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Rotation Curve of the Milky Way out to ∼ 200 kpc
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ABSTRACT

The rotation curve (RC) of the Galaxy, the Milky Way, is constructed starting from its

very inner regions (few hundred pc) out to a large galactocentric distance of ∼ 200 kpc

using kinematical data on a variety of tracer objects moving in the gravitational poten-

tial of the Galaxy. We study the effect on the RC due to the uncertainties in the values of

the Galactic Constants (GCs) R0 and V0 (these being the sun’s distance from and circu-

lar rotation speed around the Galactic center, respectively) and the velocity anisotropy

parameter β of the halo tracer objects used for deriving the RC at large galactocentric

distances. The resulting RC in the disk region is found to depend significantly on the

choice of the GCs, while the dominant uncertainty in the RC at large distances beyond

the stellar disk comes from the uncertainty in the value of β. In general we find that

the mean RC steadily declines at distances beyond ∼ 50 kpc. Also, at a given radius,

the circular speed is lower for larger values of β (i.e., for more radially biased velocity

anisotropy). Considering recent results from large numerical simulations, which find

an increasingly radially biased velocity ellipsoid of the Galaxy’s stellar population at

large distances, with stellar orbits tending to be almost purely radial (β → 1) beyond

∼ 100 kpc, our results, for the case of β = 1, give a model independent estimate of

the total mass of the Galaxy within ∼ 200 kpc, M(200 kpc) >
∼ (6.8 ± 4.1) × 1011M⊙.

The complete RC of the Galaxy given here may be useful for deriving the phase space

properties of the Galaxy’s dark matter halo.
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1. Introduction

The circular velocity, Vc(r) =
√

GM(r)/r, of a test particle at a radial distance r from the

center of a mass distribution gives a direct measure of the total gravitational mass, M(r), contained

within that radius. A measured profile of Vc as a function of r for a spiral galaxy — often simply

called its Rotation Curve (RC) — is therefore a direct probe of the spatial distribution of the total

gravitating mass inside the galaxy including its dark matter (DM) content; see, e.g., Sofue & Rubin

(2001), Trimble (1987) for reviews. Recent reviews of using the RC to construct mass models for our

Galaxy, the Milky way, can be found, e.g., in Weber & de Boer (2010); Sofue (2012); Nesti & Salucci

(2013).

Recently, it has been shown that the RC of the Milky Way can be directly used to de-

rive not only the local density of DM, but also the velocity distribution of the DM particles in

the Galaxy (Bhattacharjee et al. 2013), which are crucial for analyzing the results of both direct

as well as indirect DM search experiments (Jungman et al. 1996); see also Cowsik et al. (2007);

Chaudhury et al. (2010); Kundu & Bhattacharjee (2012); Burch & Cowsik (2013).

The circular velocity of a test particle in the Galaxy is, of course, not a directly measured

quantity. The RC of the Galaxy has to be derived from the kinematical as well as positional data

for an appropriate set of tracer objects moving in the gravitational field of the Galaxy. Except

in few cases, the full 3-D velocity information of the tracers is not available, and the RC has to

be reconstructed from only the measured line-of-sight (los) velocity and positional information of

various tracer objects in the Galaxy.

For deriving the RC in the disk region of the Galaxy, one usually makes the reasonable as-

sumption that the disk tracer objects move in circular orbits around the Galactic center. From the

observed heliocentric los velocities, vh, of the tracers and their position coordinates in the Galaxy,

and with an assumed set of values of the Galactic Constants (GCs), [R0, V0], where R0 and V0 are

the sun’s distance from and circular rotation speed around the Galactic center, respectively, that

define the Local Standard of Rest (LSR) frame, and applying corrections for the peculiar motion of

the sun with respect to the LSR, one can obtain the circular velocities around the Galactic center,

Vc, in a fairly straightforward manner (Binney & Merrifield 1998). Observations on a variety of

tracers such as HI regions, CO emission associated with HII regions, compact objects like Carbon

stars (C stars), Cepheids, planetary nebulae (PNe), masers, and so on, have been used to derive

the RC of the Galaxy in the disk region. Some recent compilations of RC data for the disk region

of the Galaxy can be found, e.g., in Sofue et al. (2009) and Burch & Cowsik (2013).

To derive the RC in the outer regions of the Galaxy beyond the Galactic disk, one has to rely

on distant tracers like Blue Horizontal Branch (BHB) stars, K Giant (KG) stars and relatively rare

tracer objects like Globular Clusters (GCl), dwarf spheroidal (dSph) galaxies and so forth which

populate the Milky Way’s extended DM halo out to galactocentric distances of several hundreds

of kpc. Unlike the disk tracers, these non-disk tracers do not exhibit any systematic motion,

and move about in the Galaxy along various different orbits. The standard approach then is
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to assume that the tracer population under consideration is isotropically distributed in the halo

of the Galaxy and then use the Jeans equation (Binney & Tremaine 2008) for spherical systems

relating the circular velocity Vc at radius r to the number density and galactocentric radial as well as

transverse velocity dispersions of the tracers at that radius. Of course, in absence of full 3-D velocity

information, with only the observed radial velocity dispersion available, the RC constructed using

Jeans equation depends on the unknown velocity anisotropy parameter β ≡ 1− σ2
t /2σ

2
r (σr and σt

being the radial and transverse velocity dispersions of the tracers, respectively; see section 3 below).

