population isMcl, and the condition is

∫ ∞
mmax

ξ(m) dm = 1
with

∫ mmax

0.01 ξ(m) dm = Ncl − 1. ∆Mcl/Mcl is the fraction of mass lost from the cluster due to stellar
evolution, assuming that form ≥ 8M⊙ all neutron stars and black holes are kicked out due to an
asymmetrical supernova explosion, but that white dwarfs are retained (95) and have massesmWD =
0.7M⊙ for progenitor masses1 ≤ m/M⊙ < 8 andmWD = 0.5M⊙ for 0.7 ≤ m/M⊙ < 1. The
evolution times for a star of massmto to reach the turn-off age are available in Fig. 5.



α α α
mass range [M⊙] mass range [M⊙] mass range [M⊙]

Orion nebula cluster, ONC
Muenchet al. (43) −0.35 +1.25 +2.35
magenta small open circles with central dot 0.02 − 0.08 0.08 − 0.80 0.80 − 63.1
magenta large open circles with central dot +0.00 +1.00 +2.00

0.02 − 0.08 0.08 − 0.40 0.4 − 63.10
Hillenbrand & Carpenter (41) (HC00) +0.43
magenta large thick open circle 0.02 − 0.15

with central dot
Luhman (42) +0.70
magenta small thick open circle 0.035 − 0.56

with central dot
Pleiades
Morauxet al. (96) +0.51 ± 0.15
green circles with central dot 0.04 − 0.30
Hamblyet al. (97), from (50) +0.56 +2.67
green circles with central dot 0.065 − 0.60 0.6 − 10.0

σ Ori
Bejaret al. (52) 0.8 ± 0.4
green solid circle 0.013 − 0.20

M35
Navascueset al. (50) −0.88 ± 0.12 0.81 ± 0.02 2.59 ± 0.04
green solid circle1 0.08 − 0.2 0.2 − 0.8 0.8 − 6.0

IC 348
Najita et al. (98) for MLR from (28) +0.5
green solid circle 0.015 − 0.22

NGC 2264
Parket al. (99) +2.7
green solid circle 2.0 − 6.3

5 LMC regions
Parkeret al. (100) +2.3 ± 0.2
blue solid triangle 5 − 60

NGC 1818in LMC
Santiagoet al. (101), outer region +2.5
blue solid triangle 0.9 − 3
NGC 1805in LMC
Santiagoet al. (101), outer region +3.4
blue solid triangle 0.9 − 3

Table 3:continued



α α α
mass range [M⊙] mass range [M⊙] mass range [M⊙]

30 Dor⋆ in LMC
Selmanet al. (102), r > 3.6 pc +2.37 ± 0.08
cyan small open triangle 3 − 120
Selmanet al. (102), 1.1 < r/pc < 4.5 +2.17 ± 0.05
cyan small open triangle 2.8 − 120
Sirianniet al. (62) +1.27 ± 0.08 +2.28 ± 0.05
cyan large open triangle2 1.35 − 2.1 2.1 − 6.5

Arches cluster⋆

Figeret al. (103), all radii +1.6 ± 0.1
cyan large solid circle 6.3 − 125

NGC 3603⋆

Eisenhaueret al. (104) +1.73 +2.7
cyan small solid circle 1 − 30 15 − 70

Globular clusters
Piotto & Zoccali (45) +0.88 ± 0.35 +2.3
yellow open triangles 0.1 − 0.6 0.6 − 0.8

Galactic bulge
Holtzmanet al. (33) +0.9 +2.2
magenta filled square 0.3 − 0.7 0.7 − 1.0
Zoccaliet al. (106) +1.43 ± 0.13 +2.0 ± 0.23
magenta filled square 0.15 − 0.5 0.5 − 1.0