However, recent high resolution hydrodynamical simulations of formation of late-type spirals like

our Galaxy (Rashkov et al. 2013) are beginning to allow extraction of crucial information on the

velocity anisotropy parameter β from comparison of the kinematical properties of the (simulated)

halo stars in large mock samples of these objects with observational data. It is, therefore, now

possible to go one step further and attempt to construct the RC of the Galaxy to the furthest

galactocentric distances possible by using this information.

In this paper we address ourselves to this task and present a RC of the Galaxy spanning a

large range of galactocentric distances starting from its inner regions (∼ 0.2 kpc) out to ∼ 200 kpc,

which can be directly used to extract information about the nature of the phase space distribution

of the DM particles in the Galaxy.

The Jeans equation approach has been used in several recent studies to extend the RC of

the Galaxy to distances beyond the extent of the Galaxy’s stellar disk. Accurate measurements

of los velocities of a sample of 2401 BHB stars drawn from SDSS DR6 (Adelman-McCarthy et al.

2008) were used by Xue et al. (2008) to derive the RC of the Galaxy to ∼ 60 kpc for two constant

(r-independent) values of β, namely β = 0 (isotropic velocity distribution) and β = 0.37, the latter

derived from results of numerical simulations. More recently, the Jeans equation has also been

employed, together with certain analytical models of the phase-space distribution function of the

tracer population, to construct the RC of the Galaxy to various distances of ∼ 25 to ∼ 80 kpc

(Gnedin et al. 2010; Deason et al. 2012a; Kafle et al. 2012).

A crucial ingredient in the derivation of the distant RC using Jeans equation is the measured

radial velocity dispersion of the tracers as a function of their galactocentric distance r. An im-

portant finding in this regard is the result, first shown by Battaglia et al. (2005, 2006), that the

radial velocity dispersion remains almost constant at a value of ∼ 120 km s−1 out to ∼ 30 kpc and

then steadily declines down to a value of ∼ 50 km s−1 at r ∼ 120 kpc, implying a declining RC of

the Galaxy at distances beyond a few tens of kpc from the center. In their work Battaglia et al.

(2005, 2006) used a heterogeneous sample of about 240 halo objects consisting of field blue horizon-

tal branch stars, red giant stars, globular clusters and distant satellite galaxies. Similar trend of the

radial velocity dispersion profile has been found in several subsequent studies using different sam-

ples of tracers, e.g., by Xue et al. (2008); Brown et al. (2010); Gnedin et al. (2010); Deason et al.

(2012a,b), and most recently in large cosmological simulations by Rashkov et al. (2013).

In this paper we consider a combination of currently available largest samples of a variety of
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both disk and non-disk tracers to construct the RC of the Galaxy from ∼ 0.2 kpc to ∼ 200 kpc.

We perform detailed analysis of the dependence of the RC on the choice of the GCs and also the

dependence on the anisotropy parameter β of the non-disk tracers. We find that, while the RC

in the disk region is significantly influenced by the choice of the GCs, the dominant uncertainty

in the RC at large distances beyond the stellar disk comes from the uncertainty in the value of β.

In general, we find that the mean RC steadily declines beyond r ∼ 50 kpc, with lowest values of

rotation speeds at large distances obtaining for the case of complete radial anisotropy (β = 1) of

the non-disk tracers. This allows us to set a lower limit on the total mass of the Galaxy, giving

M( <
∼ 200 kpc) ≥ (6.8 ± 4.1) × 1011M⊙. The circular speed at a given radius decreases as β is

increased (i.e., as the tracers’ orbits are made more radially biased). Recent numerical simulation

study of Rashkov et al. (2013) indicates an increasingly radially biased velocity ellipsoid of the

Galaxy’s stellar population at large distances, with stellar orbits becoming purely radial (β → 1)

beyond ∼ 100 kpc. Thus, the above lower limit on the Galaxy’s mass (obtained from our results

with β = 1) may in fact be a good estimate of the actual mass of the Galaxy out to ∼ 200 kpc.

The rest of this paper is arranged as follows. In Section 2 we derive the RC on the disk of

the Galaxy up to a distance of ∼ 20 kpc from the Galactic center. We specify the various tracer

samples used in our derivation of the RC and study the dependence of the RC on the chosen set of

values of the GCs, [R0, V0]. In Section 3 we extend the RC to larger distances (up to ∼ 200 kpc)

by an extensive analysis of various non-disk tracer samples discussed there in details. Finally, in

Section 4, we present our unified RC and our estimates of the total mass of the Galaxy within

∼ 200 kpc and conclude by summarizing our main results in Section 5.

2. Rotation curve from disk tracers

Let us consider a tracer object with Galactic coordinates (l, b) at a heliocentric distance rh
and observed heliocentric los velocity vh (see Figure 1). We shall assume that the tracer follows a

nearly circular orbit about the Galactic center. The velocity of the tracer as would be measured

by an observer stationary with respect to the LSR, vLSR, can be obtained from the measured vh
through the relation

vLSR = vh + U⊙ cos b cos l + V⊙ cos b sin l +W⊙ sin b , (1)

where (U⊙, V⊙,W⊙) denote the peculiar motion of the sun with respect to LSR; see Figure 1. In

our calculations below we shall take (U⊙, V⊙,W⊙) = (11.1, 12.24, 7.25) ( km s−1) (Schönrich et al.

2010). Simple algebraic steps then allow us to relate the desired circular velocity with respect to

Galactic center rest frame, Vc, to vLSR as (Binney & Merrifield 1998)

Vc(R) =
R

R0

[ vLSR
sin l cos b

+ V0

]

, (2)

where, R is the projection of the galactocentric distance r onto the equatorial plane,

R =
√

R2
0 + r2h cos

2 b− 2R0 rh cos b cos l . (3)
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For a given set of GCs, [R0, V0], the Cartesian coordinates of the tracer are given by

x = rh cos b sin l ,

y = R0 − rh cos b cos l , (4)

z = rh sin b ,

with Galactic center at the origin and sun lying on the Galactic mid-plane (z = 0) with coordinates

(x, y, z) = (0, R0, 0) as illustrated in the left panel of Figure 1. Hence, for known (l, b, rh, vh) one

can solve for Vc from Equation (2) for a given set of GCs.

Tangent Point Method (TPM) : For R < R0, one can calculate Vc by the simple tangent point

method (Binney & Merrifield 1998) as follows: Along a given los, the maximum los velocity will

occur for the tracer closest to the Galactic center, with the los tangent to the circular orbit of the

tracer at that point (see right panel of Figure 1). This maximum los velocity, called the terminal

velocity (vt), is easily seen to be related to Vc through the relation

Vc(Rt) = |vt,LSR(Rt) + V0 sin l| , (b = 0) , (5)

where

Rt = |R0 sin l| (6)

is the distance of the tangent point from the Galactic center, and vt,LSR is the vt corrected for the

sun’s peculiar motion as in Equation (1).

For non zero galactic latitude (b), Equation (5) generalizes to:

Vc(Rt) =

∣

∣

∣

∣

vt,LSR(Rt)

cos b
+ V0 sin l

∣

∣

∣

∣

, (7)

and in this case the Cartesian coordinates of the tracer are given by

x = R0 sin l cos l ,

y = R0 sin2 l , (8)

z = R0 cos l tan b .

Hence the circular velocity Vc can be calculated directly from the measured terminal velocity by

using Equation (7).

Table 1 lists the details of the adopted disk tracer samples with corresponding data source

references and limits on l, b for each tracer genre. The cuts on l and b are adopted from the

published source papers. Towards the Galactic center (l → 0◦) or anti-center (l → 180◦), we

expect vLSR to approach zero to prevent unphysical Vc values there [see Equation (2)]. However,

vLSR observations in practice have finite values due to contamination from non circular motions

dominant there. Therefore, additional restrictions have been applied on l ranges so as to ensure

that we avoid observations too close to Galactic center (anti-center) regions. We further impose a
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cut to keep only the tracers whose |z| ≤ 2 kpc and R ≤ 25 kpc so as to ensure that the selected

tracers ‘belong’ to the stellar disk of the Galaxy.

The x–y and l–z scatter plots for the selected disk tracers (as listed in Table 1) are shown in

Figure 2 and Figure 3, respectively.

It is clear from Equations (2) – (8) that the RC depends on the set of values of the GCs

([R0, V0]) adopted in the calculation. Values of R0 in the range ∼ (7 − 9) kpc and V0 in the

range ∼ (180 − 250) km s−1 exist in literature (see, e.g., Reid 1993; Olling & Merrifield 1998;

Ghez et al. 2008; Reid et al. 2009; McMillan & Binney 2010; Sofue et al. 2011; Brunthaler et al.

2011; Schönrich 2012). Actually, the ratio V0/R0 = (A − B), A and B being the Oort con-

stants (see, e.g., Binney & Merrifield 1998), is considerably better constrained. Maser observa-

tions and measurements of stellar orbits around SgrA* near the Galactic center report values of

(A − B) in the range from about 29 to 32 km s−1 kpc−1 (Reid & Brunthaler 2004; Reid et al.

2009; McMillan & Binney 2010). RCs have been traditionally presented with the IAU recom-

mended set of values,
[

R0

kpc
, V0

km s−1

]

IAU
= [8.5, 220], for which, however, the ratio V0/R0 = 25.9 is

outside the range of values of this ratio mentioned above. A recently suggested set of values of

[R0, V0], consistent with observations of masers and stellar orbits around SgrA* mentioned above,

is
[

R0

kpc
, V0

km s−1

]

= [8.3, 244] (see, e.g., Bovy et al. 2009; Gillessen et al. 2009).

In general, as easily seen from Equation (2), given a RC, Vc(R), for a certain set of values of

[R0, V0], one can obtain the new RC, Ṽc(R), for another set of values of the GCs denoted by [R̃0, Ṽ0]

through the relation

Ṽc(R) =
R0

R̃0

[

Vc(R)−
R

R0

(

V0 − Ṽ0

)

]

. (9)

In order to illustrate the dependence of the RC on the choice of the GCs, in this paper we

shall calculate RCs with three different sets of values of
[

R0

kpc
, V0

km s−1

]

, namely the set [8.3, 244]

mentioned above as well as two other sets, the IAU recommended set [8.5, 220] and the set [8.0,

200] (Sofue 2012).