Solar Neighborhood(magenta dotted lines)
Reidet al. (107) +1.5 ± 0.5

0.02 − 0.08
Herbstet al. (105) ≤ +0.8

0.02 − 0.08
Chabrier (93,13) ≤ +1 +1 / +2

0.01 − 0.08 0.10 − 0.35 / 0.35 − 1.0

Table 3:α(<lm>) data obtained after 1998. The data are shown in Fig. 5 in addition to the previously
available data set compiled by Scalo (108). Eachα value is obtained at< lm >= (lm2 − lm1)/2,
lm ≡ log10m, by the respective authors by fitting a power-law MF over the logarithmic mass range
given bym1 andm2 listed above. Some authors do not quote uncertainties on their α values. Notes:⋆

are starburst clusters;1 thin green open circle emphasizes the low-mass M35 datum;2 the mass range
1.35 < m/M⊙ < 2.1 may be incomplete and is emphasized by the cross through the cyan large open
triangle.
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Fig. 1: Stellar luminosity functions (LFs, number of stars per volume element and magnitude interval)
for solar-neighborhood (122) stars as a function of absolute magnitude in the V-band (upper panel) and
four star clusters as a function of absolute magnitude in theI-band (lower panel).Upper panel: The
photometric LF corrected for Malmquist bias (125) and at the midplane of the Milky Way disk (Ψphot,
red histogram) is compared with the nearby LF (Ψnear, green histograms) constructed from the solar
neighborhood stellar sample (122). The average, ground-basedΨphot (dashed histogram, data pre-dating
1995 (27)) is confirmed by Hubble-Space-Telescope (HST) star-countdata which pass through the entire
Galactic disk and are thus not prone to Malmquist bias (solidcircles, (109)). The ground-based volume-
limited trigonometric-parallax sample (dotted histogram) systematically overestimatesΨnear due to the
Lutz-Kelker bias (130), thus lying above the improved estimate provided by the Hipparcos-satellite data
(solid histogram, (5, 35)). The depression/plateau nearMV = 7 is theWielen dip, named after Roland
Wielen who’s estimate of the LF in the 1970’s for the first timeunambiguously showed this feature.
The thin dotted histogram at the faint end indicates the level of refinement provided by recent stellar
additions (35) demonstrating that even the immediate neighborhood within 5.2 pc of the Sun probably
remains incomplete at the faintest stellar luminosities.Lower panel: I-band LFs of stellarsystems
(single stars and unresolved binaries) in four star clusters: the globular cluster (GC) M15 (110) (distance
modulus (123) ∆m = m − M = 15.25 mag, blue triangles), GC NGC 6397 (111) (∆m = 12.2,
green solid circles), the young open cluster Pleiades (112) (∆m = 5.48, blue open circles), and the GC
47 Tuc (113) (∆m = 13.35, green solid squares). The dotted histogram isΨphot(MI) from the upper
panel, transformed to theI-band using the linear color–magnitude relationMV = 2.9+3.4 (V − I) (10)
andΨphot(MI) = (dMV /dMI)Ψphot(MV ). The agreement in position and amplitude of the maximum
in the LFs for the five different populations is impressive. This maximum results from a minimum in the
derivative of the mass–luminosity relation (Fig. 2).Note: The figure which appeared in Science issue of 4th
January 2002 has a slightly erroneous lower panel. The version shown here is corrected.
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Fig. 2: The mass–luminosity relation (MLR, upper panel) is the mass of a star as a function of its
absolute magnitude in the V-band. The derivative of the MLR is plotted in the lower panel.Upper
panel: The most recent observational data (solid triangles and open circles, Delfosse et al., (114); open
squares, Andersen, (115)) are compared with the empirical MLR of Scalo (blue dashed line (8)) and the
semi-empirical KTG93 MLR (red solid curve (10)). The under-luminous data points 1–4 are metal-rich
stars (114). The magenta solid line is a 5 Ga old isochrone and the magenta dashed line is a 0.1 Ga
isochrone for solar metal abundances from Baraffe et al. (28). The cyan solid line is a 5 Ga isochrone for
metalicityZ = 0.02Z⊙ from Siess et al. (116). As the mass of a star is reduced, H− opacity becomes
increasingly important through the short-lived capture ofelectrons by H-atoms. This results in reduced
stellar luminosities for intermediate and low-mass stars.Them(MV ) relation becomes less steep in the
broad interval3 < MV < 8 leading to the Wielen dip (Fig. 1). Them(MV ) relation steepens near
MV = 10 because the formation of H2 in the very outermost layers of low-mass stars increases themean
molecular weight there causing the onset of convection up toand above the photosphere. This leads to
a flattening of the temperature gradient and therefore to a larger effective temperature, as opposed to an
artificial case without H2 but the same central temperature. Brighter luminosities result. Full convection
establishes throughout the whole star form < 0.35M⊙. The modern ML data beautifully confirm the
steepening in the interval10 < MV < 13 predicted in 1990 (9). The red dotted MLR demonstrates the
effect of suppressing the formation of the H2 molecule by lowering it’s dissociation energy from 4.48 eV
to 1 eV. Them(MV ) relation flattens again forMV > 14, m < 0.2M⊙ as degeneracy in the stellar core
becomes increasingly important for smaller masses limiting further contraction (46,117). Lower panel:
The derivatives of the same relations plotted in the upper panel are compared withΨphot from Fig. 1
scaled to fit this figure.