Figure 4 shows our calculated RCs for the disk region of the Galaxy. The top panel of Fig-

ure 4 shows the RCs for each of the different tracer samples listed in Table 1 for the GCs set
[

R0

kpc
, V0

kms−1

]

= [8.3, 244], and the bottom panel shows the RCs obtained by taking the weighted

averages of the combined Vc data from all the samples shown in the top panel, for three different

sets of values of the GCs as indicated.

The circular velocities and their errors for individual disk tracer samples displayed in the top

panel of Figure 4 are obtained in the following way: For each tracer object in a given sample

we calculate Vc and R for the object from the known position coordinates of the object and its

measured los velocity as described above. We then bin the resulting data (Vc vs. R) in R, and in

each R bin calculate the mean of all the Vc values of all the objects contained within that bin and

assign it to the mean R value of the objects in that bin. The error bars on Vc correspond simply to
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the standard deviation (s.d.) of the Vc values in that bin 1. We have taken a bin size of 0.25 kpc

for 0 < R ≤ 1 kpc, 1.0 kpc for 1 < R ≤ 15 kpc, and 2.5 kpc for 15 < R ≤ 17.5 kpc. The objects

with R > 17.5 kpc are few in number and are placed in one single bin. The above choices of the bin

widths in R for various ranges of R, arrived at by trial and error, are “optimal” in the sense that

the bin widths are large enough so that there are sufficient number of objects in each bin (to allow

the mean value of Vc in the bin to be a reasonably good representative of the true value of Vc at

the value of R under consideration), while at the same time being not too large as to miss the fine

features of the RC. The RCs in the bottom panel of Figure 4 are obtained by combining the Vc data

from all the samples shown in the top panel in the same R bins as above and then calculating the

mean circular speed (Vc) and its 1σ uncertainty (∆Vc) within each bin by the standard weighted

average method (Bevington & Robinson 2003):

Vc =

∑

iwiVc,i
∑

i wi
, and ∆Vc =

√

1
∑

i wi
, (10)

with wi = 1/(∆Vc,i)
2, where Vc,i and ∆Vc,i are the Vc value and its 1σ error, respectively, of the

i-th data point within the bin.

As seen from Figure 4, the RC in the disk region depends significantly on the choice of GCs.

As expected, at any given R the circular velocity is higher for higher value of V0.

3. Rotation curve from non-disk tracers

In order to extend the RC beyond the Galactic disk we next consider tracer objects populating

the stellar halo of the Galaxy. Unlike the nearly circularly rotating disk tracers the non-disk tracers

do not exhibit any systematic circular motion. Hence the formalism described in the previous

section cannot be used to derive the RC at large galactocentric distances beyond the Galactic disk.

Instead, we use the Jeans equation (see, e.g., Binney & Tremaine 2008, p.349) for spherical systems

relating the number density and radial as well as transverse velocity dispersions of the tracers at

radius r to the circular velocity Vc at that radius:

V 2
c (r) =

GM(r)

r
= −σ2

r

(

d lnntr

d ln r
+

d lnσ2
r

d ln r
+ 2β

)

. (11)

Here r =
(

R2
0 + r2h − 2R0 rh cos b cos l

)1/2
is the galactocentric radial distance of a tracer (see Figure

1), ntr is the number density of the tracer population at r, σr is their galactocentric radial velocity

dispersion, and β is the velocity anisotropy parameter defined as,

β = 1−
σ2
t

2σ2
r

, (12)

1Note that the los velocities vh of individual tracer objects are measured fairly accurately and their measurement

errors contribute negligibly little to the final errors on the Vc values
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with σt the galactocentric transverse velocity dispersion of the tracers.

In this work we have chosen two independent classes of non-disk stellar tracers, namely, a

sample of 4985 Blue Horizontal Branch (BHB) stars from SDSS-DR8 compiled by Xue et al. (2011)

and a set of 4781 K Giant (KG) stars from SDSS-DR9 (Xue et al. 2012). These two samples allow us

to probe the Galactic halo up to a galactocentric distance of ∼ 100 kpc. In order to reach out further

we consider an additional heterogeneous (Hg) sample of 430 objects comprising of 143 Globular

Clusters (GCl) (Harris 2010,1996), 118 red halo giants (RHG) (Carney et al. 2003,2008), 108 field

blue horizontal branch (FHB) stars (Clewley et al. 2004), 38 RR-Lyrae stars (RRL) (Kinman et al.

2012), and 23 dwarf spheroidals (dSph) (McConnachie 2012). To ensure that the sample comprises

of only halo objects, we apply a cut on the z and R coordinates of the tracers, leaving out objects

with r < 25 kpc in all the non-disk tracer samples mentioned above. After these cuts, we are left

with a “BHB” sample of 1457 blue horizontal branch stars, a “KG” sample of 2227 K-giant stars

and a “Hg” sample of 65 objects comprising of 16 GCls, 28 FHB stars and 21 dSphs, with which

we shall construct our RC for the non-disk region. The last sample allows us to extend the RC

to a galactocentric distance of 190 kpc, the mean r of the objects in the furthest radial bin in the

Hg sample. The spatial distributions of the three final non-disk tracer samples (after position cuts

mentioned above) in terms of x-z, y-z and x-y scatter plots are depicted in Figure 5.

The number density of the tracers, ntr, appearing in the Jeans equation (11) is estimated in

the following way. We radially bin the objects in a given sample and estimate the tracer density

from the star counts in the annular volume of each bin and assign it at the mean radius of the

objects contained within that bin. In order to ensure a reasonably good number of objects per bin

we adopt a variable bin size increasing with distance. For the BHB sample, a uniform bin size of

2 kpc is used over its entire range of r from 25 to 55 kpc. For the KG samples, the bin widths are

2 kpc for 25 kpc < r ≤ 55 kpc and 4 kpc for 55 kpc < r ≤ 103 kpc; objects with r > 103 kpc (up to

110 kpc) are all placed in one single bin. For the Hg sample, because of the relatively small total

number (65) of objects, we adopt the following optimal, ”object wise” binning in increasing order

of the galactocentric distance r of the objects: the first 6 radial bins contain 8 objects in each bin;

the next 2 bins contain 6 objects in each bin; and, finally, the remaining 5 objects are placed in

one single bin. Uncertainties in the number density estimates are obtained from Poissonian errors

on the tracer counts in each bin.

The resulting density estimates for the three samples mentioned above with the GCs set
[

R0

kpc
, V0

kms−1

]

= [8.3, 244] are shown in Figure 6, where we also show for comparison (see the

top left panel of Figure 6) the tracer densities from some earlier studies that used different tracer

samples. Our results are seen to be in reasonably good agreement with those obtained in the

previous studies. We then perform power-law fits (ntr(r) ∝ r−γ) to the radial profile of the tracer

number density for each of the three samples separately. The resulting best power-law fits are also

shown in Figure 6. The values of the parameters of the best power-law fit for each tracer sample

are given in Table 2. As seen from Table 2 there is no significant difference in the values of ntr and

their power-law fit parameters for the three different sets of GCs.
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Next, we have to calculate the galactocentric radial velocity dispersion, σr, that appears in

the Jeans equation (11), for our non-disk samples. To do this we first transform the observed

heliocentric los velocity, vh, of each individual tracer object to vGSR, the velocity that would be

measured in the Galactic Standard of Rest (GSR) frame. This is easily done by correcting for the

circular motion of the LSR (V0) and solar peculiar motion with respect to LSR, (U⊙, V⊙,W⊙) (see

Figure 1):

vGSR = vh + U⊙ cos b cos l + V⊙ cos b sin l +W⊙ sin b+ V0 cos b sin l . (13)

For large samples like the BHB and KG stars described above, we calculate the vGSR for all the

individual tracers in the same radial bins as used in the estimation of the tracers’ number density

described above, calculate their dispersion, σGSR, and assign it to the mean radius of all the tracers

contained within that bin. The corresponding uncertainty, ∆σGSR, in our estimate of σGSR in each

bin is calculated by using the standard formula ∆σGSR =
√

1/[2(N − 1)]σGSR (Lehmann & Castella

1998; Evans et al. 1993; Graham et al. 1994), where N is the number of objects in the bin.

For the Hg sample, however, owing to its small size, we follow a different method, similar to

that used in Battaglia et al. (2005, 2006), for calculating the σGSR and its uncertainty in each radial

bin: we randomly generate a sample of 10,000 mock values of vh for each tracer object in a radial

bin using a Gaussian centered at the observed value of vh and a width of typically ∼ (10 − 20)%

of this vh value. We then transform these 10,000 vh values for each tracer in the bin to get the

corresponding 10,000 values of vGSR using equation (13), and calculate the associated dispersion

σGSR for each tracer in that bin. We assign the mean value of the σGSR values for all the objects

in a given bin to the mean radius of all the objects in the bin. The corresponding uncertainty in

σGSR is taken to be the r.m.s. deviation of the σGSR values in that bin.

Our results for σGSR for the three tracer samples are shown in Figure 7 in which we also show

for comparison (see the top left panel of Figure 7) the σGSR values obtained in some earlier studies

using different samples, which, again, are seen to be in reasonably good agreement with our results.

The other three panels of Figure 7 show the best power-law fits (σGSR(r) ∝ r−α) to the radial

profiles of σGSR for each of the three non-disk samples. The values of the parameters of the best

power-law fits for the three tracer samples are given in Table 2. Again, as in the case of ntr, the

effect of variation of the Galactic Constants on σGSR is negligible.