Figure 3: Model LFs (number of stars per unit volume and magnitude as a function of the absolute
magnitude in the V-band) are constructed using the semi-empirical KTG93 MLR (10) (left panel) and
the most advanced theoretical MLR computed by Baraffe et al.for a 5 Ga population of solar composition
(28) (right panel). The MLRs are plotted in Fig. 2. The models arecompared with the observed solar-
neighborhood LFs shown in Fig. 1. For a given IMF, the upper (black) curves are single-star LFs. The
lower curves show the unresolved system LFs in which the luminosities of stellar companions are added
for a population of 8000 single stars, 8000 binaries, 3000 triples and 1000 quadruples (40:40:15:5 %,
respectively). Companions with masses0.08 ≤ m/M⊙ ≤ 1 are combined randomly from the IMF. The
models assume perfect photometry, no distance errors and nometalicity or age spread. The model system
LFs thus reflect the empirical photometric LF corrected for Malmquist bias,Ψphot, whereas the observed
Ψnear is broadened mostly due to the metalicity and partially an age spread which is not modeled. The
models are scaled to fit the LFs atMV ≈ 7 with equal scaling for the single-star and system LFs for a
given IMF. In the left panel the IMF is is a two-component power-law with Salpeter exponentα2 = 2.3
for 0.5 − 1.0M⊙ but for0.08 − 0.5M⊙, α1 = 1.6 for the dot-dashed model andα1 = 1.0 for the solid
model. In the right panel it is a one-component power-law,ξ(m) ∝ m−α, over the whole mass range
(0.08 − 1M⊙) with α = 1.8 (dot-dashed model) andα = 1.2 (solid model). The models are selected to
roughly give similar overall deviations about the data and are not intended to be best-fit solutions. Note
that the change in shape of the LF,d2Ψ/dM2