Finally, the galactocentric radial velocity dispersion, σr, can be obtained from σGSR by using

the relation (Battaglia et al. 2005, 2006)

σr =
σGSR

√

1− βH(r)
, (14)

where

H(r) =
r2 +R2

0

4r2
−

(

r2 −R2
0

)2

8r3R0

ln
r +R0

r −R0

, (r > R0) (15)

and β is the velocity anisotropy of the tracers defined in equation (12). Equation (15) is derived

by decomposing the vGSR’s into their galactocentric radial and transverse components and taking
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the averages of the squares of the velocity components.2

The last quantity that remains to be specified before we can solve the Jeans equation (11)

is the velocity anisotropy parameter, β, of the tracers. There is not much definite observational

information available on the value of β of the tracers because of the lack of availability of proper

motion measurements on sufficiently large number of tracer objects. In general β can be a function

of r. A recent maximum likelihood analysis (Deason et al. 2012a) of radial velocity data of a large

sample of halo stars, performed within the context of a model for the (in general anisotropic) velocity

distribution function of the halo stars, indicates the stellar velocity anisotropy being radially biased

with a value of β ∼ 0.5 for r from ∼ 16 kpc up to r ∼ 48 kpc. This is also supported by recent

results from a large numerical simulation study (Rashkov et al. 2013), which finds that the velocity

distribution of the Galaxy’s stellar population at large r is indeed radially biased (β > 0) with

stellar orbits tending to purely radial (β → 1) at r >
∼ 100 kpc. Based on these considerations, in

this paper we shall calculate our RCs assuming three representative constant values of β, namely,

β = 0 (isotropic), 0.5 (mildly radially biased anisotropy), and 1 (fully radially anisotropic). We

shall also calculate the RC for a radially varying β with the radial profile of β extracted from the

results of numerical simulations given in Rashkov et al. (2013).

With ntr, σr and β thus specified, we can now proceed to solve the Jeans equation (11) to

obtain the Vc profiles for the three different tracer samples described above. For each tracer sample

we calculate the Vc’s in the same radial bins as used in calculating the ntr’s and σGSR’s, and

the best-fit power-law forms of ntr and σGSR described above are used for calculating the radial

derivatives appearing in the Jeans equation (11). The corresponding 1σ error, ∆Vc, on Vc within

each radial bin is calculated from those of ntr and σGSR in the bin by standard quadrature.

The resulting RCs for the three tracer samples are shown in Figure 8. It is seen that all the

RCs are declining beyond ∼ 50 kpc. The declining trend is particularly clear for the KG and Hg

samples. Also, as clear from the left panels of Figure 8 the RCs for different choices of GCs almost

overlap, thus indicating that the the RC at large galactocentric distances beyond a few tens of kpc

is fairly insensitive to (our lack of) precise knowledge of the GCs. Instead, the main uncertainty in

the RC comes from the unknown value of the tracers’ velocity anisotropy parameter β. As expected,

the lowest rotation speeds obtain for the most radially biased velocity anisotropy (β = 1).

4. Combined rotation curves to r ∼ 200 kpc

We now combine the rotation curves obtained from disk and non-disk tracers (Figures 4 and 8)

to construct the rotation curve of the Galaxy up to ∼ 200 kpc. For the disk region (r < 25 kpc)

we take the Vc data for a chosen set of GCs from the lower panel of Figure 4. For the non-disk

2Note that equation (3) given in the 2005 paper of Battaglia et al. (2005, 2006) is incorrect. The correct equation,

same as equation (15) above, is given in the 2006 (Erratum) paper of Battaglia et al. (2005, 2006).
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region (r ≥ 25 kpc), we combine the Vc data from Figure 8 for the three tracer samples in every 2

kpc radial bins and calculate the resulting mean circular speed (Vc) and its 1σ uncertainty (∆Vc)

within a bin by weighted averaging as described in section 2 [see equation (10)].

The resulting rotation curves for β = 0 and three sets of values of the GCs are shown in Figure

9, and those for different values of β, for one particular set of GCs,
[

R0

kpc
, V0

km s−1

]

= [8.3, 244], are

shown in Figure 10. For comparison, we also show in Figure 10 estimates of circular velocities at

specific values of r obtained from a variety of independent considerations in some earlier studies by

various authors.

The β dependence of the radial profile of the cumulative mass, M(r) = rV 2
c (r)/G, is shown in

Figure 11. Note that the lowest mass of the Galaxy corresponds to β = 1, which allows us to set a

lower limit on the mass of the Galaxy, M(∼ 200 kpc) ≥ (6.8 ± 4.1) × 1011M⊙.

Finally, the full rotation curve of the Galaxy from its inner region (r ∼ 0.2 kpc) out to ∼ 200 kpc

with
[

R0

kpc
, V0

km s−1

]

= [8.3, 244] and for a radial profile of the non-disk tracers’ velocity anisotropy

parameter β extracted from Figure 2 of Rashkov et al. (2013) is shown in Figure 12.

As already mentioned, a noticeable feature of the rotation curve, irrespective of the velocity

anisotropy of the tracer objects, is it’s clearly declining nature beyond about ∼50 kpc, as would be

expected of an effectively finite size of the dark matter halo of the Galaxy.

We emphasize that, for any given β, the rotation curve and mass profile of the Galaxy shown in

Figures 10 and 11, respectively, are based entirely on observational data, and are obtained without

making any models of the mass distributions of the various components (the bulge, disk and dark

matter halo) of the Galaxy.

5. Summary

In this paper, we have constructed the rotation curve (RC) of the Galaxy from a galactocentric

distance of ∼ 0.2 kpc out to ∼ 200 kpc by using kinematical data on a variety of both disk and non-

disk objects that trace the gravitational potential of the Galaxy. We have studied the dependence

of the RC on the choice of the Galactic constants (GCs) and also studied the dependence on the

velocity anisotropy parameter β of the non-disk tracers. The RC in the disk region is found to

depend significantly on the choice of values of the GCs. The rotation curve at large distances beyond

the stellar disk, however, depends more significantly on the parameter β than on the values of the

GCs. In general, the mean RC is found to steadily decline beyond r ∼ 50 kpc, irrespective of the

value of β. At any given galactocentric distance r, the circular speed is lower for larger values of β.

Considering that the largest allowed value of β is unity (complete radial anisotropy), this allows us to

set a lower limit on the total mass of the Galaxy, giving M( <
∼ 200 kpc) ≥ (6.8±4.1)×1011M⊙. We

have also noted that recent results from high resolution hydrodynamical simulations of formation

of galaxies like Milky Way (Rashkov et al. 2013) indicate an increasingly radially biased velocity
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ellipsoid of the Galaxy’s stellar population at large distances, with stellar orbits tending to be

almost purely radial (β → 1) beyond ∼ 100 kpc. This implies that the above lower limit on the

Galaxy’s mass (obtained from our results with β = 1) may in fact be a good estimate of the actual

mass of the Galaxy out to ∼ 200 kpc. We have also given the RC of the Galaxy for a radial profile

of β obtained from the results of the numerical simulations of Rashkov et al. (2013), which may be

useful for realistic modeling of the phase space properties of the dark matter halo of the Galaxy.
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Fig. 1.— Left: Schematic diagram showing the coordinate system, velocity and distance notations

used in this work. Right: Illustration of the tangent point method for deriving the circular speeds

for distances R < R0 on the disk.
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Fig. 2.— x–y scatter plots for the different disk tracer samples listed in Table 1, for the case

R0 = 8.3 kpc. The Galactic Center is chosen to be at origin (0, 0) with the sun located at (0, R0).
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Fig. 3.— Galactic longitude, l (x-axis), versus height from Galactic mid-plane, z (y-axis), for the

different disk tracer samples listed in Table 1, for the case R0 = 8.3 kpc.
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Table 1: Disk tracer types, their source references and (l, b) ranges of the data sets used in this

paper. Superscript ‘a’ denotes the tracers limited within the solar circle (R < R0) where tangent

point method has been used to derive the rotation speeds. The identifier for each tracer data set

used in the paper is given within parentheses in the first column under the respective tracer type

for subsequent references in the paper.

Tracer Type Data Source (l, b) Ranges

HI regionsa

(HI-W76-B78)

Westerhout (1976);

Burton & Gordon (1978)

1◦ < l < 90◦

CO cloudsa

(CO-B78)

Burton & Gordon (1978) 9◦ < l < 82◦

CO cloudsa

(CO-C85)

Clemens (1985) 13◦ < l < 86◦

HI regionsa

(HI-F89)

Fich et al. (1989) 15◦ < l < 89◦ and 271◦ < l < 345◦

HII regions

(HII-F89)

Fich et al. (1989) 10◦ < l < 170◦ and 190◦ < l < 350◦

HII regions &

reflection nebulae

(HII-RN-B93)

Brand & Blitz (1993) 10◦ < l < 170◦ and 190◦ < l < 350◦

Cepheids

(Cepheid-P94)

Pont et al. (1994) 10◦ < l < 170◦ and 190◦ < l < 350◦;

|b| < 10◦

Planetary nebulae

(PNe-M05-M84-D98)

Maciel & Lago (2005);

Maciel (1984);

Durand et al. (1998)

15◦ < l < 345◦; |b| < 10◦

Open star clusters

(OSC-F08-D02)

Frinchaboy & Majewski

(2008);

Dias et al. (2002)

10◦ < l < 170◦ and 190◦ < l < 350◦;

|b| < 9◦

HII regions

(HII-H09)

Hou et al. (2009) 10◦ < l < 170◦ and 190◦ < l < 350◦

HII regionsa

(HII-U11)

Urquhart et al. (2011) 10◦ < l < 65◦ and 280◦ < l < 350◦

C stars

(C stars-D07-B12)

Demers & Battinelli (2007);

Battinelli et al. (2012)

54◦ < l < 150◦; 3◦ < |b| < 9◦
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Fig. 5.— x-z, y-z and x-y scatter plots (after removing objects with r < 25 kpc; see text) for

the three samples of non-disk tracer objects considered in this paper, namely, (1) the “BHB”

sample, a set of 1457 blue horizontal branch stars from the compilation of Xue et al. (2011), (2)

the “KG” sample, a set of 2227 K-Giant stars from the compilation of Xue et al. (2012), and (3)

the “Hg” sample, a heterogeneous set of 65 objects comprising of 16 Globular Clusters (GCl) from

Harris (2010,1996), 28 field blue horizontal branch (FHB) stars from Clewley et al. (2004), and

28 dwarf spheroidals (dSph) from McConnachie (2012), for R0 = 8.3 kpc with the sun located at