V , is an interesting observable containing information about
the MLR and the underlying IMF.
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Fig. 4: Upper left panel: The measured stellar mass functions,ξL, as a function of logarithmic stellar
mass (lm ≡ log10(m/M⊙)) in the Orion nebula cluster (ONC, solid black circles, (41)), the Pleiades
(green triangles, (97)) and the cluster M35 (blue solid circles, (50)). The decrease of the M35 MF
below m ≈ 0.5M⊙ remains present despite using different MLRs. None of theseMFs are corrected
for unresolved binary systems. The average Galactic-field single-star IMF is shown as the solid red
line with the associated uncertainty range (eq. 5 in Table 1). The ONC data are from the Hillenbrand
optical survey withinr = 2.5 pc of the center of the cluster. The cluster isτ < 2 Ma old and has a
metalicity [Fe/H] = −0.02. For the Pleiades,r = 6.7 pc, τ ≈ 100 Ma and [Fe/H]= +0.01. For
M35 r = 4.1 pc, τcl ≈ 160 Ma and [Fe/H]= −0.21. Lower left panel: The shape of the ONC MF
differs for very low-mass stars above the completeness limit of the survey if different pre-main sequence
evolution tracks, and thus essentially different theoretical MLRs by D’Antona & Mazzitelli (DM) are
employed. For more details see (41). The lower part shows the ONC MF if “DM94” pre-main sequence
models are used, whereas the upper part shows the MF if “DM97/98” models are used. The average
IMF is as in the upper left panel.Upper right panel: Mass segregation is very pronounced in the ONC.
This is evident by comparing the MF for all stars within two different radial regions centered on the
cluster center. The solid black circles are for all stars within r = 2.5 pc and the open green circles are
for all stars withinr = 0.35 pc, from the Hillenbrand ONC survey (118). The solid green triangles
are for r = 0.35 pc, from (41). Lower right panel: The ratio of the MFs in the different circular
survey regions of the upper right panel shows the pronouncedmass segregation in the ONC. The IMF
ratio, ξL(r < 2.5 pc)/ξL(r < 0.35 pc), is plotted as blue solid circles. It increases with decreasing
mass. This comes about because the number of low-mass stars is depleted in the inner ONC region.
Stellar-dynamical models of the ONC can be used to study if the observed mass segregation (blue solid
dots) can be arrived at by dynamical mass segregation. If not, then we have definite proof that the mass
segregation is primordial and thus that the IMF varies at least on small scales (< 1 pc). The model
snapshots shown are from model B in (38) and assume the average IMF. The masses of single stars and
binary systems are counted to constructξL. Initially the ratio is constant with stellar mass because the
model starts with no mass segregation. The red solid squaresare a snapshot at 0.9 Ma, whereas the red
open squares are for 2.0 Ma. The dotted lines are eye-ball fitsto the data. The data demonstrate that mass
segregation develops rapidly and that by about 2 Ma the observed effect is obtained. This casts doubt on
the primordial origin of the observed mass segregation.
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Fig. 5: Upper panel: The alpha plot compiles measurements of the power-law index, α, as a function
of the logarithmic stellar mass and so measures the shape of aMF. [Notation: lm ≡ log10(m/M⊙),
lτ ≡ log10(τ/yr), lL ≡ log10(L/L⊙)]. The shape of the MF is mapped in the upper panel by plotting
measurements ofα at < lm >= (lm2 − lm1)/2 obtained by fitting power-laws,ξ(m) ∝ m−α, to
logarithmic mass rangeslm1 to lm2 (not indicated here for clarity). Many of the green circles and
blue triangles are pre-1998 data compiled by Scalo (108, 53) for MW (green filled circles) and Large-
Magellanic-Cloud clusters and OB associations (blue solidtriangles). Newer data are also plotted using
the same symbols, but some are emphasized using different symbols and colors, such as by yellow
triangles for globular cluster MFs (Table 3). Unresolved multiple systems are not corrected for in all
these data including the MW-bulge data. The average solar-neighborhood IMF (eq. 5 in Table 1) are the
red thick short-dashed lines together with the associated uncertainty ranges. Other binary-star-corrected
solar-neighborhood-IMF measurements are indicated as magenta dotted error-bars (Table 3). The quasi-
diagonal black lines are analytical forms summarized in Table 1. The vertical dotted lines delineate the
four mass ranges (eq. 5 in Table 1), and the shaded areas highlight those stellar mass regions where the
derivation of the IMF is additionally complicated especially for Galactic field stars: for0.08 < m/M⊙ <
0.15 long pre-main sequence contraction times (37) make the conversion from an empirical LF to an
IMF (eq. 1) dependent on the precise knowledge of stellar ages and the SFH. For0.8 < m/M⊙ < 2.5
uncertain main-sequence evolution, Galactic-disk age andthe SFH of the MW disk do not allow accurate
IMF determinations (26). Lower panel: The bolometric MLR,lL(lm), and stellar main-sequence life-
time,lτ , are plotted as a function of logarithmic stellar mass. The uncertainty in the age of the Milky-Way
disk is shown as the shaded region. Stellar spectral types are written between the panels.



Figure 6:The histogram of MF power-law indices (α) for massive stars (lm > 0.40). If the α measure-
ments are not distributed like a Gaussian function then thismay imply that some of the data are different
from the mean because of true IMF variations. The green histogram shows the observational data from
Fig. 5. The blue shaded histogram shows theoretical values from an ensemble of 12 star clusters con-
taining initially 800 to104 stars that are snapshots at 3 and 70 Ma (53). Stellar companions in binaries
are merged to give the system MFs, which are used to measureα. The assumed IMF is eq 5 in Table 1.
The dotted curves are Gaussians with meanα and standard deviation,σα, obtained from the histograms.
The theoretical data give<α>= 2.20, σα = 0.63 (magenta dotted curve), and thus arrive at the input
Salpeter value. The empirical data from Fig. 5 give<α>= 2.36, σα = 0.36 which is the Salpeter value.
Fixing αf =<α> and using only| α |≤ 2σα for the observational data gives the narrow thin red dotted
Gaussian distribution which describes the Salpeter peak (αf = 2.36, σα,f = 0.08).