(x = 0, y = R0, z = 0).
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samples). The top left panel also shows, for comparison, the σGSR obtained in some earlier studies

(Battaglia et al. 2005, 2006; Brown et al. 2010; Deason et al. 2012a) which used different tracer

samples. The other three panels show the best power-law fits to the radial profiles of σGSR for the

three non-disk samples. The GC set used is
[

R0

kpc
, V0

km s−1

]

= [8.3, 244].
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Fig. 8.— Circular velocities with their 1σ error bars for the three different non-disk tracer samples

used in this paper (see text and Figure 5 for details and source references for the samples). The

left panels are for tracer velocity anisotropy β = 0 and three different sets of values of the Galactic

constants,
[

R0

kpc
, V0

km s−1

]

, as indicated, whereas the right panels show the results for three different

constant (r-independent) values of β = 0, 0.5 and 1, with
[

R0

kpc
, V0

km s−1

]

= [8.3, 244].
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Fig. 9.— Top: Rotation curve of the Galaxy for three different sets of values of the Galactic

constants
[

R0

kpc
, V0

km s−1

]

as indicated and non-disk tracers’ velocity anisotropy parameter β = 0.

The data points and their 1σ error bars shown here are obtained by weighted averaging over the

combined Vc data obtained from different disk and non-disk tracer samples (see Figures 4 and 8).

Bottom: Same as above, but r in linear scale.
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Fig. 10.— Rotation Curve for
[

R0

kpc
, V0

km s−1

]

= [8.3, 244] and various values of β. The shaded

bands marked D12a and G10 in the top and bottom panels, respectively, represent the RCs and

their uncertainty bands obtained earlier by Deason et al. (2012a) (D12a) (up to r ∼ 50 kpc)

and Gnedin et al. (2010) (G10) (up to r ∼ 100 kpc), respectively. In addition, some bench-

mark ranges of circular velocities at certain specific values of r obtained from various indepen-

dent considerations by Kafle et al. (2012) (K12), Honma et al. (2007) (VERA), McMillan (2011)

(M11), McMillan & Binney (2010) (MB10), Sofue et al. (2009) (S09), Wilkinson & Evans (1999)

(WE99), Xue et al. (2008) (X08), Samurovic et al. (2011) (S11), Watkins et al. (2010) (W10), and

Deason et al. (2012b) (D12b) are shown for comparison.
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Fig. 11.— The mass, M(r) = rV 2
c (r)/G, within r, as a function of r, obtained from the RCs shown

in Figure 10 for
[

R0

kpc
, V0

kms−1

]

= [8.3, 244] and various values of the tracers’ velocity anisotropy

parameter β. Benchmark ranges of M(r) at certain specific values of r obtained from various in-

dependent considerations in earlier works, namely, Kafle et al. (2012) (K12), Wilkinson & Evans

(1999) (WE99), Deason et al. (2012a) (D12a), Xue et al. (2008) (X08), McMillan (2011) (M11),

Gnedin et al. (2010) (G10), Samurovic et al. (2011) (S11), Dehnen & Binney (1998) (DB98),

Battaglia et al. (2005, 2006) (B05-06), Deason et al. (2012b) (D12b), and Bhattacharjee et al.

(2013) (BCKM 2013), are shown for comparison.
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Fig. 12.— Top: Rotation curve of the Milky Way to ∼ 200 kpc for
[

R0

kpc
, V0

km s−1

]

= [8.3, 244] and

for a radial profile of the non-disk tracers’ velocity anisotropy parameter β derived from Figure 2

of Rashkov et al. (2013) (R13). Bottom: Same as above, but with r in linear scale. The Vc data

in numerical tabular forms for different sets of values of
[

R0

kpc
, V0

km s−1

]

are available upon request

from the authors.
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Table 2: Best-fit parameter values for power-law fits to the radial profiles of the number density,

ntr, and the Galactic Standard of Rest (GSR) frame los velocity dispersion, σGSR, of the tracers

for the three non-disk tracer samples considered in this paper (see text and Figure 5 for details and

source references for the samples). The parameter values are given for three different sets of values

of the GCs,
[

R0

kpc
, V0

km s−1

]

.

Number densities and radial velocity dispersions

of non-disk tracers
[

R0

kpc
, V0

km s−1

]

ntr = n0 (
r

50 kpc
)−γ , σGSR = σ0 (

r
50 kpc

)−α

n0

kpc3
γ σ0

km s−1 α

BHB

[8.3, 244] 7.51 × 10−4 4.16 93.0 0.06

[8.5, 220] 7.66 × 10−4 4.15 94.45 0.07

[8.0, 200] 7.45 × 10−4 4.17 93.58 0.05

KG

[8.3, 244] 6.57 × 10−4 5.51 86.75 0.31

[8.5, 220] 6.53 × 10−4 5.51 88.23 0.30

[8.0, 200] 6.40 × 10−4 5.51 87.89 0.29

Hg

[8.3, 244] 2.37 × 10−5 4.18 121.21 0.37

[8.5, 220] 2.39 × 10−5 4.18 117.51 0.40

[8.0, 200] 2.38 × 10−5 4.17 115.34 0.42
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